T-coercivity: a practical tool for the study of variational formulations

Patrick Ciarlet

POEMS, ENSTA Paris, Institut Polytechnique de Paris, France

I IP PARIS

Hipothec, March 2024

Outline

(1) What is T-coercivity?
(2) Stokes model
(3) Neutron diffusion model
(4) Neutron diffusion model with Domain Decomposition
(5) Magnetostatics
(6) Further remarks

What is T-coercivity?

A tool to study variational formulations [Chesnel-PC' 13]

Abstract framework: Find $u \in V$ s.t. $\forall w \in W, a(u, w)=W^{\prime}\langle f, w\rangle_{W}$. Approximate framework: Find $u_{\delta} \in V_{\delta}$ s.t. $\forall w_{\delta} \in W_{\delta}, a\left(u_{\delta}, w_{\delta}\right)=W^{\prime}\left\langle f, w_{\delta}\right\rangle_{W}$.

What is T-coercivity?

A tool to study variational formulations [Chesnel-PC'13]

Abstract framework: Find $u \in V$ s.t. $\forall w \in W, a(u, w)=W^{\prime}\langle f, w\rangle_{W}$. Approximate framework: Find $u_{\delta} \in V_{\delta}$ s.t. $\forall w_{\delta} \in W_{\delta}, a\left(u_{\delta}, w_{\delta}\right)=W^{\prime}\left\langle f, w_{\delta}\right\rangle_{W}$.
(1) First, analyse the variational formulation theoretically:

- prove well-posedness;
- existence, uniqueness and continuous dependence of the solution with respect to the data.

What is T-coercivity?

A tool to study variational formulations [Chesnel-PC'13]

Abstract framework: Find $u \in V$ s.t. $\forall w \in W, a(u, w)=W^{\prime}\langle f, w\rangle_{W}$. Approximate framework: Find $u_{\delta} \in V_{\delta}$ s.t. $\forall w_{\delta} \in W_{\delta}, a\left(u_{\delta}, w_{\delta}\right)=W^{\prime}\left\langle f, w_{\delta}\right\rangle_{W}$.
(1) First, analyse the variational formulation theoretically:

- prove well-posedness;
- existence, uniqueness and continuous dependence of the solution with respect to the data.
(2) Second, solve the variational formulation numerically:
- find suitable approximations;
- prove convergence.

What is T-coercivity?

A tool to study variational formulations [Chesnel-PC'13]

Abstract framework: Find $u \in V$ s.t. $\forall w \in W, a(u, w)={ }_{W^{\prime}}\langle f, w\rangle_{W}$.
Approximate framework: Find $u_{\delta} \in V_{\delta}$ s.t. $\forall w_{\delta} \in W_{\delta}, a\left(u_{\delta}, w_{\delta}\right)=W^{\prime}\left\langle f, w_{\delta}\right\rangle_{W}$.
(1) First, analyse the variational formulation theoretically:

- prove well-posedness;
- existence, uniqueness and continuous dependence of the solution with respect to the data.
(2) Second, solve the variational formulation numerically:
- find suitable approximations;
- prove convergence.

Within the framework of T-coercivity, steps 1 and 2 are very strongly correlated!

What is T-coercivity?

As an abstract tool

Let

- V, W be Hilbert spaces;
- $a(\cdot, \cdot)$ be a continuous sesquilinear form on $V \times W$;
- f be an element of W^{\prime}, the dual space of W.

Solve

$$
\text { (VF) Find } u \in V \text { s.t. } \forall w \in W, a(u, w)=W^{\prime}\langle f, w\rangle_{W}
$$

[Banach-Nečas-Babuška] The inf-sup condition writes

$$
\text { (isc) } \exists \alpha>0, \forall v \in V, \sup _{w \in W \backslash\{0\}} \frac{|a(v, w)|}{\|w\|_{W}} \geq \alpha\|v\|_{V} \text {. }
$$

What is T-coercivity?

As an abstract tool

Let

- V, W be Hilbert spaces;
- $a(\cdot, \cdot)$ be a continuous sesquilinear form on $V \times W$;
- f be an element of W^{\prime}, the dual space of W.

Solve

$$
\text { (VF) Find } u \in V \text { s.t. } \forall w \in W, a(u, w)=W^{\prime}\langle f, w\rangle_{W}
$$

Definition (T-coercivity)

The form $a(\cdot, \cdot)$ is T-coercive if

$$
\exists \mathrm{T} \in \mathcal{L}(V, W) \text { bijective, } \exists \underline{\alpha}>0, \forall v \in V,|a(v, \mathrm{~T} v)| \geq \underline{\alpha}\|v\|_{V}^{2} .
$$

NB. In other words, the form $a(\cdot, \mathrm{~T} \cdot)$ is coercive on $V \times V$.

What is T-coercivity?

As an abstract tool

Let

- V, W be Hilbert spaces;
- $a(\cdot, \cdot)$ be a continuous sesquilinear form on $V \times W$;
- f be an element of W^{\prime}, the dual space of W.

Solve

$$
\text { (VF) Find } u \in V \text { s.t. } \forall w \in W, a(u, w)=W^{\prime}\langle f, w\rangle_{W}
$$

Theorem (Well-posedness)

The three assertions below are equivalent:
(i) the Problem (VF) is well-posed;
(ii) the form $a(\cdot, \cdot)$ satisfies (isc) and $\{w \in W \mid \forall v \in V, a(v, w)=0\}=\{0\}$;
(iii) the form $a(\cdot, \cdot)$ is T-coercive.

The operator T realises the inf-sup condition (isc) explicitly: $w=\mathrm{T} u$ works!

What is T-coercivity?

As an abstract tool (simplified)

Let

- V be a Hilbert space;
- $a(\cdot, \cdot)$ be a continuous, sesquilinear, hermitian form on $V \times V$;
- f be an element of V^{\prime}, the dual space of V.

Solve
(VF) Find $u \in V$ s.t. $\forall w \in V, a(u, w)={ }_{V^{\prime}}\langle f, w\rangle_{V}$.

What is T-coercivity?

As an abstract tool (simplified)

Let

- V be a Hilbert space;
- $a(\cdot, \cdot)$ be a continuous, sesquilinear, hermitian form on $V \times V$;
- f be an element of V^{\prime}, the dual space of V.

Solve

$$
\text { (VF) Find } u \in V \text { s.t. } \forall w \in V, a(u, w)=V_{V^{\prime}}\langle f, w\rangle_{V}
$$

Definition (T-coercivity, hermitian case)

The form $a(\cdot, \cdot)$ is T-coercive if

$$
\exists \mathrm{T} \in \mathcal{L}(V), \exists \underline{\alpha}>0, \forall v \in V,|a(v, \mathrm{~T} v)| \geq \underline{\alpha}\|v\|_{V}^{2} .
$$

What is T-coercivity?

As an abstract tool (simplified)

Let

- V be a Hilbert space;
- $a(\cdot, \cdot)$ be a continuous, sesquilinear, hermitian form on $V \times V$;
- f be an element of V^{\prime}, the dual space of V.

Solve

$$
\text { (VF) Find } u \in V \text { s.t. } \forall w \in V, a(u, w)=V^{\prime}\langle f, w\rangle_{V}
$$

Theorem (Well-posedness, hermitian case)

The three assertions below are equivalent:
(i) the Problem (VF) is well-posed;
(ii) the form $a(\cdot, \cdot)$ satisfies (isc);
(iii) the form $a(\cdot, \cdot)$ is T-coercive (hermitian case).

> The operator T realises the inf-sup condition (isc) explicitly.

What is T-coercivity?

As an approximation tool

Let

- $\left(V_{\delta}\right)_{\delta}$ be a family of finite dimensional subspaces of V;
- $\left(W_{\delta}\right)_{\delta}$ be a family of finite dimensional subspaces of W.

Assume that $\operatorname{dim}\left(V_{\delta}\right)=\operatorname{dim}\left(W_{\delta}\right)$ for all $\delta>0$.
Solve

$$
(\mathrm{VF})_{\delta} \quad \text { Find } u_{\delta} \in V_{\delta} \text { s.t. } \forall w_{\delta} \in W_{\delta}, a\left(u_{\delta}, w_{\delta}\right)=W^{\prime}\left\langle f, w_{\delta}\right\rangle_{W}
$$

What is T-coercivity?

As an approximation tool

Let

- $\left(V_{\delta}\right)_{\delta}$ be a family of finite dimensional subspaces of V;
- $\left(W_{\delta}\right)_{\delta}$ be a family of finite dimensional subspaces of W.

Assume that $\operatorname{dim}\left(V_{\delta}\right)=\operatorname{dim}\left(W_{\delta}\right)$ for all $\delta>0$.
Solve

$$
(\mathrm{VF})_{\delta} \quad \text { Find } u_{\delta} \in V_{\delta} \text { s.t. } \forall w_{\delta} \in W_{\delta}, a\left(u_{\delta}, w_{\delta}\right)=W^{\prime}\left\langle f, w_{\delta}\right\rangle_{W}
$$

[Banach-Nečas-Babuška] The uniform discrete inf-sup condition writes

$$
\text { (udisc) } \exists \alpha_{\dagger}>0, \forall \delta>0, \forall v_{\delta} \in V_{\delta}, \sup _{w_{\delta} \in W_{\delta} \backslash\{0\}} \frac{\left|a\left(v_{\delta}, w_{\delta}\right)\right|}{\left\|w_{\delta}\right\|_{W}} \geq \alpha_{\dagger}\left\|v_{\delta}\right\|_{V}
$$

NB. When (udisc) is fulfilled, (VF) ${ }_{\delta}$ is well-posed for all $\delta>0$.

What is T-coercivity?

As an approximation tool

Let

- $\left(V_{\delta}\right)_{\delta}$ be a family of finite dimensional subspaces of V;
- $\left(W_{\delta}\right)_{\delta}$ be a family of finite dimensional subspaces of W.

Assume that $\operatorname{dim}\left(V_{\delta}\right)=\operatorname{dim}\left(W_{\delta}\right)$ for all $\delta>0$.
Solve

$$
(\mathrm{VF})_{\delta} \quad \text { Find } u_{\delta} \in V_{\delta} \text { s.t. } \forall w_{\delta} \in W_{\delta}, a\left(u_{\delta}, w_{\delta}\right)=W^{\prime}\left\langle f, w_{\delta}\right\rangle_{W}
$$

Definition (uniform T_{δ}-coercivity)

The form a is uniformly T_{δ}-coercive if

$$
\exists \underline{\alpha}_{\dagger}, \underline{\beta}_{\dagger}>0, \forall \delta>0, \exists \mathrm{~T}_{\delta} \in \mathcal{L}\left(V_{\delta}, W_{\delta}\right),\left\|\mathrm{T}_{\delta}\right\| \leq \underline{\beta}_{\dagger} \text { and } \forall v_{\delta} \in V_{\delta},\left|a\left(v_{\delta}, \mathrm{T}_{\delta} v_{\delta}\right)\right| \geq \underline{\alpha}_{\dagger}\left\|v_{\delta}\right\|_{V}^{2} .
$$

NB. When a is uniformly T_{δ}-coercive, $(\mathrm{VF})_{\delta}$ is well-posed for all $\delta>0$.

