

The **HIPOTHEC** project: whys and wherefores

Simon Lemaire (Inria, Univ. Lille)

Kick-off workshop - Wissant March 7, 2024

Main features

- ▶ ANR PRCE project, in partnership with EDF
- January 2024 December 2028 (60 months)
- \blacktriangleright budget pprox 605k EUR in total
- 2 academic research poles + EDF R&D

Consortium

- ► North pole:
 - SL (CR, coordinator) + Théophile Chaumont-Frelet (CR quasi-HDR), Centre Inria de l'Université de Lille
 - Serge Nicaise (PR), Université Polytechnique des Hauts-de-France (Valenciennes)
- ▶ EDF R&D:
 - Jérémy Dalphin (IRj), EDF Lab Paris-Saclay
 - Jean-Pierre Ducreux (IRs), EDF Lab Paris-Saclay
- ► South pole:
 - Francesca Rapetti (MCF HDR), Université Côte d'Azur (Nice)
 - Daniele A. Di Pietro (PR), Université de Montpellier

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

1/14

Outline

The whys

The wherefores

<ロ> < 団> < 団> < 茎> < 茎> < 茎 > うへで 1/14

Industrial context (1/2)

Nuclear safety

- Thermally-constrained metallic components: possible formation of cracks (e.g. stress corrosion cracking)
- ▶ Non-invasive detection of shallow flaws: based on eddy current testing (ECT)

Figure: One of the four steam generators of an EPR (25m high, 510 tons).

Industrial context (2/2)

Numerical simulation of ECT

- Forward simulator: used to calibrate/qualify ECT probes (make the measurements fit the simulations)
- Inverse simulator: used to unravel the anatomy of flaws (make the simulations fit the measurements)

Forward model

Find $e: \Omega \to \mathbb{C}^3$ s.t.

$$\begin{cases} \mathbf{curl}(\mu^{-1}\mathbf{curl}\,\boldsymbol{e}) + i\omega\sigma\boldsymbol{e} = -i\omega\boldsymbol{j} & \text{in }\Omega,\\ \mathrm{div}(\varepsilon\boldsymbol{e}) = 0 & \text{in }\Omega_c^{\sigma}\\ \boldsymbol{e} \times \boldsymbol{n} = \boldsymbol{0} & \text{on }\partial\theta \end{cases}$$

with electric conductivity

$$\sigma = \begin{cases} 0 & \text{in } \Omega_{\rm c}^c \\ \sigma_{\rm c} & \text{in } \Omega_{\rm c} \end{cases}.$$

Figure: Sketch of a prototypical ECT setting.

Current limitations of EDF's forward simulator (code Carmel)

- ▶ L1. Magnitude of the numerical error on the control signal
- L2. Modeling of defects and conforming 3D (re)meshing
 - <ロ> < 回 > < 回 > < 三 > < 三 > 三 の Q (3/14

Industrial context (2/2)

Numerical simulation of ECT

- Forward simulator: used to calibrate/qualify ECT probes (make the measurements fit the simulations)
- Inverse simulator: used to unravel the anatomy of flaws (make the simulations fit the measurements)

Forward model

Find
$$\boldsymbol{e}: \Omega \to \mathbb{C}^3$$
, $\langle \varepsilon \boldsymbol{e}_{|\Omega_c^c} \cdot \boldsymbol{n}_c, 1 \rangle_{\partial \Omega_c} = 0$, s.t.

$$\begin{cases} \mathbf{curl}(\mu^{-1}\mathbf{curl}\,\boldsymbol{e}) + i\omega\sigma\boldsymbol{e} = -i\omega\boldsymbol{j} & \text{in }\Omega,\\ \mathrm{div}\left(\varepsilon\boldsymbol{e}\right) = 0 & \mathrm{in }\Omega_{\mathrm{c}}^{c},\\ \boldsymbol{e}\times\boldsymbol{n} = \boldsymbol{0} & \text{on }\partial\Omega, \end{cases}$$

with electric conductivity

$$\sigma = \begin{cases} 0 & \text{in } \Omega_{\rm c}^c \\ \sigma_{\rm c} & \text{in } \Omega_{\rm c} \end{cases}.$$

Figure: Sketch of a prototypical ECT setting.

