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HIgh-order POlyhedral meTHods for Eddy Current testing simulations

Main features
I ANR PRCE project, in partnership with EDF

I January 2024 – December 2028 (60 months)

I budget ≈ 605k EUR in total

I 2 academic research poles + EDF R&D

Consortium
I North pole:

• SL (CR, coordinator) + Théophile Chaumont-Frelet (CR quasi-HDR),
Centre Inria de l’Université de Lille

• Serge Nicaise (PR), Université Polytechnique des Hauts-de-France (Valenciennes)

I EDF R&D:
• Jérémy Dalphin (IRj), EDF Lab Paris-Saclay
• Jean-Pierre Ducreux (IRs), EDF Lab Paris-Saclay

I South pole:
• Francesca Rapetti (MCF HDR), Université Côte d’Azur (Nice)
• Daniele A. Di Pietro (PR), Université de Montpellier
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Industrial context (1/2)

Nuclear safety
I Thermally-constrained metallic components: possible formation of cracks

(e.g. stress corrosion cracking)

I Non-invasive detection of shallow flaws: based on eddy current testing (ECT)

Figure: One of the four steam generators of an EPR (25m high, 510 tons).
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Industrial context (2/2)

Numerical simulation of ECT

I Forward simulator:used to calibrate/qualify ECT probes (make the
measurements fit the simulations)

I Inverse simulator: used to unravel the anatomy of flaws (make the
simulations fit the measurements)

Forward model
Find e : Ω→ C3 s.t.

curl(µ
−1

curl e) + iωσe = −iωj in Ω,

div
(
εe
)

= 0 in Ω
c
c ,

e×n = 0 on ∂Ω,

with electric conductivity

σ =

{
0 in Ωc

c

σc in Ωc
.

Figure: Sketch of a prototypical ECT setting.

Current limitations of EDF’s forward simulator (code_Carmel)

I L1. Magnitude of the numerical error on the control signal

I L2. Modeling of defects and conforming 3D (re)meshing
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Objectives of the project�
�

�

The ambition of the HIPOTHEC project is to address at once both limitations

L1 and L2, taking advantage of new-generation high-order polyhedral methods.

Project workflow
I WP1. Design and a priori analysis of HHO methods for ECT

• T1. Taming topology ? Silvano Pitassi (Lille & Palaiseau)
• T2. Taming defects ? PdA (Lille)

I WP2. Polyhedral a posteriori analysis and multigrid solvers

• T3. Polyhedral error estimators ? PhD1 (Valenciennes & Lille), PdB (Nice)
• T4. Polyhedral multigrid methods ? PhD2 (Montpellier & Nice)

I WP3. Software development and proof-of-concept applications

• T5. Implementation in ParaSkel++ ? Thoma Zoto (Lille), PhD1/2, PdA/B
• T6. PoC on T.E.A.M. benchmarks ? PdB
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Groundwork

Trivial topology

F. Chave, D. A. Di Pietro, and SL

A discrete Weber inequality on three-dimensional hybrid spaces with application
to the HHO approximation of magnetostatics
M3AS, 2022

Nontrivial topology

SL and S. Pitassi

Discrete Weber inequalities and related Maxwell compactness for hybrid spaces
over polyhedral partitions of domains with general topology
Found. Comput. Math., 2024
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A simple model

Let D ⊂ R3 be an open, bounded, connected, Lipschitz polyhedral domain.

Recall the Betti numbers:

 β0(D): number of connected components of D (here, β0(D) = 1);

 β1(D): number of tunnels crossing through D;
 β2(D): number of voids encapsulated into D.

Magnetostatics

Given a current density j : D → R3 satisfying div j = 0 in D and j·n = 0 on ∂D,
find the magnetic field h : D → R3 such that

curlh = j in D,
div b = 0 in D,
h×n = 0 on ∂D,

(Pτ )

with constitutive law b = µh, where µ ∈ R?+ is the magnetic permeability.
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Weak form

Variational formulation [Kikuchi; 89]

Given j ∈H0(div
0;D), find (h, p) ∈H0(curl;D)×H1

0 (D) such that
∫
D

curlh· curlv + µ

∫
D
v· grad p =

∫
D
j· curlv ∀v ∈H0(curl;D),

−µ
∫
D
h· grad q = 0 ∀q ∈ H1

0 (D).

(Pτ )

Remark that p ≡ 0 (test with v = grad p ∈ grad
(
H1

0 (D)
)
⊂H0(curl0;D)).

Weak-strong equivalence

The problems (Pτ ) and (Pτ ) are equivalent in the following sense:

 if h solves (Pτ ), then h solves (Pτ );

 reciprocally, assume that β1(D) = 0; then, if h solves (Pτ ), h solves (Pτ ).
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Unique solvability

Well-posedness

Assume that β2(D) = 0. Then, (Pτ ) is well-posed.

Well-posedness for (Pτ ) hinges on the first Weber inequality.