What is T-coercivity?

As an approximation tool

Let

- $\left(V_{\delta}\right)_{\delta}$ be a family of finite dimensional subspaces of V;
- $\left(W_{\delta}\right)_{\delta}$ be a family of finite dimensional subspaces of W.

Assume that $\operatorname{dim}\left(V_{\delta}\right)=\operatorname{dim}\left(W_{\delta}\right)$ for all $\delta>0$.
Solve

$$
(\mathrm{VF})_{\delta} \text { Find } u_{\delta} \in V_{\delta} \text { s.t. } \forall w_{\delta} \in W_{\delta}, a\left(u_{\delta}, w_{\delta}\right)={ }_{W^{\prime}}\left\langle f, w_{\delta}\right\rangle_{W}
$$

Theorem (Céa's lemma)

Assume that the family $\left(V_{\delta}\right)_{\delta}$ fulfills the basic approximability property in V.
In addition, assume that
(i) either, the form $a(\cdot, \cdot)$ satisfies (udisc);
(ii) or, the form $a(\cdot, \cdot)$ is uniformly T_{δ}-coercive.

Then, $\lim _{\delta \rightarrow 0}\left\|u-u_{\delta}\right\|_{V}=0$.

What is T-coercivity?

As an approximation tool

Let

- $\left(V_{\delta}\right)_{\delta}$ be a family of finite dimensional subspaces of V;
- $\left(W_{\delta}\right)_{\delta}$ be a family of finite dimensional subspaces of W.

Assume that $\operatorname{dim}\left(V_{\delta}\right)=\operatorname{dim}\left(W_{\delta}\right)$ for all $\delta>0$.
Solve

$$
(\mathrm{VF})_{\delta} \quad \text { Find } u_{\delta} \in V_{\delta} \text { s.t. } \forall w_{\delta} \in W_{\delta}, a\left(u_{\delta}, w_{\delta}\right)=W^{\prime}\left\langle f, w_{\delta}\right\rangle_{W}
$$

Theorem (Céa's lemma)

Assume that the family $\left(V_{\delta}\right)_{\delta}$ fulfills the basic approximability property in V.
In addition, assume that
(i) either, the form $a(\cdot, \cdot)$ satisfies (udisc);
(ii) or, the form $a(\cdot, \cdot)$ is uniformly T_{δ}-coercive.

Then, $\lim _{\delta \rightarrow 0}\left\|u-u_{\delta}\right\|_{V}=0$. And error estimates whenever possible...

What is T-coercivity?

Two key ideas [Chesnel-PC'13]
[1st Key Idea] Use the knowledge on operator T to derive the discrete operators $\left(\mathrm{T}_{\delta}\right)_{\delta}$!

What is T-coercivity?

[1st Key Idea] Use the knowledge on operator T to derive the discrete operators $\left(\mathrm{T}_{\delta}\right)_{\delta}$!
[2nd Key Idea] Discretize the variational formulation with (bijective) operator T :

$$
(\mathrm{VF})_{\mathrm{T}} \quad \text { Find } u \in V \text { s.t. } \forall v \in V, a(u, \mathrm{~T} v)={ }_{W^{\prime}}\langle f, \mathrm{~T} v\rangle_{W}!
$$

What is T-coercivity?

As an approximation tool (solving the equivalent linear system)
Given $\delta>0$, let $N=\operatorname{dim}\left(V_{\delta}\right) .(\mathrm{VF})_{\delta}$ is equivalent to Solve

$$
\begin{aligned}
& \text { Find } U \in \mathbb{C}^{N} \text { s.t. } \forall W \in \mathbb{C}^{N},(\mathbb{A} U \mid W)=(F \mid W) . \\
& \text { Or, find } U \in \mathbb{C}^{N} \text { s.t. } \mathbb{A} U=F \text {. }
\end{aligned}
$$

What is T-coercivity?

As an approximation tool (solving the equivalent linear system)
Given $\delta>0$, let $N=\operatorname{dim}\left(V_{\delta}\right) .(\mathrm{VF})_{\delta}$ is equivalent to Solve

$$
\begin{aligned}
& \text { Find } U \in \mathbb{C}^{N} \text { s.t. } \forall W \in \mathbb{C}^{N},(\mathbb{A} U \mid W)=(F \mid W) \\
& \text { Or, find } U \in \mathbb{C}^{N} \text { s.t. } \mathbb{A} U=F
\end{aligned}
$$

[1st Key Idea] Using \mathbb{T} associated with $\mathrm{T}_{\delta},(\mathrm{VF})_{\delta}$ is equivalent to Solve

$$
\begin{aligned}
& \text { Find } U \in \mathbb{C}^{N} \text { s.t. } \forall V \in \mathbb{C}^{N},(\mathbb{A} U \mid \mathbb{T} V)=(F \mid \mathbb{T} V) . \\
& \text { Or, find } U \in \mathbb{C}^{N} \text { s.t. } \mathbb{T}^{*} \mathbb{A} U=\mathbb{T}^{*} F .
\end{aligned}
$$

What is T-coercivity?

As an approximation tool (solving the equivalent linear system)
Given $\delta>0$, let $N=\operatorname{dim}\left(V_{\delta}\right) .(\mathrm{VF})_{\delta}$ is equivalent to Solve

$$
\begin{aligned}
& \text { Find } U \in \mathbb{C}^{N} \text { s.t. } \forall W \in \mathbb{C}^{N},(\mathbb{A} U \mid W)=(F \mid W) \\
& \text { Or, find } U \in \mathbb{C}^{N} \text { s.t. } \mathbb{A} U=F
\end{aligned}
$$

[1st Key Idea] Using \mathbb{T} associated with $\mathrm{T}_{\delta},(\mathrm{VF})_{\delta}$ is equivalent to Solve

$$
\begin{aligned}
& \text { Find } U \in \mathbb{C}^{N} \text { s.t. } \forall V \in \mathbb{C}^{N},(\mathbb{A} U \mid \mathbb{T} V)=(F \mid \mathbb{T} V) \\
& \text { Or, find } U \in \mathbb{C}^{N} \text { s.t. } \mathbb{T}^{*} \mathbb{A} U=\mathbb{T}^{*} F
\end{aligned}
$$

According to the uniform T_{δ}-coercivity assumption

$$
\forall V \in \mathbb{C}^{N},\left|\left(\mathbb{T}^{*} \mathbb{A} V \mid V\right)\right| \geq \underline{\alpha}_{\dagger}(\mathbb{M} V \mid V)
$$

What is T-coercivity?

As an approximation tool (solving the equivalent linear system)
Given $\delta>0$, let $N=\operatorname{dim}\left(V_{\delta}\right) .(\mathrm{VF})_{\delta}$ is equivalent to Solve

$$
\begin{aligned}
& \text { Find } U \in \mathbb{C}^{N} \text { s.t. } \forall W \in \mathbb{C}^{N},(\mathbb{A} U \mid W)=(F \mid W) \\
& \text { Or, find } U \in \mathbb{C}^{N} \text { s.t. } \mathbb{A} U=F
\end{aligned}
$$

[1st Key Idea] Using \mathbb{T} associated with $\mathrm{T}_{\delta},(\mathrm{VF})_{\delta}$ is equivalent to Solve

$$
\begin{aligned}
& \text { Find } U \in \mathbb{C}^{N} \text { s.t. } \forall V \in \mathbb{C}^{N},(\mathbb{A} U \mid \mathbb{T} V)=(F \mid \mathbb{T} V) \\
& \text { Or, find } U \in \mathbb{C}^{N} \text { s.t. } \mathbb{T}^{*} \mathbb{A} U=\mathbb{T}^{*} F
\end{aligned}
$$

According to the uniform T_{δ}-coercivity assumption

$$
\forall V \in \mathbb{C}^{N},\left|\left(\mathbb{T}^{*} \mathbb{A} V \mid V\right)\right| \geq \underline{\alpha}_{\dagger}(\mathbb{M} V \mid V)
$$

[2nd Key Idea] Use \mathbb{T} associated with T for the approximation of $(V F)_{T} \cdots$

What is T-coercivity?

Can be applied to various types of variational formulations

\dagger = Abstract T-coercivity only.

(1) Coercive plus compact formulations. See for instance:

- integral equations: Buffa-Costabel-Schwab'02 [Θ-coercivity]; Buffa-Christiansen'03;

Buffa-Christiansen'05; Buffa'05; Unger'21; Levadoux (2022, HAL report) [τ-coercivity].

- volume equations: Hiptmair'02 ["($X+S$)-coercivity"]; Buffa'05; PC'12 ["elementary" proofs]; Hohage-Nannen'15 [S-coercivity]; Sayas-Brown-Hassell' 19^{\dagger}; Halla'21 ["generalized" proofs].
(2) Formulations with sign-changing coefficients.

See for instance

- for scalar models: BonnetBenDhia-PC-Zwölf'10; BonnetBenDhia-Chesnel-Haddar'11 Nicaise-Venel'11; BonnetBenDhia-Chesnel-PC'12 ${ }^{\dagger}$; Chesnel-PC'13; Bunoiu-Ramdani' 16^{\dagger} Carvalho-Chesnel-PC'17: BonnetBenDhia-Carvalho-PC'18; Bunoiu-Ramdani-Timofte'21-'22-'23T Carvalho-Moitier'23; Halla-Hohage-Oberender (2024, ArXiv report)
- for EM models: BonnetBenDhia-Chesnel-PC'14 ${ }^{\dagger}$ (2D-3D); PC'22 (3D); Halla'23 (2D); Yang-Wang-Mao'23 (3D)
(3) Mixed formulations.
- for the Stokes model: see below!
- for diffusion models: Jamelot-PC'13; PC-Jamelot-Kpadonou'17; see below!
- for static models in electromagnetism: Barré-PC (to appear, 2023); PC-Jamelot'24; see below!

What is T-coercivity?

Can be applied to various types of variational formulations

\dagger = Abstract T-coercivity only.