<ロ> < 回 > < 回 > < 三 > < 三 > 三 の Q (3/14

Current limitations of EDF's forward simulator (code_Carmel)

- ▶ L1. Magnitude of the numerical error on the control signal
- L2. Modeling of defects and conforming 3D (re)meshing

Objectives of the project

The ambition of the HIPOTHEC project is to address at once both limitations L1 and L2, taking advantage of new-generation high-order polyhedral methods.

Project workflow

- WP1. Design and a priori analysis of HHO methods for ECT
 - T1. Taming topology * Silvano Pitassi (Lille & Palaiseau)
 - T2. Taming defects * PdA (Lille)
- ▶ WP2. Polyhedral a posteriori analysis and multigrid solvers
 - T3. Polyhedral error estimators * PhD1 (Valenciennes & Lille), PdB (Nice)
 - T4. Polyhedral multigrid methods * PhD2 (Montpellier & Nice)
- WP3. Software development and proof-of-concept applications
 - T5. Implementation in ParaSkel++ * Thoma Zoto (Lille), PhD1/2, PdA/B
 - T6. PoC on T.E.A.M. benchmarks * PdB

Outline

The whys

The wherefores

<ロ> < 団> < 団> < 茎> < 茎> < 茎 > うへで 4/14

Groundwork

Trivial topology

F. Chave, D. A. Di Pietro, and SL

A discrete Weber inequality on three-dimensional hybrid spaces with application to the HHO approximation of magnetostatics

M3AS, 2022

Nontrivial topology

SL and S. Pitassi

Discrete Weber inequalities and related Maxwell compactness for hybrid spaces over polyhedral partitions of domains with general topology

Found. Comput. Math., 2024

A simple model

Let $\mathcal{D} \subset \mathbb{R}^3$ be an open, bounded, connected, Lipschitz polyhedral domain.

Recall the Betti numbers:

- $\rightsquigarrow \beta_0(\mathcal{D})$: number of connected components of \mathcal{D} (here, $\beta_0(\mathcal{D}) = 1$);
- $\rightsquigarrow \beta_1(\mathcal{D})$: number of tunnels crossing through \mathcal{D} ;
- $\rightsquigarrow \beta_2(\mathcal{D})$: number of voids encapsulated into \mathcal{D} .

Magnetostatics

Given a current density $\boldsymbol{j}: \mathcal{D} \to \mathbb{R}^3$ satisfying $\operatorname{div} \boldsymbol{j} = 0$ in \mathcal{D} and $\boldsymbol{j} \cdot \boldsymbol{n} = 0$ on $\partial \mathcal{D}$, find the magnetic field $\boldsymbol{h}: \mathcal{D} \to \mathbb{R}^3$ such that

$$\begin{cases} \operatorname{curl} \boldsymbol{h} = \boldsymbol{j} & \text{in } \mathcal{D}, \\ \operatorname{div} \boldsymbol{b} = 0 & \text{in } \mathcal{D}, \\ \boldsymbol{h} \times \boldsymbol{n} = \boldsymbol{0} & \text{on } \partial \mathcal{D}, \end{cases}$$
(\$\mathcal{P}_{\tau}\$)

with constitutive law ${m b}=\mu{m h},$ where $\mu\in\mathbb{R}_+^\star$ is the magnetic permeability.

