A posteriori goal-oriented error estimators based on equilibrated flux and potential reconstructions

SERGE NICAISE

CERAMATHS Université Polytechnique & INSA Hauts-de-France

HIPOTHEC: kick-off meeting March 2024

Joint work with EMMANUEL CREUSÉ (CERAMATHS) AND ZUQI TANG (L2EP, ULILLE)

Table of contents

2 The reaction-diffusion problem

An eddy-current problem

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Introduction reaction-diffusion problem

Table of contents

The reaction-diffusion problem

3 An eddy-current problem

・ロット・西マ・山田・ 山田・ うんの

Introduction

Introduction

- Many engineering problems require computing some quantities of interest, which are usually linear functionals applied to the solution of a PDE.
- Error estimations on such functionals are called goal-oriented error estimations.
- Such estimations are based on the resolution of an adjoint problem, whose solution is
 used in the estimator definition, and on the use of some energy-norm error estimators.

▲日▶ ▲□▶ ▲日▶ ▲日▶ 日 うらつ

- Goal of this talk :
 - · Give an overview of such techniques in different contexts,
 - · Provide an upper-bound of the error which can be totally and explicitly computed,
 - Test the behaviour of such estimators on some numerical benchmarks.
- Two models are considered :
 - Reaction-diffusion problems,
 - Eddy-current problems.

Table of contents

2 The reaction-diffusion problem

3) An eddy-current problem

<ロ> <圖> < 国> < 国> < 国> < 国> 三 のQ()

The reaction-diffusion problem

Problem definition

$$\begin{cases} -\operatorname{div}(D\nabla u) + r \, u &= f \quad \text{in } \Omega \in \mathbb{R}^d, \\ u &= 0 \quad \text{on } \partial\Omega, \end{cases}$$

• $D \in L^\infty(\Omega; \mathbb{R}^{d \times d}),$ symmetric matrix-valued function such that

$$D(x)\xi\cdot\xi\gtrsim |\xi|^2,\;\forall\;\xi\in\mathbb{R}^d,\;\text{and a.e.}\;x\in\Omega,$$

- $r\in L^\infty(\Omega)$ supposed to be nonnegative,
- f is supposed to be in $L^2(\Omega)$.

Variational formulation

$$\begin{array}{lll} B(u,v) &=& \displaystyle \int_{\Omega} (D\nabla u \cdot \nabla v + r \, u \, v) \, dx, \ \forall \ u,v \in H^1_0(\Omega), \\ F(v) &=& \displaystyle \int_{\Omega} f \, v \, dx, \ \forall \ v \in H^1_0(\Omega), \\ B(u,v) &=& F(v), \ \forall \ v \in H^1_0(\Omega), \\ &\Rightarrow \ \text{unique (weak) solution } u \ \text{in } H^1_0(\Omega). \end{array}$$

▲ロ▶ ▲圖▶ ▲画▶ ▲画▶ 三直 - 釣A@ - -

Goal-oriented functional and adjoint problem

Output functional

$$q \in L^2(\Omega)$$
 and $Q(v) = \int_{\Omega} q \, v \, dx, \ \forall \, v \in L^2(\Omega).$

Question : How to compute an approximation of the value of Q(u) ?

Adjoint problem

• We now define $u^* \in H^1_0(\Omega)$ solution of the adjoint problem

$$B(v, u^*) = Q(v), \ \forall \ v \in H^1_0(\Omega).$$

• The associated strong formulation is

$$\begin{cases} -\operatorname{div}(D\nabla u^*) + ru^* &= q \quad \text{in } \Omega, \\ u^* &= 0 \quad \text{on } \partial\Omega. \end{cases}$$

• We clearly have

$$Q(u) = B(u, u^*) = F(u^*).$$

• Since B is here symmetric, we also have:

$$B(u^*, v) = Q(v), \ \forall \ v \in H_0^1(\Omega).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで - -

Discrete setting

Mesh and discrete spaces

- Let us introduce a triangulation \mathcal{T} of Ω made of polygonal elements T that covers exactly Ω .
- We assume that the mesh is simplicial and matching,
- We introduce the so-called broken Sobolev space

$$H^1(\mathcal{T}) = \{ v \in L^2(\Omega) \, | \, v_{|T} \in H^1(T), \; \forall \; T \in \mathcal{T} \}.$$