(1) Coercive plus compact formulations. See for instance

```
- integral equations: Buffa-Costabel-Schwab'02 [\Theta-coercivity]; Buffa-Christiansen'03;
    Buffa-Christiansen'05; Buffa'05; Unger'21; Levadoux (2022, HAL report) [ }\tau\mathrm{ -coercivity]
- volume equations: Hiptmair'02 ["( }X+S)\mathrm{ -coercivity"]; Buffa'05; PC'12 ["elementary" proofs]
    Hohage-Nannen'15 [S-coercivity; Sayas-Brown-Hassel1'19'; Halla`21 ""generalized" proofs,
```

(2) Formulations with sign-changing coefficients. See for instance:

- for scalar models: BonnetBenDhia-PC-Zwölf ${ }^{\prime} 10$; BonnetBenDhia-Chesnel-Haddar' 11^{\dagger}; Nicaise-Venel ${ }^{1} 11$; BonnetBenDhia-Chesnel-PC ' ${ }^{2}{ }^{\dagger}$; Chesnel-PC ${ }^{\prime} 13$; Bunoiu-Ramdani ${ }^{\prime} 16^{\dagger}$; Carvalho-Chesnel-PC'17; BonnetBenDhia-Carvalho-PC' 18 ; Bunoiu-Ramdani-Timofte' 21 - ${ }^{\prime 2} 2$ - $^{\prime} 23^{\dagger}{ }^{\dagger}$; Carvalho-Moitier'23; Halla-Hohage-Oberender (2024, ArXiv report).
- for EM models: BonnetBenDhia-Chesnel-PC'14 (2D-3D); PC'22 (3D); Halla'23 (2D); Yang-Wang-Mao' 23 (3D).
(3) Mixed formulations.
- for the Stokes model: see below!
- for diffusion models: Jamelot-PC'13; PC-Jamelot-Kpadonou'17; see below!
- for static models in electromagnetism: Barré-PC (to appear, 2023); PC-Jamelot'24; see below!

What is T-coercivity?

Can be applied to various types of variational formulations
$\dagger=$ Abstract T-coercivity only.
(1) Coercive plus compact formulations. See for instance

```
- integral equations: Buffa-Costabel-Schwab'02 [\Theta-coercivity]; Buffa-Christiansen'03;
    Buffa-Christiansen'05; Buffa'05; Unger'21; Levadoux (2022, HAL report) [\tau-coercivity]
- volume equations: Hiptmair'02 ["( }X+S)\mathrm{ -coercivity"]; Buffa'05; PC'12 ["elementary" proofs]
    Hohage-Nannen'15 [S-coercivity]; Sayas-Brown-Hassell'19`; Halla'21 ["generalized" proofs]
```

(2) Formulations with sign-changing coefficients. See for instance:

- for scalar models: BonnetBenDhia-PC-Zwölf'10; BonnetBenDhia-Chesnel-Haddar'11 Nicaise-Venel'11; BonnetBenDhia-Chesnel-PC' 12^{\dagger}; Chesnel-PC'13; Bunoiu-Ramdani' 16^{\dagger} Carvalho-Chesnel-PC'17; BonnetBenDhia-Carvalho-PC'18; Bunoiu-Ramdani-Timofte'21-'22-'23 Carvalho-Moitier'23; Halla-Hohage-Oberender (2024, ArXiv report)
- for EM models: BonnetBenDhia-Chesnel-PC'14 ${ }^{\dagger}$ (2D-3D); PC'22 (3D); Halla'23 (2D); Yang-Wang-Mao'23 (3D)
(3) Mixed formulations.
- for the Stokes model: see below!
- for diffusion models: Jamelot-PC'13; PC-Jamelot-Kpadonou'17; see below!
- for static models in electromagnetism: Barré-PC (to appear, 2023); PC-Jamelot'24; see below!

Outline

(1) What is T-coercivity?
(2) Stokes model
(3) Neutron diffusion model
4. Neutron diffusion model with Domain Decomposition
(5) Magnetostatics
6) Further remarks

Further remarks

Magnetostatics

(1) Let Ω be a simply connected domain of \mathbb{R}^{3} with a connected boundary. The magnetostatic equations write

$$
\left\{\begin{array}{l}
\operatorname{curl}\left(\mu^{-1} \boldsymbol{B}\right)=\boldsymbol{J} \text { in } \Omega \\
\operatorname{div} \boldsymbol{B}=0 \text { in } \Omega \\
\boldsymbol{B} \cdot \boldsymbol{n}=0 \text { on } \partial \Omega,
\end{array}\right.
$$

for some uniformly elliptic, bounded tensor $\boldsymbol{x} \mapsto \mu(\boldsymbol{x})$ (magnetic permeability).

Magnetostatics

(1) Assuming that $\boldsymbol{J} \in \boldsymbol{H}(\operatorname{div} 0 ; \Omega)$, one analyses mathematically the model

$$
(\mathrm{MSt})_{\boldsymbol{B}} \quad\left\{\begin{array}{l}
\text { Find } \boldsymbol{B} \in \boldsymbol{L}^{2}(\Omega) \text { such that } \\
\operatorname{curl}\left(\mu^{-1} \boldsymbol{B}\right)=\boldsymbol{J} \text { in } \Omega \\
\operatorname{div} \boldsymbol{B}=0 \text { in } \Omega \\
\boldsymbol{B} \cdot \boldsymbol{n}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Magnetostatics

(1) Assuming that $\boldsymbol{J} \in \boldsymbol{H}(\operatorname{div} 0 ; \Omega)$, one analyses mathematically the model

$$
(\mathrm{MSt})_{\boldsymbol{B}} \quad\left\{\begin{array}{l}
\text { Find } \boldsymbol{B} \in \boldsymbol{L}^{2}(\Omega) \text { such that } \\
\operatorname{curl}\left(\mu^{-1} \boldsymbol{B}\right)=\boldsymbol{J} \text { in } \Omega \\
\operatorname{div} \boldsymbol{B}=0 \text { in } \Omega \\
\boldsymbol{B} \cdot \boldsymbol{n}=0 \text { on } \partial \Omega
\end{array}\right.
$$

Since $\boldsymbol{B} \in \boldsymbol{H}_{0}(\operatorname{div} 0 ; \Omega)$, there exists one, and only one, $\boldsymbol{A} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \cap \boldsymbol{H}(\operatorname{div} 0 ; \Omega)$ such that $\boldsymbol{B}=\operatorname{curl} \boldsymbol{A}$ in Ω. We study the model in the vector potential \boldsymbol{A}.

Magnetostatics

(1) Assuming that $\boldsymbol{J} \in \boldsymbol{H}(\operatorname{div} 0 ; \Omega)$, one analyses mathematically the model
$(\mathrm{MSt})_{\boldsymbol{A}} \quad\left\{\begin{array}{l}\text { Find } \boldsymbol{A} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \text { such that } \\ \operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{A}\right)=\boldsymbol{J} \text { in } \Omega \\ \operatorname{div} \boldsymbol{A}=0 \text { in } \Omega .\end{array}\right.$

Magnetostatics

(1) Assuming that $\boldsymbol{J} \in \boldsymbol{H}(\operatorname{div} 0 ; \Omega)$, one analyses mathematically the model

$$
(\mathrm{MSt})_{\boldsymbol{A}} \quad\left\{\begin{array}{l}
\text { Find } \boldsymbol{A} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \text { such that } \\
\operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{A}\right)=\boldsymbol{J} \text { in } \Omega \\
\operatorname{div} \boldsymbol{A}=0 \text { in } \Omega .
\end{array}\right.
$$

(2) The equivalent variational formulation writes

$$
(\mathrm{FV}-\mathrm{MSt})_{\boldsymbol{A}}\left\{\begin{array}{l}
\text { Find } \boldsymbol{A} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \text { such that } \\
\forall \boldsymbol{v} \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega), \quad \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{A} \cdot \operatorname{curl} \boldsymbol{v} d \Omega \\
\forall q \in H_{0}^{1}(\Omega), \quad \int_{\Omega} \boldsymbol{A} \cdot \nabla q d \Omega=0 .
\end{array}\right.
$$

Magnetostatics

(1) Assuming that $\boldsymbol{J} \in \boldsymbol{H}(\operatorname{div} 0 ; \Omega)$, one analyses mathematically the model

$$
(\mathrm{MSt})_{\boldsymbol{A}} \quad\left\{\begin{array}{l}
\text { Find } \boldsymbol{A} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \text { such that } \\
\boldsymbol{\operatorname { c u r l }}\left(\mu^{-1} \operatorname{curl} \boldsymbol{A}\right)=\boldsymbol{J} \text { in } \Omega \\
\operatorname{div} \boldsymbol{A}=0 \text { in } \Omega
\end{array}\right.
$$

(2) Let $\gamma>0$. Introducing an artificial pressure p, another equivalent variational formulation is

$$
(\mathrm{FV}-\mathrm{MSt})_{\boldsymbol{A}}^{\gamma}\left\{\begin{array}{l}
\text { Find } \boldsymbol{A} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega), p \in H_{0}^{1}(\Omega) \text { such that } \\
\forall \boldsymbol{v} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega), \quad \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{A} \cdot \operatorname{curl} \boldsymbol{v} d \Omega \\
\quad+\gamma \int_{\Omega} \boldsymbol{v} \cdot \nabla p d \Omega=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v} d \Omega \\
\forall q \in H_{0}^{1}(\Omega), \quad \gamma \int_{\Omega} \boldsymbol{A} \cdot \nabla q d \Omega=0
\end{array}\right.
$$

Taking $\boldsymbol{v}=\nabla p$, one finds that $p=0$!

Magnetostatics

(1) Assuming that $\boldsymbol{J} \in \boldsymbol{H}(\operatorname{div} 0 ; \Omega)$, one analyses mathematically the model

$$
(\mathrm{MSt})_{\boldsymbol{A}} \quad\left\{\begin{array}{l}
\text { Find } \boldsymbol{A} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \text { such that } \\
\operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{A}\right)=\boldsymbol{J} \text { in } \Omega \\
\operatorname{div} \boldsymbol{A}=0 \text { in } \Omega .
\end{array}\right.
$$

(2) Let $\gamma>0$. Introducing an artificial pressure p, another equivalent variational formulation is

$$
(\mathrm{FV}-\mathrm{MSt})_{\boldsymbol{A}}^{\gamma}\left\{\begin{array}{r}
\text { Find }(\boldsymbol{A}, p) \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \times H_{0}^{1}(\Omega) \text { such that } \\
\forall(\boldsymbol{v}, q) \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \times H_{0}^{1}(\Omega), \quad \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{A} \cdot \operatorname{curl} \boldsymbol{v} d \Omega \\
\quad+\gamma \int_{\Omega} \boldsymbol{v} \cdot \nabla p d \Omega+\gamma \int_{\Omega}^{\boldsymbol{A}} \cdot \nabla q d \Omega=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v} d \Omega
\end{array}\right.
$$

Magnetostatics

(1) Assuming that $\boldsymbol{J} \in \boldsymbol{H}(\operatorname{div} 0 ; \Omega)$, one analyses mathematically the model

$$
(\mathrm{MSt})_{\boldsymbol{A}} \quad\left\{\begin{array}{l}
\text { Find } \boldsymbol{A} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \text { such that } \\
\operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{A}\right)=\boldsymbol{J} \text { in } \Omega \\
\operatorname{div} \boldsymbol{A}=0 \text { in } \Omega .
\end{array}\right.
$$

(2) Let $\gamma>0$. Introducing an artificial pressure p, another equivalent variational formulation is

Question: how to prove well-posedness "easily"?