Weak form

Variational formulation [Kikuchi; 89]

Given $j \in H_0(\operatorname{div}^0; \mathcal{D})$, find $(h, p) \in H_0(\operatorname{curl}; \mathcal{D}) \times H_0^1(\mathcal{D})$ such that

$$\begin{cases} \int_{\mathcal{D}} \operatorname{curl} \boldsymbol{h} \cdot \operatorname{curl} \boldsymbol{v} + \mu \int_{\mathcal{D}} \boldsymbol{v} \cdot \operatorname{grad} p = \int_{\mathcal{D}} \boldsymbol{j} \cdot \operatorname{curl} \boldsymbol{v} & \forall \boldsymbol{v} \in \boldsymbol{H}_{0}(\operatorname{curl}; \mathcal{D}), \\ & -\mu \int_{\mathcal{D}} \boldsymbol{h} \cdot \operatorname{grad} q = 0 & \forall q \in \boldsymbol{H}_{0}^{1}(\mathcal{D}). \end{cases}$$
(P_{\tau})

Remark that $p \equiv 0$ (test with $v = \operatorname{grad} p \in \operatorname{grad} (H_0^1(\mathcal{D})) \subset H_0(\operatorname{curl}^0; \mathcal{D})).$

Weak-strong equivalence

The problems (\mathfrak{P}_{τ}) and (P_{τ}) are equivalent in the following sense:

- \rightsquigarrow if h solves (\mathfrak{P}_{τ}) , then h solves (P_{τ}) ;
- \rightsquigarrow reciprocally, assume that $\beta_1(\mathcal{D}) = 0$; then, if h solves (P_{τ}), h solves (\mathfrak{P}_{τ}).

Well-posedness

Assume that $\beta_2(\mathcal{D}) = 0$. Then, (P_{τ}) is well-posed.

Well-posedness for (P_{τ}) hinges on the first Weber inequality.

Weber inequalities

- \rightsquigarrow are named after Christian Weber [Weber; 80];
- → are generalizations of the Poincaré inequality to the case of vector fields belonging to $H(\operatorname{curl}; \mathcal{D}) \cap H(\operatorname{div}; \mathcal{D}) \supset H^1(\mathcal{D})$, and featuring on $\partial \mathcal{D}$ either vanishing tangential trace (first) or vanishing normal trace (second);
- $\rightsquigarrow\,$ their statement is strongly topology-dependent.

First Weber inequality

Assume that $\beta_2(\mathcal{D}) = 0$. Then, for all $v \in H_0(\operatorname{curl}; \mathcal{D}) \cap H(\operatorname{div}^0; \mathcal{D})$,

 $\|\boldsymbol{v}\|_{0,\mathcal{D}} \lesssim \|\operatorname{\mathbf{curl}} \boldsymbol{v}\|_{0,\mathcal{D}}.$

Approximation

Let $(\mathcal{T}_h, \mathcal{F}_h)$ be a polyhedral mesh of $\mathcal{D} \subset \mathbb{R}^3$, and $\ell \in \mathbb{N}$ a given polynomial degree.

Cell polynomial decomposition

For $T \in \mathcal{T}_h$, let x_T be some point inside T such that T contains a ball centered at x_T of radius comparable to h_T . There holds

$$\boldsymbol{\mathcal{P}}^{\ell}(T) = \boldsymbol{\mathcal{G}}^{\ell}(T) \oplus \boldsymbol{\mathcal{P}}^{\ell-1}(T) \times (\boldsymbol{x} - \boldsymbol{x}_T),$$

where $\mathcal{G}^{\ell}(T) := \operatorname{grad}(\mathcal{P}^{\ell+1}(T))$, and the polynomial space $\mathcal{P}^{\ell-1}(T) \times (\boldsymbol{x} - \boldsymbol{x}_T)$ is the so-called Koszul complement.

Face polynomial decomposition

For $F \in \mathcal{F}_h$, let x_F be some point inside F such that F contains a disk centered at x_F of radius comparable to h_F . There holds

$$\boldsymbol{\mathcal{P}}^{\ell}(F) = \boldsymbol{\mathcal{R}}^{\ell}(F) \oplus \boldsymbol{\mathcal{P}}^{\ell-1}(F)(\boldsymbol{x} - \boldsymbol{x}_F),$$

where $\mathcal{R}^{\ell}(F) := (\operatorname{grad}_F (\mathcal{P}^{\ell+1}(F)))^{\perp}$, with \mathbf{z}^{\perp} the rotation of angle $-\frac{\pi}{2}$ of \mathbf{z} in the oriented hyperplane H_F , and $\mathcal{P}^{\ell-1}(F)(\mathbf{x} - \mathbf{x}_F)$ is the Koszul complement.