Weber inequalities

 are named after Christian Weber [Weber; 80];

 are generalizations of the Poincaré inequality to the case of vector fields
belonging to H(curl;D) ∩H(div;D) ⊃H1(D), and featuring on ∂D either
vanishing tangential trace (first) or vanishing normal trace (second);

 their statement is strongly topology-dependent.

First Weber inequality

Assume that β2(D) = 0. Then, for all v ∈H0(curl;D) ∩H(div0;D),

‖v‖0,D . ‖ curlv‖0,D.
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Approximation

Let (Th,Fh) be a polyhedral mesh of D ⊂ R3, and ` ∈ N a given polynomial degree.

Cell polynomial decomposition

For T ∈ Th, let xT be some point inside T such that T contains a ball centered at
xT of radius comparable to hT . There holds

P`(T ) = G`(T )⊕P`−1(T )×(x− xT ),

where G`(T ) := grad
(
P`+1(T )

)
, and the polynomial space P`−1(T )×(x− xT ) is

the so-called Koszul complement.

Face polynomial decomposition

For F ∈ Fh, let xF be some point inside F such that F contains a disk centered at
xF of radius comparable to hF . There holds

P`(F ) = R`(F )⊕ P`−1(F )(x− xF ),

where R`(F ) :=
(
gradF

(
P`+1(F )

))⊥, with z⊥ the rotation of angle −π
2
of z in

the oriented hyperplane HF , and P`−1(F )(x− xF ) is the Koszul complement.

For all T ∈ Th and F ∈ FT , G`(T )|F×nF = R`(F ).
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H(curl)-like hybrid space

For ` ∈ N, we consider the hybrid space

X`
h :=

{
vh :=

(
(vT )T∈Th , (vF,τ )F∈Fh

)
:

vT ∈ P`(T ) ∀T ∈ Th
vF,τ ∈R`(F ) ∀F ∈ Fh

}
,

endowed with the semi-norm

|vh|
2
curl,h :=

∑
T∈Th

(
‖ curlvT ‖20,T +

∑
F∈FT

h−1
F

∥∥π`R,F

(
vT |F×nF

)
− vF,τ

∥∥2
0,F

)
.

For vh ∈X`
h, we let vh ∈ P`(Th) be such that vh|T := vT for all T ∈ Th.

Is |·|curl,h a norm on a div-free subset of X`
h,0 :=

{
vh ∈ X

`
h | vF,τ ≡ 0 ∀F ∈ F∂

h

}
?

First hybrid Weber inequality [Chave, Di Pietro, SL; 22]

Assume that β2(D) = 0. Then, for any vh ∈X`
h,0 such that

∫
D
vh·grad q = 0 for

all q ∈ H1
0 (D), the following holds true:

‖vh‖0,D . |vh|curl,h.
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HHO method

Let k ∈ N? be a given polynomial degree. Define

Ah

(
uh,vh

)
:=

∫
D

curlhuh·curlhvh

+
∑

T∈Th

∑
F∈FT

h
−1
F

∫
F

[π
k
R,F

(
uT |F×nF

)
− uF,τ ]·[πk

R,F

(
vT |F×nF

)
− vF,τ ],

Bh

(
uh, qh

)
:=

∫
D
uh·Gk

h(q
h

),

Nh

(
rh, qh

)
:=

∫
D
rhqh +

∑
T∈Th

∑
F∈FT

hF

∫
F

rF qF .

Discrete problem

Find
(
hh, ph

)
∈ Xk

h,0 × Y
k
h,0 such that

Ah

(
hh,vh

)
+ µBh

(
vh, ph

)
=

∫
D
j·curlhvh ∀vh ∈ X

k
h,0,

−µBh

(
hh, qh

)
+Nh

(
p
h
, q

h

)
= 0 ∀q

h
∈ Y k

h,0.

Assume that β2(D) = 0. Then, the discrete problem has a unique solution satisfying(
|hh|

2
curl,h + ‖p

h
‖20,h

)1/2
≤ ‖j‖0,D,

where ‖q
h
‖20,h := Nh

(
q
h
, q

h

)
.
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Convergence

Energy-error estimate [Chave, Di Pietro, SL; 22]

Assume that β1(D) = 0 and β2(D) = 0. Assume also that h ∈Hk+1(Th). Then, the
following holds true:

(
|hh − I

k
h(h)|2curl,h + ‖p

h
‖20,h

)1/2
.

 ∑
T∈Th

h
2k
T |h|

2
k+1,T

1/2

.

 convergence of order k ≥ 1 of ‖curlhhh − curlh‖0,D

 observed convergence of order k + 1 of ‖hh − h‖0,D for D convex

 in practice, local elimination of all (magnetic and pressure) cell unknowns

 in the matching tetrahedral case, Nh can be removed
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Numerical illustration

Academic test-case: D := (0, 1)3, with µ = 1 and exact solution

h(x, y, z) =
(
cos(πy) cos(πz), cos(πx) cos(πz), cos(πx) cos(πy)

)
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Figure: Relative energy-error (top row) and L2-error (bottom row) vs. meshsize h (left),
solution time in s (center), and #dof (right) on cubic meshes for k ∈ {1, 2, 3}.



THANK YOU


	The whys
	The wherefores