Magnetostatics

(1) Assuming that $\boldsymbol{J} \in \boldsymbol{H}(\operatorname{div} 0 ; \Omega)$, one analyses mathematically the model

$$
(\mathrm{MSt})_{\boldsymbol{A}} \quad\left\{\begin{array}{l}
\text { Find } \boldsymbol{A} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \text { such that } \\
\operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{A}\right)=\boldsymbol{J} \text { in } \Omega \\
\operatorname{div} \boldsymbol{A}=0 \text { in } \Omega
\end{array}\right.
$$

(2) Let $\gamma>0$. Introducing an artificial pressure p, another equivalent variational formulation is

$$
(\mathrm{FV}-\mathrm{MSt})_{\boldsymbol{A}}^{\gamma}\left\{\begin{array}{l}
\text { Find }(\boldsymbol{A}, p) \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega) \times H_{0}^{1}(\Omega) \text { such that } \\
\forall(\boldsymbol{v}, q) \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega) \times H_{0}^{1}(\Omega), \quad \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{A} \cdot \operatorname{curl} \boldsymbol{v} d \Omega \\
\quad+\gamma \int_{\Omega} \boldsymbol{v} \cdot \nabla p d \Omega+\gamma \int_{\Omega} \boldsymbol{A} \cdot \nabla q d \Omega=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v} d \Omega
\end{array}\right.
$$

Question: how to prove well-posedness "easily"?

Use T-coercivity for the magnetostatics model!

Magnetostatics

Let

- $V=\boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega) \times H_{0}^{1}(\Omega)$, endowed with $\|(\boldsymbol{v}, q)\|_{V}=\left(\|\boldsymbol{v}\|_{\boldsymbol{H}(\mathbf{c u r l} ; \Omega)}^{2}+|q|_{1, \Omega}^{2}\right)^{1 / 2}$;
- $a((\boldsymbol{v}, q),(\boldsymbol{w}, r))=\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{v} \cdot \operatorname{curl} \boldsymbol{w} d \Omega+\gamma \int_{\Omega} \boldsymbol{w} \cdot \nabla q d \Omega+\gamma \int_{\Omega} \boldsymbol{v} \cdot \nabla r d \Omega$;
${ }^{-}{ }_{V^{\prime}}\langle f,(\boldsymbol{w}, r)\rangle_{V}=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{w} d \Omega$.

Magnetostatics

Let

- $V=\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \times H_{0}^{1}(\Omega)$, endowed with $\|(\boldsymbol{v}, q)\|_{V}=\left(\|\boldsymbol{v}\|_{\boldsymbol{H}(\mathbf{c u r l} ; \Omega)}^{2}+|q|_{1, \Omega}^{2}\right)^{1 / 2}$;
- $a((\boldsymbol{v}, q),(\boldsymbol{w}, r))=\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{v} \cdot \operatorname{curl} \boldsymbol{w} d \Omega+\gamma \int_{\Omega} \boldsymbol{w} \cdot \nabla q d \Omega+\gamma \int_{\Omega} \boldsymbol{v} \cdot \nabla r d \Omega$;
${ }^{-}{ }_{V^{\prime}}\langle f,(\boldsymbol{w}, r)\rangle_{V}=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{w} d \Omega$.
The first goal is to prove that the form $a(\cdot, \cdot)$ is T-coercive.
NB. The form a is not coercive, because $a((0, q),(0, q))=0$ for $q \in H_{0}^{1}(\Omega)$.

Magnetostatics

Let

- $V=\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \times H_{0}^{1}(\Omega)$, endowed with $\|(\boldsymbol{v}, q)\|_{V}=\left(\|\boldsymbol{v}\|_{\boldsymbol{H}(\mathbf{c u r l} ; \Omega)}^{2}+|q|_{1, \Omega}^{2}\right)^{1 / 2}$;
- $a((\boldsymbol{v}, q),(\boldsymbol{w}, r))=\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{v} \cdot \operatorname{curl} \boldsymbol{w} d \Omega+\gamma \int_{\Omega} \boldsymbol{w} \cdot \nabla q d \Omega+\gamma \int_{\Omega} \boldsymbol{v} \cdot \nabla r d \Omega$;
${ }^{-}{ }_{V^{\prime}}\langle f,(\boldsymbol{w}, r)\rangle_{V}=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{w} d \Omega$.
The first goal is to prove that the form $a(\cdot, \cdot)$ is T-coercive.
Given $(\boldsymbol{v}, q) \in V$, we look for $\left(\boldsymbol{w}^{\star}, r^{\star}\right) \in V$ with linear dependence such that

$$
\left|a\left((\boldsymbol{v}, q),\left(\boldsymbol{w}^{\star}, r^{\star}\right)\right)\right| \geq \underline{\alpha}\|(\boldsymbol{v}, q)\|_{V}^{2}
$$

with $\underline{\alpha}>0$ independent of (\boldsymbol{v}, q). In other words, T is defined by $\mathrm{T}((\boldsymbol{v}, q))=\left(\boldsymbol{w}^{\star}, r^{\star}\right)$.

Magnetostatics

Let

- $V=\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \times H_{0}^{1}(\Omega)$, endowed with $\|(\boldsymbol{v}, q)\|_{V}=\left(\|\boldsymbol{v}\|_{\boldsymbol{H}(\mathbf{c u r l} ; \Omega)}^{2}+|q|_{1, \Omega}^{2}\right)^{1 / 2} ;$
$a((\boldsymbol{v}, q),(\boldsymbol{w}, r))=\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{v} \cdot \operatorname{curl} \boldsymbol{w} d \Omega+\gamma \int_{\Omega} \boldsymbol{w} \cdot \nabla q d \Omega+\gamma \int_{\Omega} \boldsymbol{v} \cdot \nabla r d \Omega ;$
- $V^{\prime}\langle f,(\boldsymbol{w}, r)\rangle_{V}=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{w} d \Omega$.

The first goal is to prove that the form $a(\cdot, \cdot)$ is T-coercive.
Given $(\boldsymbol{v}, q) \in V$, we look for $\left(\boldsymbol{w}^{\star}, r^{\star}\right) \in V$ with linear dependence such that

$$
\left|a\left((\boldsymbol{v}, q),\left(\boldsymbol{w}^{\star}, r^{\star}\right)\right)\right| \geq \underline{\alpha}\|(\boldsymbol{v}, q)\|_{V}^{2}
$$

with $\underline{\alpha}>0$ independent of (\boldsymbol{v}, q). Three steps:
(1) $\boldsymbol{v}=0$;
(2) $q=0$;
(3) General case.

Magnetostatics

Constructive proof of well-posedness with T-coercivity - 2
Recall $a((\boldsymbol{v}, q),(\boldsymbol{w}, r))=\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{v} \cdot \operatorname{curl} \boldsymbol{w} d \Omega+\gamma \int_{\Omega} \boldsymbol{w} \cdot \nabla q d \Omega+\gamma \int_{\Omega} \boldsymbol{v} \cdot \nabla r d \Omega$.
(1) $a((0, q),(\boldsymbol{w}, r))=\gamma \int_{\Omega} \boldsymbol{w} \cdot \nabla q d \Omega$: so choosing $\left(\boldsymbol{w}^{\star}, r^{\star}\right)=(\nabla q, 0)$ yields

$$
\left|a\left((0, q),\left(\boldsymbol{w}^{\star}, r^{\star}\right)\right)\right|=\gamma \int_{\Omega}|\nabla q|^{2} d \Omega=\gamma\|(0, q)\|_{V}^{2}
$$

Magnetostatics

Recall $a((\boldsymbol{v}, q),(\boldsymbol{w}, r))=\int_{\Omega} \mu^{-1} \mathbf{c u r l} \boldsymbol{v} \cdot \operatorname{curl} \boldsymbol{w} d \Omega+\gamma \int_{\Omega} \boldsymbol{w} \cdot \nabla q d \Omega+\gamma \int_{\Omega} \boldsymbol{v} \cdot \nabla r d \Omega$.
(1) $a((0, q),(\boldsymbol{w}, r))=\gamma \int_{\Omega} \boldsymbol{w} \cdot \nabla q d \Omega: \quad$ choose $\left(\boldsymbol{w}^{\star}, r^{\star}\right)=(\nabla q, 0)$.
(2) $a((\boldsymbol{v}, 0),(\boldsymbol{w}, r))=\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{v} \cdot \operatorname{curl} \boldsymbol{w} d \Omega+\gamma \int_{\Omega} \boldsymbol{v} \cdot \nabla r d \Omega$: according to eg. Monk' 03 , one has the (double) orthogonal Helmholtz decomposition

$$
\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)=\boldsymbol{K}_{N}(\Omega) \stackrel{\perp}{\oplus} \nabla\left[H_{0}^{1}(\Omega)\right] \text { where } \boldsymbol{K}_{N}(\Omega)=\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \cap \boldsymbol{H}(\operatorname{div} 0 ; \Omega),
$$

and $\boldsymbol{k} \mapsto\|\operatorname{curl} \boldsymbol{k}\|$ defines a norm on $\boldsymbol{K}_{N}(\Omega)$, equivalent to $\|\cdot\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)}$. Let $\boldsymbol{v}=\boldsymbol{k}_{v}+\nabla \phi_{v}$, then choosing $\left(\boldsymbol{w}^{\star}, r^{\star}\right)=\left(\boldsymbol{k}_{v}, \phi_{v}\right)$ yields

$$
\left|a\left((\boldsymbol{v}, 0),\left(\boldsymbol{w}^{\star}, r^{\star}\right)\right)\right|=\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{k}_{v} \cdot \operatorname{curl} \boldsymbol{k}_{v} d \Omega+\gamma \int_{\Omega}\left|\nabla \phi_{v}\right|^{2} d \Omega \gtrsim\|(\boldsymbol{v}, 0)\|_{V}^{2} .
$$

Magnetostatics

Constructive proof of well-posedness with T-coercivity - 2
Recall $a((\boldsymbol{v}, q),(\boldsymbol{w}, r))=\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{v} \cdot \operatorname{curl} \boldsymbol{w} d \Omega+\gamma \int_{\Omega} \boldsymbol{w} \cdot \nabla q d \Omega+\gamma \int_{\Omega} \boldsymbol{v} \cdot \nabla r d \Omega$.
(1) $a((0, q),(\boldsymbol{w}, r))=\gamma \int_{\Omega} \boldsymbol{w} \cdot \nabla q d \Omega: \quad$ choose $\left(\boldsymbol{w}^{\star}, r^{\star}\right)=(\nabla q, 0)$.
(2) $a((\boldsymbol{v}, 0),(\boldsymbol{w}, r))=\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{v} \cdot \operatorname{curl} \boldsymbol{w} d \Omega+\gamma \int_{\Omega} \boldsymbol{v} \cdot \nabla r d \Omega$: choose $\left(\boldsymbol{w}^{\star}, r^{\star}\right)=\left(\boldsymbol{k}_{v}, \phi_{v}\right)$.