For all $T \in \mathcal{T}_h$ and $F \in \mathcal{F}_T$, $\mathcal{G}^{\ell}(T)|_F \times n_F = \mathcal{R}^{\ell}(F)$.

$H(\mathbf{curl})$ -like hybrid space

For $\ell \in \mathbb{N}$, we consider the hybrid space

$$\underline{\boldsymbol{X}}_{h}^{\ell} := \left\{ \underline{\boldsymbol{v}}_{h} := \left\{ (\boldsymbol{v}_{T})_{T \in \mathcal{T}_{h}}, (\boldsymbol{v}_{F, \boldsymbol{\tau}})_{F \in \mathcal{F}_{h}} \right\} : \begin{array}{c} \boldsymbol{v}_{T} \in \boldsymbol{\mathcal{P}}^{\ell}(T) \quad \forall T \in \mathcal{T}_{h} \\ \\ \boldsymbol{v}_{F, \boldsymbol{\tau}} \in \boldsymbol{\mathcal{R}}^{\ell}(F) \quad \forall F \in \mathcal{F}_{h} \end{array} \right\},$$

endowed with the semi-norm

$$| \underline{\boldsymbol{v}}_h |^2_{ ext{curl},h} \coloneqq \sum_{T \in \mathcal{T}_h} \Big(\| \operatorname{curl} \boldsymbol{v}_T \|^2_{0,T} + \sum_{F \in \mathcal{F}_T} h_F^{-1} \| \pi^\ell_{\mathcal{R},F} ig(\boldsymbol{v}_T |_F imes \boldsymbol{n}_F ig) - oldsymbol{v}_{F, oldsymbol{ au}} \|^2_{0,F} ig).$$

 $\text{For } \underline{v}_h \in \underline{X}_h^\ell \text{, we let } v_h \in \mathcal{P}^\ell(\mathcal{T}_h) \text{ be such that } v_{h|T} := v_T \text{ for all } T \in \mathcal{T}_h.$

 $\mathsf{ls} \mid \cdot \mid_{\mathbf{curl},h} \mathsf{a norm on a div-free subset of } \underline{X}^\ell_{h,\mathbf{0}} \coloneqq \left\{ \underline{v}_h \in \underline{X}^\ell_h \mid v_{F,\tau} \equiv \mathbf{0} \; \forall F \in \mathcal{F}^\partial_h \right\}?$

First hybrid Weber inequality [Chave, Di Pietro, SL; 22]

Assume that $\beta_2(\mathcal{D}) = 0$. Then, for any $\underline{v}_h \in \underline{X}_{h,0}^{\ell}$ such that $\int_{\mathcal{D}} v_h \cdot \operatorname{grad} q = 0$ for all $q \in H_0^1(\mathcal{D})$, the following holds true:

$$\| \boldsymbol{v}_h \|_{0,\mathcal{D}} \lesssim | \underline{\boldsymbol{v}}_h |_{\mathbf{curl},h}$$