- We are looking for :
 - $u_h \in V_h \subset H^1(\mathcal{T})$ approximation of u, $u_h^* \in V_h^* \subset H^1(\mathcal{T})$ approximation of u^* .
- Let us recall that

 $H(\operatorname{div},\Omega) = \{\xi \in L^2(\Omega)^d ; \operatorname{div}\xi \in L^2(\Omega)\}.$

▲ロ▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで 8/41

Error estimation

[Mozolevski and Prudhomme, CMAME 2015] [Mallik, Vohralik and Yousef, JCAM 2020]

Theorem 1

Let $s_h \in H^1_0(\Omega)$, $\theta_h \in H(\operatorname{div}, \Omega)$ and $\theta_h^* \in H(\operatorname{div}, \Omega)$. Then we have :

$$\mathcal{E} = Q(u) - Q(u_h) = Q(u - u_h) = \eta_{QOI} + \mathcal{R}$$

where the estimator η_{QOI} is given by

$$\begin{split} \eta_{QOI} &= (q,s_h - u_h)_{\Omega} &+ (f - \operatorname{div}\theta_h - r \, u_h, u_h^*)_{\Omega} \\ &+ (\theta_h + D \nabla s_h, D^{-1} \theta_h^*)_{\Omega} &- (r \, u_h^*, s_h - u_h)_{\Omega}, \end{split}$$

while the remainder term \mathcal{R} is defined by

$$\mathcal{R} = \mathcal{R}_1 + \mathcal{R}_2 + \mathcal{R}_3 \quad \text{with}$$

$$\mathcal{C} \mathcal{R}_1 = (f - \operatorname{div}\theta_h - ru_h, u^* - u_h^*)_{\Omega},$$

$$\mathcal{R}_2 = -(\theta_h + D\nabla s_h, D^{-1}\theta_h^* + \nabla u^*)_{\Omega},$$

$$\mathcal{R}_3 = (r(u^* - u_h^*), s_h - u_h)_{\Omega}.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Remarks

• η_{QOI} has three contributions :

- $(f \operatorname{div}\theta_h r \, u_h, u_h^*)_{\Omega}$ represents the data oscillation with respect to the primal problem weighted by the dual approximate solution if $\operatorname{div}\theta_h r \, u_h$ is equal to the $L^2(\Omega)$ projection of f on the approximation space used to compute u_h ,
- $(\theta_h + D \nabla s_h, D^{-1} \theta_h^*)_{\Omega}$ measures the deviation of $-D \nabla s_h$ from the reconstructed flux θ_h ,
- $(q, s_h u_h)_{\Omega} (r u_h^*, s_h u_h)_{\Omega}$ measures the deviation of u_h from $H_0^1(\Omega)$.
- **2** If $V_h \subset H_0^1(\Omega)$, then we can take $s_h = u_h$ and the blue terms vanish.
- O This result occurs whatever the values of

 $s_h \in H_0^1(\Omega), \ \theta_h \in H(\operatorname{div}, \Omega) \text{ and } \theta_h^* \in H(\operatorname{div}, \Omega).$

 $\Rightarrow |\eta_{QOI}|$ and $|\mathcal{R}|$ can both be very high...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Potential and Flux reconstructions

[Ern & Vohralik : A unified framework for a posteriori error estimation in elliptic and parabolic problems with application to finite volumes. FVCA6, 2011]

• We assume that a potential reconstruction s_h of u_h is available :

$$s_h \in H^1_0(\Omega)$$
 and $s_h \sim u_h$,

- We assume that some flux reconstructions θ_h and θ_h^* are available, using respectively (u_h, f) and (u_h^*, q) :
 - $\theta_h \in H(\operatorname{div}, \Omega)$ and $(\operatorname{div} \theta_h + ru_h f, 1)_T = 0, \ \forall \ T \in \mathcal{T} \Rightarrow \theta_h \sim -D\nabla u_h,$
 - $\theta_h^* \in H(\operatorname{div}, \Omega)$ and $(\operatorname{div} \theta_h^* + ru_h^* q, 1)_T = 0, \ \forall \ T \in \mathcal{T} \Rightarrow \theta_h^* \sim -D\nabla u_h^*.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Estimation of the remainder ${\cal R}$

Question...