Magnetostatics

Recall $a((\boldsymbol{v}, q),(\boldsymbol{w}, r))=\int_{\Omega} \mu^{-1} \mathbf{c u r l} \boldsymbol{v} \cdot \operatorname{curl} \boldsymbol{w} d \Omega+\gamma \int_{\Omega} \boldsymbol{w} \cdot \nabla q d \Omega+\gamma \int_{\Omega} \boldsymbol{v} \cdot \nabla r d \Omega$.
(1) $a((0, q),(\boldsymbol{w}, r))=\gamma \int_{\Omega} \boldsymbol{w} \cdot \nabla q d \Omega: \quad$ choose $\left(\boldsymbol{w}^{\star}, r^{\star}\right)=(\nabla q, 0)$.
(2) $a((\boldsymbol{v}, 0),(\boldsymbol{w}, r))=\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{v} \cdot \operatorname{curl} \boldsymbol{w} d \Omega+\gamma \int_{\Omega} \boldsymbol{v} \cdot \nabla r d \Omega$: choose $\left(\boldsymbol{w}^{\star}, r^{\star}\right)=\left(\boldsymbol{k}_{v}, \phi_{v}\right)$.
(3) General case: the linear combination $\left(\boldsymbol{w}^{\star}, r^{\star}\right)=\left(\nabla q+\boldsymbol{k}_{v}, \phi_{v}\right)$ now leads to

$$
\begin{aligned}
a\left((\boldsymbol{v}, q),\left(\boldsymbol{w}^{\star}, r^{\star}\right)\right) & =\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{k}_{v} \cdot \operatorname{curl} \boldsymbol{k}_{v} d \Omega+\gamma \int_{\Omega}|\nabla q|^{2} d \Omega+\gamma \int_{\Omega}\left|\nabla \phi_{v}\right|^{2} d \Omega \\
& \gtrsim\|(\boldsymbol{v}, q)\|_{V}^{2} .
\end{aligned}
$$

Magnetostatics

Regarding the proof with T-coercivity, one can make several observations:
(1) The (double) orthogonal Helmholtz decomposition plays a crucial role!
(2) The operator T is independent of the chosen value for γ.
(3) The approach can be transposed to the approximation, see below!

Magnetostatics

Regarding the proof with T-coercivity, one can make several observations:
(1) The (double) orthogonal Helmholtz decomposition plays a crucial role!
(2) The operator T is independent of the chosen value for γ.
(3) The approach can be transposed to the approximation, see below!

The second goal is to prove the uniform discrete inf-sup condition, with the help of the uniform T_{δ}-coercivity. Given finite dimensional subspaces $\left(\boldsymbol{V}_{\delta}\right)_{\delta}$ of $\boldsymbol{H}_{0}($ curl $; \Omega)$, resp. $\left(Q_{\delta}\right)_{\delta}$ of $H_{0}^{1}(\Omega)$, one can build an approximation of the magnetostatics model. Question: how to choose them?

Magnetostatics

Regarding the proof with T-coercivity, one can make several observations:
(1) The (double) orthogonal Helmholtz decomposition plays a crucial role!
(2) The operator T is independent of the chosen value for γ.
(3) The approach can be transposed to the approximation, see below!

The second goal is to prove the uniform discrete inf-sup condition, with the help of the uniform T_{δ}-coercivity. Given finite dimensional subspaces $\left(\boldsymbol{V}_{\delta}\right)_{\delta}$ of $\boldsymbol{H}_{0}($ curl $; \Omega)$, resp. $\left(Q_{\delta}\right)_{\delta}$ of $H_{0}^{1}(\Omega)$, one can build an approximation of the magnetostatics model. Question: how to choose them?

Magnetostatics

Constructive proof of convergence with uniform T_{δ}-coercivity

The discrete variational formulation writes

$$
(\mathrm{FV}-\mathrm{MSt})_{\boldsymbol{A}}^{\gamma, \delta}\left\{\begin{array}{l}
\text { Find }\left(\boldsymbol{A}_{\delta}, p_{\delta}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta} \text { such that } \\
\forall\left(\boldsymbol{v}_{\delta}, q_{\delta}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta}, \quad \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{A}_{\delta} \cdot \operatorname{curl} \boldsymbol{v}_{\delta} d \Omega \\
+\gamma \int_{\Omega} \boldsymbol{v}_{\delta} \cdot \nabla p_{\delta} d \Omega+\gamma \int_{\Omega} \boldsymbol{A}_{\delta} \cdot \nabla q_{\delta} d \Omega=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v}_{\delta} d \Omega
\end{array}\right.
$$

Magnetostatics

The discrete variational formulation writes

$$
(\mathrm{FV}-\mathrm{MSt})_{\boldsymbol{A}}^{\gamma, \delta}\left\{\begin{array}{l}
\text { Find }\left(\boldsymbol{A}_{\delta}, p_{\delta}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta} \text { such that } \\
\forall\left(\boldsymbol{v}_{\delta}, q_{\delta}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta}, \quad \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{A}_{\delta} \cdot \operatorname{curl} \boldsymbol{v}_{\delta} d \Omega \\
+\gamma \int_{\Omega} \boldsymbol{v}_{\delta} \cdot \nabla p_{\delta} d \Omega+\gamma \int_{\Omega} \boldsymbol{A}_{\delta} \cdot \nabla q_{\delta} d \Omega=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v}_{\delta} d \Omega
\end{array}\right.
$$

Given $\left(\boldsymbol{v}_{\delta}, q_{\delta}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta}$, we look for $\left(\boldsymbol{w}_{\delta}^{\star}, r_{\delta}^{\star}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta}$ with linear dependence such that

$$
\left|a\left(\left(\boldsymbol{v}_{\delta}, q_{\delta}\right),\left(\boldsymbol{w}_{\delta}^{\star}, r_{\delta}^{\star}\right)\right)\right| \geq \underline{\alpha}_{\dagger}\left\|\left(\boldsymbol{v}_{\delta}, q_{\delta}\right)\right\|_{V}^{2},
$$

with $\underline{\alpha}_{\dagger}>0$ independent of δ and of $\left(\boldsymbol{v}_{\delta}, q_{\delta}\right)$.

Magnetostatics

The discrete variational formulation writes

$$
(\mathrm{FV}-\mathrm{MSt})_{\boldsymbol{A}}^{\gamma, \delta}\left\{\begin{array}{l}
\text { Find }\left(\boldsymbol{A}_{\delta}, p_{\delta}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta} \text { such that } \\
\forall\left(\boldsymbol{v}_{\delta}, q_{\delta}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta}, \quad \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{A}_{\delta} \cdot \operatorname{curl} \boldsymbol{v}_{\delta} d \Omega \\
+\gamma \int_{\Omega} \boldsymbol{v}_{\delta} \cdot \nabla p_{\delta} d \Omega+\gamma \int_{\Omega} \boldsymbol{A}_{\delta} \cdot \nabla q_{\delta} d \Omega=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v}_{\delta} d \Omega
\end{array}\right.
$$

Given $\left(\boldsymbol{v}_{\delta}, q_{\delta}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta}$, we look for $\left(\boldsymbol{w}_{\delta}^{\star}, r_{\delta}^{\star}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta}$ with linear dependence such that

$$
\left|a\left(\left(\boldsymbol{v}_{\delta}, q_{\delta}\right),\left(\boldsymbol{w}_{\delta}^{\star}, r_{\delta}^{\star}\right)\right)\right| \geq \underline{\alpha}_{\dagger}\left\|\left(\boldsymbol{v}_{\delta}, q_{\delta}\right)\right\|_{V}^{2},
$$

with $\underline{\alpha}_{\dagger}>0$ independent of δ and of $\left(\boldsymbol{v}_{\delta}, q_{\delta}\right)$. To mimick the T-coercivity approach, one needs that $\nabla\left[Q_{\delta}\right] \subset \boldsymbol{V}_{\delta}$, so that a discrete Helmholtz decomposition holds in \boldsymbol{V}_{δ} :

$$
\boldsymbol{V}_{\delta}=\boldsymbol{K}_{\delta} \stackrel{\perp}{\oplus} \nabla\left[Q_{\delta}\right] \text { where } \boldsymbol{K}_{\delta}=\left\{\boldsymbol{k}_{\delta} \in \boldsymbol{V}_{\delta} \mid \forall q_{\delta} \in Q_{\delta},\left(\boldsymbol{k}_{\delta}, \nabla q_{\delta}\right)_{\boldsymbol{L}^{2}(\Omega)}=0\right\}
$$

Magnetostatics

The discrete variational formulation writes

$$
(\mathrm{FV}-\mathrm{MSt})_{\boldsymbol{A}}^{\gamma, \delta}\left\{\begin{array}{l}
\text { Find }\left(\boldsymbol{A}_{\delta}, p_{\delta}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta} \text { such that } \\
\forall\left(\boldsymbol{v}_{\delta}, q_{\delta}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta}, \quad \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{A}_{\delta} \cdot \operatorname{curl} \boldsymbol{v}_{\delta} d \Omega \\
+\gamma \int_{\Omega} \boldsymbol{v}_{\delta} \cdot \nabla p_{\delta} d \Omega+\gamma \int_{\Omega} \boldsymbol{A}_{\delta} \cdot \nabla q_{\delta} d \Omega=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v}_{\delta} d \Omega
\end{array}\right.
$$

Given $\left(\boldsymbol{v}_{\delta}, q_{\delta}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta}$, we look for $\left(\boldsymbol{w}_{\delta}^{\star}, r_{\delta}^{\star}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta}$ with linear dependence such that

$$
\left|a\left(\left(\boldsymbol{v}_{\delta}, q_{\delta}\right),\left(\boldsymbol{w}_{\delta}^{\star}, r_{\delta}^{\star}\right)\right)\right| \geq \underline{\alpha}_{\dagger}\left\|\left(\boldsymbol{v}_{\delta}, q_{\delta}\right)\right\|_{V}^{2},
$$

with $\underline{\alpha}_{\dagger}>0$ independent of δ and of $\left(\boldsymbol{v}_{\delta}, q_{\delta}\right)$. Mimicking the T-coercivity approach, using the discrete decomposition $\boldsymbol{v}_{\delta}=\boldsymbol{k}_{\delta}+\nabla \phi_{\delta}$, one chooses: $\left(\boldsymbol{w}_{\delta}^{\star}, r_{\delta}^{\star}\right)=\left(\nabla q_{\delta}+\boldsymbol{k}_{\delta}, \phi_{\delta}\right)$.