HHO method

Let $k \in \mathbb{N}^{\star}$ be a given polynomial degree. Define

$$\begin{split} A_{h}(\underline{\boldsymbol{u}}_{h},\underline{\boldsymbol{v}}_{h}) &:= \int_{\mathcal{D}} \operatorname{curl}_{h} \boldsymbol{u}_{h} \cdot \operatorname{curl}_{h} \boldsymbol{v}_{h} \\ &+ \sum_{T \in \mathcal{T}_{h}} \sum_{F \in \mathcal{F}_{T}} h_{F}^{-1} \int_{F} [\boldsymbol{\pi}_{\mathcal{R},F}^{k}(\boldsymbol{u}_{T|F} \times \boldsymbol{n}_{F}) - \boldsymbol{u}_{F,\tau}] \cdot [\boldsymbol{\pi}_{\mathcal{R},F}^{k}(\boldsymbol{v}_{T|F} \times \boldsymbol{n}_{F}) - \boldsymbol{v}_{F,\tau}], \\ B_{h}(\underline{\boldsymbol{u}}_{h},\underline{q}_{h}) &:= \int_{\mathcal{D}} \boldsymbol{u}_{h} \cdot \boldsymbol{G}_{h}^{k}(\underline{q}_{h}), \\ N_{h}(\underline{r}_{h},\underline{q}_{h}) &:= \int_{\mathcal{D}} r_{h}q_{h} + \sum_{T \in \mathcal{T}_{h}} \sum_{F \in \mathcal{F}_{T}} h_{F} \int_{F} r_{F}q_{F}. \end{split}$$

Discrete problem

Find $(\underline{h}_h, \underline{p}_h) \in \underline{X}_{h,0}^k \times \underline{Y}_{h,0}^k$ such that

$$\begin{cases} A_h(\underline{h}_h, \underline{v}_h) + \mu B_h(\underline{v}_h, \underline{p}_h) = \int_{\mathcal{D}} \boldsymbol{j} \cdot \mathbf{curl}_h \boldsymbol{v}_h & \forall \underline{v}_h \in \underline{\boldsymbol{X}}_{h,0}^k, \\ -\mu B_h(\underline{h}_h, \underline{q}_h) + N_h(\underline{p}_h, \underline{q}_h) = 0 & \forall \underline{q}_h \in \underline{Y}_{h,0}^k. \end{cases}$$

Assume that $\beta_2(\mathcal{D}) = 0$. Then, the discrete problem has a unique solution satisfying

$$\left(\left|\underline{\boldsymbol{h}}_{h}\right|^{2}_{\operatorname{\mathbf{curl}},h}+\left\|\underline{p}_{h}\right\|^{2}_{0,h}\right)^{1/2}\leq\|\boldsymbol{j}\|_{0,\mathcal{D}},$$

where $\|\underline{q}_{h}\|_{0,h}^{2} := N_{h}(\underline{q}_{h}, \underline{q}_{h}).$

Energy-error estimate [Chave, Di Pietro, SL; 22]

Assume that $\beta_1(\mathcal{D}) = 0$ and $\beta_2(\mathcal{D}) = 0$. Assume also that $h \in H^{k+1}(\mathcal{T}_h)$. Then, the following holds true:

$$\left(\left|\underline{\boldsymbol{h}}_{h}-\underline{\boldsymbol{I}}_{h}^{k}(\boldsymbol{h})\right|_{\mathrm{curl},h}^{2}+\|\underline{\boldsymbol{p}}_{h}\|_{0,h}^{2}\right)^{1/2}\lesssim\left(\sum_{T\in\mathcal{T}_{h}}h_{T}^{2k}|\boldsymbol{h}|_{k+1,T}^{2}\right)^{1/2}$$

- \rightsquigarrow convergence of order $k \geq 1$ of $\|\mathbf{curl}_h \boldsymbol{h}_h \mathbf{curl}\, \boldsymbol{h}\|_{0,\mathcal{D}}$
- \rightsquigarrow observed convergence of order k+1 of $\| {m h}_h {m h} \|_{0, {\mathcal D}}$ for ${\mathcal D}$ convex
- →→ in practice, local elimination of all (magnetic and pressure) cell unknowns

 \rightarrow in the matching tetrahedral case, N_h can be removed

Numerical illustration

Academic test-case: $\mathcal{D} := (0, 1)^3$, with $\mu = 1$ and exact solution $h(x, y, z) = (\cos(\pi y) \cos(\pi z), \cos(\pi x) \cos(\pi z), \cos(\pi x) \cos(\pi y))$

Figure: Relative energy-error (top row) and L^2 -error (bottom row) vs. meshsize h (left), solution time in s (center), and #dof (right) on cubic meshes for $k \in \{1, 2, 3\}$.

THANK YOU