- Once the primal and dual problems have been solved, the value of η_{QOI} can be computed (up to oscillation terms).
- Nevertheless, the value of ${\mathcal R}$ can not be evaluated, because of the value of u^* in its definition.
- Question :

Can the value of ${\mathcal R}$ be bounded by known quantities ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Estimation of the remainder \mathcal{R}

Some definitions

•
$$\forall w \in H_0^1(\Omega) \cup V_h$$
, $\|w\|_h^2 = \|D^{\frac{1}{2}} \nabla_h w\|^2 + \|r^{\frac{1}{2}} w\|^2$,

•
$$\eta^2 = \sum_{T\in\mathcal{T}} (\eta^2_{NC,T} + \eta^2_{R,T} + \eta^2_{DF,T})$$
 , with

$$\begin{aligned} \eta_{NC,T} &= \|u_h - s_h\|_{h,T}, \\ \eta_{R,T} &= m_T \|f - \operatorname{div} \theta_h + r u_h\|_T, \\ \eta_{DF,T} &= \|D^{-\frac{1}{2}} (\theta_h + D \nabla u_h)\|_T, \end{aligned}$$

 $m_T := \min\{\pi^{-1}h_T \| D^{-\frac{1}{2}}\|_{\infty,T}, \|r^{-\frac{1}{2}}\|_{\infty,T}\},$ when T is convex.

Known results

[Ern & Vohralik : A unified framework for a posteriori error estimation in elliptic and parabolic problems with application to finite volumes. FVCA6, 2011]

 $\|u-u_h\|_h \le \eta$

and, similarly,

$$\|u^* - u_h^*\|_h \le \eta$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで -----

Estimation of the remainder \mathcal{R}

Theorem 2

With η and η^* as defined before, we have

Proof.

We estimate each term of $\ensuremath{\mathcal{R}}$ separetely:

$$\begin{aligned} |\mathcal{R}_{1}| &= |(f - \operatorname{div}\theta_{h} - ru_{h}, u^{*} - u_{h}^{*})_{\Omega}| \\ &\leq \left| \sum_{T \in \mathcal{T}} \int_{T} (f - \operatorname{div}\theta_{h} - ru_{h}) \left((u^{*} - u_{h}^{*}) - \mathcal{M}_{T}(u^{*} - u_{h}^{*}) \right) dx \right| \\ &\leq \sum_{T \in \mathcal{T}} ||f - \operatorname{div}\theta_{h} - ru_{h}||_{T} m_{T} ||u^{*} - u_{h}^{*}||_{h,T} \leq \eta \eta^{*}. \\ |\mathcal{R}_{2}| &= |(\theta_{h} + D\nabla s_{h}, D^{-1}\theta_{h}^{*} + \nabla u^{*})_{\Omega}| \\ &\leq ||D^{-\frac{1}{2}}(\theta_{h} + D\nabla s_{h})|| ||D^{-\frac{1}{2}}(\theta_{h}^{*} + D\nabla u^{*})|| \\ &\leq ||D^{-\frac{1}{2}}(\theta_{h} + D\nabla s_{h})|| (||D^{-\frac{1}{2}}(\theta_{h}^{*} + D\nabla_{h}u_{h}^{*})|| + ||D^{\frac{1}{2}}\nabla_{h}(u^{*} - u_{h}^{*})||) \\ &\leq 2\eta \eta^{*}. \\ |\mathcal{R}_{3}| &= |(r(u^{*} - u_{h}^{*}), s_{h} - u_{h})_{\Omega}| \leq ||r^{\frac{1}{2}}(u^{*} - u_{h}^{*})|||r^{\frac{1}{2}}(s_{h} - u_{h})|| \leq \eta \eta^{*}. \end{aligned}$$

ロ > ・ 個 > ・ 当 > ・ 当 > ・ 目 - つ へ ()・

14/4

 $|\mathcal{R}| \le 4\eta \eta^*.$

 $\textcircled{ 1 } \textbf{Thms 1 and 2} \Rightarrow$

$$\mathcal{E}| \le |\eta_{QOI}| + 4\eta\eta^*.$$

Nevertheless, such an estimator can overestimate the error.