Magnetostatics

The discrete variational formulation writes

$$
(\mathrm{FV}-\mathrm{MSt})_{\boldsymbol{A}}^{\gamma, \delta}\left\{\begin{array}{l}
\text { Find }\left(\boldsymbol{A}_{\delta}, p_{\delta}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta} \text { such that } \\
\forall\left(\boldsymbol{v}_{\delta}, q_{\delta}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta}, \quad \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{A}_{\delta} \cdot \operatorname{curl} \boldsymbol{v}_{\delta} d \Omega \\
+\gamma \int_{\Omega} \boldsymbol{v}_{\delta} \cdot \nabla p_{\delta} d \Omega+\gamma \int_{\Omega} \boldsymbol{A}_{\delta} \cdot \nabla q_{\delta} d \Omega=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v}_{\delta} d \Omega
\end{array}\right.
$$

Given $\left(\boldsymbol{v}_{\delta}, q_{\delta}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta}$, we look for $\left(\boldsymbol{w}_{\delta}^{\star}, r_{\delta}^{\star}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta}$ with linear dependence such that

$$
\left|a\left(\left(\boldsymbol{v}_{\delta}, q_{\delta}\right),\left(\boldsymbol{w}_{\delta}^{\star}, r_{\delta}^{\star}\right)\right)\right| \geq \underline{\alpha}_{\dagger}\left\|\left(\boldsymbol{v}_{\delta}, q_{\delta}\right)\right\|_{V}^{2},
$$

with $\underline{\alpha}_{\dagger}>0$ independent of δ and of $\left(\boldsymbol{v}_{\delta}, q_{\delta}\right)$. Mimicking the T-coercivity approach, using the discrete decomposition $\boldsymbol{v}_{\delta}=\boldsymbol{k}_{\delta}+\nabla \phi_{\delta}$, one chooses: $\left(\boldsymbol{w}_{\delta}^{\star}, r_{\delta}^{\star}\right)=\left(\nabla q_{\delta}+\boldsymbol{k}_{\delta}, \phi_{\delta}\right)$.
Difficulty: does $\boldsymbol{k}_{\delta} \mapsto\left\|\operatorname{curl} \boldsymbol{k}_{\delta}\right\|$ define a norm on \boldsymbol{K}_{δ}, uniformly equivalent to $\|\cdot\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)}$?

Magnetostatics

The discrete variational formulation writes

$$
(\mathrm{FV}-\mathrm{MSt})_{\boldsymbol{A}}^{\gamma, \delta}\left\{\begin{array}{l}
\text { Find }\left(\boldsymbol{A}_{\delta}, p_{\delta}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta} \text { such that } \\
\forall\left(\boldsymbol{v}_{\delta}, q_{\delta}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta}, \quad \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{A}_{\delta} \cdot \operatorname{curl} \boldsymbol{v}_{\delta} d \Omega \\
+\gamma \int_{\Omega} \boldsymbol{v}_{\delta} \cdot \nabla p_{\delta} d \Omega+\gamma \int_{\Omega} \boldsymbol{A}_{\delta} \cdot \nabla q_{\delta} d \Omega=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v}_{\delta} d \Omega
\end{array}\right.
$$

Given $\left(\boldsymbol{v}_{\delta}, q_{\delta}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta}$, we look for $\left(\boldsymbol{w}_{\delta}^{\star}, r_{\delta}^{\star}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta}$ with linear dependence such that

$$
\left|a\left(\left(\boldsymbol{v}_{\delta}, q_{\delta}\right),\left(\boldsymbol{w}_{\delta}^{\star}, r_{\delta}^{\star}\right)\right)\right| \geq \underline{\alpha}_{\dagger}\left\|\left(\boldsymbol{v}_{\delta}, q_{\delta}\right)\right\|_{V}^{2},
$$

with $\underline{\alpha}_{\dagger}>0$ independent of δ and of $\left(\boldsymbol{v}_{\delta}, q_{\delta}\right)$. Mimicking the T-coercivity approach, using the discrete decomposition $\boldsymbol{v}_{\delta}=\boldsymbol{k}_{\delta}+\nabla \phi_{\delta}$, one chooses: $\left(\boldsymbol{w}_{\delta}^{\star}, r_{\delta}^{\star}\right)=\left(\nabla q_{\delta}+\boldsymbol{k}_{\delta}, \phi_{\delta}\right)$. Browsing Monk'03, a classical choice is:

Nédélec FE (1st family) of order $k \geq 1$ for \boldsymbol{V}_{δ}, resp. Lagrange FE of order $k \geq 1$ for Q_{δ}. The proof is "elementary"! Convergence and error estimates follow...

Magnetostatics

Solving numerically the variational formulation with operator T-1
Given $\gamma>0$, the variational formulation is

$$
(\mathrm{FV}-\mathrm{MSt})_{\boldsymbol{A}}^{\gamma}\left\{\begin{array}{l}
\text { Find }(\boldsymbol{A}, p) \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega) \times H_{0}^{1}(\Omega) \text { such that } \\
\forall(\boldsymbol{v}, q) \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega) \times H_{0}^{1}(\Omega), \quad \int_{\Omega} \mu^{-1} \mathbf{c u r l} \boldsymbol{A} \cdot \operatorname{curl} \boldsymbol{v} d \Omega \\
\quad+\gamma \int_{\Omega} \boldsymbol{v} \cdot \nabla p d \Omega+\gamma \int_{\Omega} \boldsymbol{A} \cdot \nabla q d \Omega=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v} d \Omega .
\end{array}\right.
$$

Magnetostatics

Given $\gamma>0$, the variational formulation is

Replace the test-fields $(\boldsymbol{v}, q)=\left(\boldsymbol{k}_{v}+\nabla \phi_{v}, q\right)$ by $\mathrm{T}(\boldsymbol{v}, q)=\left(\boldsymbol{k}_{v}+\nabla q, \phi_{v}\right)$.
An equivalent variational formulation is

$$
(\text { FV-MSt })_{\mathrm{T}}^{\gamma}\left\{\begin{array}{l}
\text { Find }(\boldsymbol{A}, p) \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \times H_{0}^{1}(\Omega) \text { such that } \\
\forall(\boldsymbol{v}, q) \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \times H_{0}^{1}(\Omega), \quad \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{A} \cdot \mathbf{c u r l} \boldsymbol{v} d \Omega \\
+\gamma \int_{\Omega} \nabla q \cdot \nabla p d \Omega+\gamma \int_{\Omega} \nabla \phi_{A} \cdot \nabla \phi_{v} d \Omega=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v} d \Omega
\end{array}\right.
$$

Magnetostatics

Given $\gamma>0$, the variational formulation is

$$
(\mathrm{FV}-\mathrm{MSt})_{\boldsymbol{A}}^{\gamma}\left\{\begin{array}{l}
\text { Find }(\boldsymbol{A}, p) \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega) \times H_{0}^{1}(\Omega) \text { such that } \\
\forall(\boldsymbol{v}, q) \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega) \times H_{0}^{1}(\Omega), \quad \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{A} \cdot \mathbf{c u r l} \boldsymbol{v} d \Omega \\
\quad+\gamma \int_{\Omega} \boldsymbol{v} \cdot \nabla p d \Omega+\gamma \int_{\Omega}^{\boldsymbol{A}} \cdot \nabla q d \Omega=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v} d \Omega
\end{array}\right.
$$

Replace the test-fields $(\boldsymbol{v}, q)=\left(\boldsymbol{k}_{v}+\nabla \phi_{v}, q\right)$ by $\mathrm{T}(\boldsymbol{v}, q)=\left(\boldsymbol{k}_{v}+\nabla q, \phi_{v}\right)$.
The equivalent variational formulation also writes

$$
(\mathrm{FV}-\mathrm{MSt})_{\mathrm{T}}^{\gamma}\left\{\begin{array}{l}
\begin{array}{l}
\text { Find } \boldsymbol{A} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega), \\
\forall \boldsymbol{v} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega), \quad \int_{\Omega}^{1}(\Omega) \text { such that } \\
\mu^{-1} \operatorname{curl} \boldsymbol{A} \cdot \mathbf{c u r l} \boldsymbol{v} d \Omega \\
\\
\quad+\gamma \int_{\Omega} \nabla \phi_{A} \cdot \nabla \phi_{v} d \Omega=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v} d \Omega \\
\forall q \in H_{0}^{1}(\Omega), \quad \gamma \int_{\Omega} \nabla q \cdot \nabla p d \Omega=0 .
\end{array}
\end{array}\right.
$$

Magnetostatics

Given $\gamma>0$, the variational formulation is

$$
(\mathrm{FV}-\mathrm{MSt})_{\boldsymbol{A}}^{\gamma}\left\{\begin{array}{l}
\text { Find }(\boldsymbol{A}, p) \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega) \times H_{0}^{1}(\Omega) \text { such that } \\
\forall(\boldsymbol{v}, q) \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \times H_{0}^{1}(\Omega), \quad \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{A} \cdot \mathbf{c u r l} \boldsymbol{v} d \Omega \\
\quad+\gamma \int_{\Omega} \boldsymbol{v} \cdot \nabla p d \Omega+\gamma \int_{\Omega}^{\boldsymbol{A}} \cdot \nabla q d \Omega=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v} d \Omega
\end{array}\right.
$$

Replace the test-fields $(\boldsymbol{v}, q)=\left(\boldsymbol{k}_{v}+\nabla \phi_{v}, q\right)$ by $\mathrm{T}(\boldsymbol{v}, q)=\left(\boldsymbol{k}_{v}+\nabla q, \phi_{v}\right)$.
The equivalent variational formulation also writes

$$
(\mathrm{FV}-\mathrm{MSt})_{\mathrm{T}}^{\gamma}\left\{\begin{array}{l}
\begin{array}{l}
\text { Find } \boldsymbol{A} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega), \\
\forall \boldsymbol{v} \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega), \\
\quad \int_{\Omega} \mu^{-1} \mathbf{c u r l} \boldsymbol{A} \cdot \mathbf{c u r l} \boldsymbol{v} d \Omega \\
\\
\quad+\gamma \int_{\Omega} \nabla \phi_{A} \cdot \nabla \phi_{v} d \Omega=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v} d \Omega \\
\forall q \in H_{0}^{1}(\Omega), \quad \gamma \int_{\Omega} \nabla q \cdot \nabla p d \Omega=0 \Longrightarrow p=0 .
\end{array} .
\end{array}\right.
$$

Magnetostatics

Solving numerically the variational formulation with operator T-2

Given $\gamma>0$, the (simplified) variational formulation to be solved is

$$
(\mathrm{FV}-\mathrm{MSt})_{\mathrm{T}}^{\gamma}\left\{\begin{array}{l}
\text { Find } \boldsymbol{A} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \text { such that } \\
\forall \boldsymbol{v} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega), \quad b_{\gamma}(\boldsymbol{A}, \boldsymbol{v})=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v} d \Omega
\end{array}\right.
$$

with $b_{\gamma}(\boldsymbol{v}, \boldsymbol{w})=\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{v} \cdot \operatorname{curl} \boldsymbol{w} d \Omega+\gamma \int_{\Omega} \nabla \phi_{v} \cdot \nabla \phi_{w} d \Omega$.

Magnetostatics

Solving numerically the variational formulation with operator T-2
Given $\gamma>0$, the (simplified) variational formulation to be solved is

$$
(\mathrm{FV}-\mathrm{MSt})_{\mathrm{T}}^{\gamma}\left\{\begin{array}{l}
\text { Find } \boldsymbol{A} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \text { such that } \\
\forall \boldsymbol{v} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega), \quad b_{\gamma}(\boldsymbol{A}, \boldsymbol{v})=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v} d \Omega
\end{array}\right.
$$

with $b_{\gamma}(\boldsymbol{v}, \boldsymbol{w})=\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{v} \cdot \operatorname{curl} \boldsymbol{w} d \Omega+\gamma \int_{\Omega} \nabla \phi_{v} \cdot \nabla \phi_{w} d \Omega$.
To approximate ($\mathrm{FV}-\mathrm{MSt})_{\mathrm{T}}^{\gamma}$:

- either one can evaluate simply the second term in the expression of $b_{\gamma}(\cdot, \cdot)$, that is evaluate the gradient part in the (discrete) Helmholtz decomposition ;
- or, one has to modify this second term.

We study next the second option.

Magnetostatics

Given $\gamma>0$, the (simplified) variational formulation to be solved is

$$
(\mathrm{FV}-\mathrm{MSt})_{\mathrm{T}}^{\gamma}\left\{\begin{array}{l}
\text { Find } \boldsymbol{A} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \text { such that } \\
\forall \boldsymbol{v} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega), \quad b_{\gamma}(\boldsymbol{A}, \boldsymbol{v})=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v} d \Omega
\end{array}\right.
$$

with $b_{\gamma}(\boldsymbol{v}, \boldsymbol{w})=\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{v} \cdot \operatorname{curl} \boldsymbol{w} d \Omega+\gamma \int_{\Omega} \nabla \phi_{v} \cdot \nabla \phi_{w} d \Omega$.
To approximate ($\mathrm{FV}-\mathrm{MSt})_{\mathrm{T}}^{\gamma}$:

- either one can evaluate simply the second term in the expression of $b_{\gamma}(\cdot, \cdot)$, that is evaluate the gradient part in the (discrete) Helmholtz decomposition ;
- or, one has to modify this second term.

We study next the second option. Observe that \boldsymbol{A} is independent of γ, so a natural idea is to choose a "small" value of γ and add a perturbation in the order of γ.

Magnetostatics

Given $\gamma>0$, the (simplified) variational formulation to be solved is

$$
(\mathrm{FV}-\mathrm{MSt})_{\mathrm{T}}^{\gamma}\left\{\begin{array}{l}
\text { Find } \boldsymbol{A} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \text { such that } \\
\forall \boldsymbol{v} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega), \quad b_{\gamma}(\boldsymbol{A}, \boldsymbol{v})=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v} d \Omega
\end{array}\right.
$$

with $b_{\gamma}(\boldsymbol{v}, \boldsymbol{w})=\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{v} \cdot \operatorname{curl} \boldsymbol{w} d \Omega+\gamma \int_{\Omega} \nabla \phi_{v} \cdot \nabla \phi_{w} d \Omega$.
To approximate ($\mathrm{FV}-\mathrm{MSt})_{\mathrm{T}}^{\gamma}$:

- either one can evaluate simply the second term in the expression of $b_{\gamma}(\cdot, \cdot)$, that is evaluate the gradient part in the (discrete) Helmholtz decomposition;
- or, one has to modify this second term.

We study next the second option. Observe that \boldsymbol{A} is independent of γ, so a natural idea is to choose a "small" value of γ and add a perturbation in the order of γ :

$$
c_{\gamma}(\boldsymbol{v}, \boldsymbol{w})=b_{\gamma}(\boldsymbol{v}, \boldsymbol{w})+\gamma \int_{\Omega} \boldsymbol{k}_{v} \cdot \boldsymbol{k}_{w} d \Omega=\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{v} \cdot \operatorname{curl} \boldsymbol{w} d \Omega+\gamma \int_{\Omega} \boldsymbol{v} \cdot \boldsymbol{w} d \Omega
$$

Magnetostatics

Solving numerically the variational formulation with operator T-3

Given $\gamma>0$, the perturbed variational formulation to be solved is

$$
(\mathrm{FV}-\mathrm{MSt})_{p e r t}^{\gamma}\left\{\begin{array}{l}
\text { Find } \boldsymbol{A}_{\gamma} \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega) \text { such that } \\
\forall \boldsymbol{v} \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega), \quad c_{\gamma}\left(\boldsymbol{A}_{\gamma}, \boldsymbol{v}\right)=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v} d \Omega
\end{array}\right.
$$

with $c_{\gamma}(\boldsymbol{v}, \boldsymbol{w})=\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{v} \cdot \operatorname{curl} \boldsymbol{w} d \Omega+\gamma \int_{\Omega} \boldsymbol{v} \cdot \boldsymbol{w} d \Omega$.

Magnetostatics

Solving numerically the variational formulation with operator T-3

Given $\gamma>0$, the perturbed variational formulation to be solved is

$$
(\mathrm{FV}-\mathrm{MSt})_{p e r t}^{\gamma}\left\{\begin{array}{l}
\text { Find } \boldsymbol{A}_{\gamma} \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega) \text { such that } \\
\forall \boldsymbol{v} \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega), \quad c_{\gamma}\left(\boldsymbol{A}_{\gamma}, \boldsymbol{v}\right)=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v} d \Omega
\end{array}\right.
$$

with $c_{\gamma}(\boldsymbol{v}, \boldsymbol{w})=\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{v} \cdot \operatorname{curl} \boldsymbol{w} d \Omega+\gamma \int_{\Omega} \boldsymbol{v} \cdot \boldsymbol{w} d \Omega$.
Observe that $\operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{A}_{\gamma}\right)+\gamma \boldsymbol{A}_{\gamma}=\boldsymbol{J}$ in Ω, so in general $\boldsymbol{A}_{\gamma} \neq \boldsymbol{A}$.

Magnetostatics

Solving numerically the variational formulation with operator T-3

Given $\gamma>0$, the perturbed variational formulation to be solved is

$$
(\mathrm{FV}-\mathrm{MSt})_{p e r t}^{\gamma}\left\{\begin{array}{l}
\text { Find } \boldsymbol{A}_{\gamma} \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega) \text { such that } \\
\forall \boldsymbol{v} \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega), \quad c_{\gamma}\left(\boldsymbol{A}_{\gamma}, \boldsymbol{v}\right)=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v} d \Omega
\end{array}\right.
$$

with $c_{\gamma}(\boldsymbol{v}, \boldsymbol{w})=\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{v} \cdot \operatorname{curl} \boldsymbol{w} d \Omega+\gamma \int_{\Omega} \boldsymbol{v} \cdot \boldsymbol{w} d \Omega$.
Observe that $\operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{A}_{\gamma}\right)+\gamma \boldsymbol{A}_{\gamma}=\boldsymbol{J}$ in Ω, so in general $\boldsymbol{A}_{\gamma} \neq \boldsymbol{A}$. On the other hand, $\boldsymbol{A}_{\gamma} \in \boldsymbol{K}_{N}(\Omega)$, with γ-robust estimates

$$
\left\|\operatorname{curl}\left(\boldsymbol{A}_{\gamma}-\boldsymbol{A}\right)\right\| \lesssim \gamma\|\boldsymbol{J}\| \text { and }\left\|\boldsymbol{A}_{\gamma}-\boldsymbol{A}\right\| \lesssim \gamma\|\boldsymbol{J}\|
$$

Magnetostatics

Solving numerically the variational formulation with operator T-3

Given $\gamma>0$, the perturbed variational formulation to be solved is

$$
(\mathrm{FV}-\mathrm{MSt})_{p e r t}^{\gamma}\left\{\begin{array}{l}
\text { Find } \boldsymbol{A}_{\gamma} \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega) \text { such that } \\
\forall \boldsymbol{v} \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega), \quad c_{\gamma}\left(\boldsymbol{A}_{\gamma}, \boldsymbol{v}\right)=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v} d \Omega
\end{array}\right.
$$

with $c_{\gamma}(\boldsymbol{v}, \boldsymbol{w})=\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{v} \cdot \operatorname{curl} \boldsymbol{w} d \Omega+\gamma \int_{\Omega} \boldsymbol{v} \cdot \boldsymbol{w} d \Omega$.
Observe that $\operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{A}_{\gamma}\right)+\gamma \boldsymbol{A}_{\gamma}=\boldsymbol{J}$ in Ω, so in general $\boldsymbol{A}_{\gamma} \neq \boldsymbol{A}$.
On the other hand, $\boldsymbol{A}_{\gamma} \in \boldsymbol{K}_{N}(\Omega)$, with γ-robust estimates

$$
\left\|\operatorname{curl}\left(\boldsymbol{A}_{\gamma}-\boldsymbol{A}\right)\right\| \lesssim \gamma\|\boldsymbol{J}\| \text { and }\left\|\boldsymbol{A}_{\gamma}-\boldsymbol{A}\right\| \lesssim \gamma\|\boldsymbol{J}\| .
$$

Approximate the perturbed variational formulation with ad hoc γ !

Magnetostatics

Solving numerically the variational formulation with operator T-4
Given $\gamma>0$, the discrete perturbed variational formulation writes

$$
(\mathrm{FV}-\mathrm{MSt})_{p e r t}^{\gamma, \delta}\left\{\begin{array}{l}
\text { Find } \boldsymbol{A}_{\gamma}^{\delta} \in \boldsymbol{V}_{\delta} \text { such that } \\
\forall \boldsymbol{v}_{\delta} \in \boldsymbol{V}_{\delta}, \quad c_{\gamma}\left(\boldsymbol{A}_{\gamma}^{\delta}, \boldsymbol{v}_{\delta}\right)=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v}_{\delta} d \Omega
\end{array}\right.
$$

with $c_{\gamma}(\boldsymbol{v}, \boldsymbol{w})=\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{v} \cdot \operatorname{curl} \boldsymbol{w} d \Omega+\gamma \int_{\Omega} \boldsymbol{v} \cdot \boldsymbol{w} d \Omega$.