We can estimate the ratio

$\frac{|\mathcal{R}|}{|\eta_{QOI}|},$

by computing $\frac{4\eta\eta*}{|\eta_{QOI}|}$, during a refinement procedure based on the use of η_{QOI} and check if it tends to zero or not.

- In the positive case, since $\mathcal{E} = \eta_{QOI} + \mathcal{R}$, this means that the ratio $\frac{\mathcal{E}}{\eta_{QOI}}$ tends to one and will validate the asymptotic exactness of the estimator η_{QOI} .
- In any case, we can use the estimate

$$|\mathcal{E}| \le |\eta_{QOI}| + 4\eta\eta^*,$$

and then choose as estimator $|\eta_{QOI}| + 4\eta\eta^*$ to implement an adaptive algorithm.

Numerical results

Primal problem : Regular solution

$$\bullet \ d=2, \ \Omega=]0,1[^2, \ D=I_{\mathbb{R}^2} \ \text{and} \ r=0.$$

•
$$u(x,y) = 10^4 x (1-x) y (1-y) e^{-100(\rho(x,y))^2}$$
, with

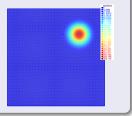
$$\rho(x,y) = ((x-0.75)^2 + (y-0.75)^2)^{1/2}.$$

• The right-hand side f is computed accordingly such that $f = -\text{div}(D\nabla u)$.

Dual problem : Regular solution

•
$$q = 1_{\omega}$$
, with

$$\omega = \{(x, y) \in \Omega : 1.5 \le x + y \le 1.75\}$$

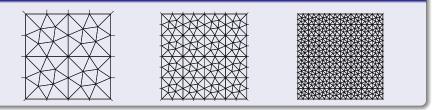


Numerical results

Numerical parameters

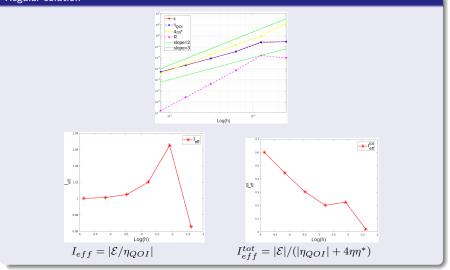
- For u_h : standard conforming \mathbb{P}_1 finite elements,
- For θ_h : standard \mathbb{RT}_1 finite elements,
- For u_h^* : standard conforming \mathbb{P}_2 finite elements,
- For θ_h^* : standard \mathbb{RT}_2 finite elements.

Meshes



Numerical results

Regular solution



メロト メポト メモト メモト 三日

If we had chosen :

- For u_h : standard conforming \mathbb{P}_1 finite elements,
- For θ_h : standard \mathbb{RT}_1 finite elements,
- For u_h^* : standard conforming \mathbb{P}_1 finite elements,
- For θ_h^* : standard \mathbb{RT}_1 finite elements,

then the quantity $\eta \eta^*$ is no more superconvergent, even if I_{eff} still tends towards one.

Numerical results

Primal problem : Singular solution

•
$$d = 2$$
, $\Omega =] - 1, 1[^2 \text{ and } r = 0]$

• D is piecewise constant in Ω : $\boxed{\begin{array}{c|c} 1 & a \\ \hline a & 1 \end{array}}$, 0 < a < 1.