Magnetostatics

Solving numerically the variational formulation with operator T-4

Given $\gamma>0$, the discrete perturbed variational formulation writes

$$
(\mathrm{FV}-\mathrm{MSt})_{p e r t}^{\gamma, \delta}\left\{\begin{array}{l}
\text { Find } \boldsymbol{A}_{\gamma}^{\delta} \in \boldsymbol{V}_{\delta} \text { such that } \\
\forall \boldsymbol{v}_{\delta} \in \boldsymbol{V}_{\delta}, \quad c_{\gamma}\left(\boldsymbol{A}_{\gamma}^{\delta}, \boldsymbol{v}_{\delta}\right)=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v}_{\delta} d \Omega
\end{array}\right.
$$

with $c_{\gamma}(\boldsymbol{v}, \boldsymbol{w})=\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{v} \cdot \operatorname{curl} \boldsymbol{w} d \Omega+\gamma \int_{\Omega} \boldsymbol{v} \cdot \boldsymbol{w} d \Omega$.
One has a variant of Céa's lemma, with γ-robust estimates

$$
\left\|\operatorname{curl}\left(\boldsymbol{A}_{\gamma}-\boldsymbol{A}_{\gamma}^{\delta}\right)\right\| \lesssim \inf _{\boldsymbol{v}_{\delta} \in \boldsymbol{V}_{\delta}}\left[\gamma^{1 / 2}\left\|\boldsymbol{A}_{\gamma}-\boldsymbol{v}_{\delta}\right\|+\left\|\operatorname{curl}\left(\boldsymbol{A}_{\gamma}-\boldsymbol{v}_{\delta}\right)\right\|\right]
$$

Magnetostatics

Solving numerically the variational formulation with operator T-4
Given $\gamma>0$, the discrete perturbed variational formulation writes

$$
(\mathrm{FV}-\mathrm{MSt})_{p e r t}^{\gamma, \delta}\left\{\begin{array}{l}
\text { Find } \boldsymbol{A}_{\gamma}^{\delta} \in \boldsymbol{V}_{\delta} \text { such that } \\
\forall \boldsymbol{v}_{\delta} \in \boldsymbol{V}_{\delta}, \quad c_{\gamma}\left(\boldsymbol{A}_{\gamma}^{\delta}, \boldsymbol{v}_{\delta}\right)=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v}_{\delta} d \Omega
\end{array}\right.
$$

with $c_{\gamma}(\boldsymbol{v}, \boldsymbol{w})=\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{v} \cdot \operatorname{curl} \boldsymbol{w} d \Omega+\gamma \int_{\Omega} \boldsymbol{v} \cdot \boldsymbol{w} d \Omega$.
One has a variant of Céa's lemma, with γ-robust estimates

$$
\left\|\operatorname{curl}\left(\boldsymbol{A}_{\gamma}-\boldsymbol{A}_{\gamma}^{\delta}\right)\right\| \lesssim \inf _{\boldsymbol{v}_{\delta} \in \boldsymbol{V}_{\delta}}\left[\gamma^{1 / 2}\left\|\boldsymbol{A}_{\gamma}-\boldsymbol{v}_{\delta}\right\|+\left\|\operatorname{curl}\left(\boldsymbol{A}_{\gamma}-\boldsymbol{v}_{\delta}\right)\right\|\right] .
$$

Let \boldsymbol{A}_{δ} be the solution of the perturbed variational formulation for $\gamma=\gamma(\delta): \boldsymbol{A}_{\delta}=\boldsymbol{A}_{\gamma(\delta)}^{\delta}$.

Magnetostatics

Solving numerically the variational formulation with operator T-5

One can use Nédélec FE (1st family) of order $k \geq 1$ with ad hoc $\gamma=\gamma(\delta)$.

Magnetostatics

Solving numerically the variational formulation with operator T-5

One can use Nédélec FE (1st family) of order $k \geq 1$ with ad hoc $\gamma=\gamma(\delta)$. Introduce the regularity exponent $\left.\left.\sigma_{N e u}(\mu) \in\right] 0,1\right]$:

$$
\boldsymbol{H}(\operatorname{curl} ; \Omega) \cap \boldsymbol{H}_{0}(\operatorname{div} \mu ; \Omega) \subset \cap_{0 \leq \mathbf{s}^{\prime}<\sigma_{N e u}(\mu)} \boldsymbol{P} \boldsymbol{H}^{\mathrm{s}^{\prime}}(\Omega) .
$$

Magnetostatics

One can use Nédélec FE (1st family) of order $k \geq 1$ with ad hoc $\gamma=\gamma(\delta)$. Introduce the regularity exponent $\left.\left.\sigma_{N e u}(\mu) \in\right] 0,1\right]$:

$$
\boldsymbol{H}(\operatorname{curl} ; \Omega) \cap \boldsymbol{H}_{0}(\operatorname{div} \mu ; \Omega) \subset \cap_{0 \leq \mathbf{s}^{\prime}<\sigma_{N e u}(\mu)} \boldsymbol{P} \boldsymbol{H}^{\mathrm{s}^{\prime}}(\Omega) .
$$

Using classical interpolation estimates, one finds that if $\gamma(\delta) \lesssim \delta^{\sigma_{N e u}(\mu)}$, then:

- for $s^{\prime}=1$ if $\sigma_{\text {Neu }}(\mu)=1$,
- for $\left.\mathrm{s}^{\prime} \in\right] 0, \sigma_{N e u}(\mu)[$ else,
one has the error estimate $\left\|\boldsymbol{\operatorname { c u r l }}\left(\boldsymbol{A}-\boldsymbol{A}_{\delta}\right)\right\| \lesssim_{\mathrm{s}^{\prime}} \delta^{\mathrm{s}^{\prime}}\|\boldsymbol{J}\|$.

Magnetostatics

One can use Nédélec FE (1st family) of order $k \geq 1$ with ad hoc $\gamma=\gamma(\delta)$. Introduce the regularity exponent $\left.\left.\sigma_{N e u}(\mu) \in\right] 0,1\right]$:

$$
\boldsymbol{H}(\operatorname{curl} ; \Omega) \cap \boldsymbol{H}_{0}(\operatorname{div} \mu ; \Omega) \subset \cap_{0 \leq \mathbf{s}^{\prime}<\sigma_{N e u}(\mu)} \boldsymbol{P} \boldsymbol{H}^{\mathrm{s}^{\prime}}(\Omega) .
$$

Using classical interpolation estimates, one finds that if $\gamma(\delta) \lesssim \delta^{\sigma_{N e u}(\mu)}$, then:

- for $s^{\prime}=1$ if $\sigma_{\text {Neu }}(\mu)=1$,
- for $\left.\mathrm{s}^{\prime} \in\right] 0, \sigma_{N e u}(\mu)[$ else,
one has the error estimate $\left\|\boldsymbol{\operatorname { c u r l }}\left(\boldsymbol{A}-\boldsymbol{A}_{\delta}\right)\right\| \lesssim_{\mathrm{s}^{\prime}} \delta^{\mathrm{s}^{\prime}}\|\boldsymbol{J}\|$.
In terms of \boldsymbol{B}, one concludes that

Magnetostatics

One can use Nédélec FE (1st family) of order $k \geq 1$ with ad hoc $\gamma=\gamma(\delta)$. Introduce the regularity exponent $\left.\left.\sigma_{N e u}(\mu) \in\right] 0,1\right]$:

$$
\boldsymbol{H}(\operatorname{curl} ; \Omega) \cap \boldsymbol{H}_{0}(\operatorname{div} \mu ; \Omega) \subset \cap_{0 \leq \mathbf{s}^{\prime}<\sigma_{N e u}(\mu)} \boldsymbol{P} \boldsymbol{H}^{\mathbf{s}^{\prime}}(\Omega)
$$

Using classical interpolation estimates, one finds that if $\gamma(\delta) \lesssim \delta^{\sigma_{N e u}(\mu)}$, then:

- for $\mathrm{s}^{\prime}=1$ if $\sigma_{\text {Neu }}(\mu)=1$,
- for $\left.\mathrm{s}^{\prime} \in\right] 0, \sigma_{N e u}(\mu)[$ else,
one has the error estimate $\left\|\boldsymbol{\operatorname { c u r l }}\left(\boldsymbol{A}-\boldsymbol{A}_{\delta}\right)\right\| \lesssim_{\mathrm{s}^{\prime}} \delta^{\mathrm{s}^{\prime}}\|\boldsymbol{J}\|$.
In terms of \boldsymbol{B}, one concludes that

$$
\left\|\boldsymbol{B}-\operatorname{curl} \boldsymbol{A}_{\delta}\right\|_{\boldsymbol{H}(\mathrm{div} ; \Omega)} \lesssim_{\mathbf{s}^{\prime}} \delta^{\mathbf{s}^{\prime}}\|\boldsymbol{J}\| .
$$

The method is similar to that of Reitzinger-Schöberl'02, Duan-Li-Tan-Zheng' 12 and PC-Wu-Zou'14. However the derivation is completely different!

Magnetostatics

Solving numerically the variational formulation with operator T-6

A numerical illustration (© PC-Wu-Zou'14):

- the permeability is $\mu=1$, the domain Ω is a cube;
- computations are made with COMSOL Multiphysics.

Magnetostatics

Solving numerically the variational formulation with operator T-6

A numerical illustration (©PC-Wu-Zou'14):

- the permeability is $\mu=1$, the domain Ω is a cube;
- computations are made with COMSOL Multiphysics.

Expected convergence rate is $O(h)$:

- error $\left\|\boldsymbol{A}-\boldsymbol{A}_{\boldsymbol{\delta}}\right\|$ (dashed line);
- error $\left\|\boldsymbol{B}-\operatorname{curl} \boldsymbol{A}_{\boldsymbol{\delta}}\right\|_{\boldsymbol{H}(\mathrm{div} ; \Omega)}=\left\|\operatorname{curl}\left(\boldsymbol{A}-\boldsymbol{A}_{\delta}\right)\right\|$ (solid line).

Further remarks

Some extensions:
(1) Stokes model: see Jamelot (2022, HAL report) for a non-conforming discretisation (Crouzeix-Raviart FE or Fortin-Soulié FE); see master's thesis by MRoueh (2022) for DG discretisation ; see Barré-Grandmont-Moireau'22 for a poromechanics model.
(2) diffusion model: see PhD thesis by Giret (2018) for a SPN multigroup model.
(3) 2D elastodynamics: see Falletta-Ferrari-Scuderi (2023, arXiv report) for a virtual element method.
(9) "classical" mixed variational formulations: see Barré-PC (to appear, 2023).

Further remarks

Some extensions:
(1) Stokes model: see Jamelot (2022, HAL report) for a non-conforming discretisation (Crouzeix-Raviart FE or Fortin-Soulié FE); see master's thesis by MRoueh (2022) for DG discretisation ; see Barré-Grandmont-Moireau'22 for a poromechanics model.
(2) diffusion model: see PhD thesis by Giret (2018) for a SPN multigroup model.
(3) 2D elastodynamics: see Falletta-Ferrari-Scuderi (2023, arXiv report) for a virtual element method.
(9) "classical" mixed variational formulations: see Barré-PC (to appear, 2023).
(5) in Banach spaces, T-coercivity implies Hilbert structure, see Ern-Guermont' 21 -Vol.II.
(0) T-coercivity still usable with the Strang lemmas (approximate forms).

Thank you for your attention!