•
$$\alpha = \frac{4}{\pi} \arctan(\sqrt{a})$$
 and $u(x, y) = p(x, y) S(x, y)$, where

- $p(x, y) = (1 x^4)(1 y^4)$ is a truncation function • $S(x, y) = \rho^{\alpha} v(\theta)$
- The right-hand side f is computed accordingly.
- For any $\varepsilon > 0$ we have $u \in H^{1+\alpha-\varepsilon}(\Omega)$

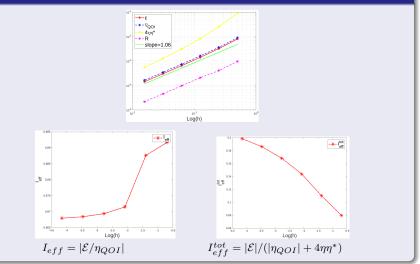
Dual problem : Singular solution

• $q = 1_{\omega}$, with

$$\omega = (0, 0.5) \times (-0.25, 0.25).$$

<ロ> < @> < E> < E> E のQで

Numerical results



(*ロト *個) * モト * ヨト 「ヨート

Remarks: Singular solution

- \blacksquare The error, the estimator η_{QOI} and $4\eta\eta^*$ all converge towards zero with order $O(h^{2\alpha}).$
- 2 I_{eff} remains in the order of unity but is no more close to one.
- **③** The remainder \mathcal{R} seems to be no more superconvergent.
- For such problems with singular solutions, an adaptive algorithm should be based on the sum of the estimator $|\eta_{QOI}|$ and of the product $4 \eta \eta^*$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Table of contents

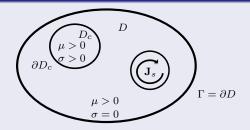
Introduction

The reaction-diffusion problem

3 An eddy-current problem

The eddy-current problem

Problem definition



Find the electric field ${\bf E}$ and the magnetic field ${\bf H}$ solution of

$$\begin{cases} \operatorname{curl} \mathbf{E} &= -j\omega \mathbf{B} & \text{in } D, \\ \operatorname{curl} \mathbf{H} &= \mathbf{J}_s + \mathbf{J}_e & \text{in } D, \\ \operatorname{div} \mathbf{B} &= 0 & \text{in } D, \end{cases} \text{ with } \begin{cases} \mathbf{B} &= \mu \mathbf{H} & \text{in } D, \\ \mathbf{J}_e &= \sigma \mathbf{E} & \text{in } D_c. \end{cases}$$

Properties and boundary conditions

- $\operatorname{div} \mathbf{J}_e = 0$ in D,
- $\mathbf{J}_e \cdot \mathbf{n} = 0$ on ∂D_c ,
- $\mathbf{B} \cdot \mathbf{n} = 0$ on $\Gamma = \partial D$.

The eddy-current problem

Magnetic vector and electric scalar potentials

Harmonic \mathbf{A} - φ formulation

$$\operatorname{curl} \left(\mu^{-1} \operatorname{curl} \mathbf{A} \right) + \sigma \left(j \omega \mathbf{A} + \nabla \varphi \right) = \mathbf{J}_s \quad \text{in } D,$$
$$\operatorname{div} \left(\sigma (j \omega \mathbf{A} + \nabla \varphi) \right) = \mathbf{0} \quad \text{in } D_c,$$

with the boundary conditions

$$\begin{aligned} \mathbf{A}\times\mathbf{n} &= 0 & \text{ on } \Gamma, \\ \sigma(j\omega\mathbf{A}+\nabla\varphi)\cdot\mathbf{n} &= 0 & \text{ on } \partial D_c. \end{aligned}$$

Functional spaces definitions

$$\begin{aligned} H_0(\operatorname{curl}, \mathcal{D}) &= \begin{cases} \mathbf{F} \in L^2(\mathcal{D})^3 : \operatorname{curl} \mathbf{F} \in L^2(\mathcal{D})^3, \mathbf{F} \times \mathbf{n} = 0 \text{ on } \partial \mathcal{D} \\ \\ \widetilde{X}(\mathcal{D}) &= \begin{cases} \mathbf{F} \in H_0(\operatorname{curl}, \mathcal{D}) : (\mathbf{F}, \nabla \xi)_{\mathcal{D}} = 0, \ \forall \xi \in H_0^1(\mathcal{D}) \\ \\ \\ \widetilde{H^1}(\mathcal{D}) &= \end{cases} \begin{cases} f \in H^1(\mathcal{D}) : (f, 1)_{\mathcal{D}} = 0 \\ \end{cases}. \end{aligned}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ― 圖 … のへで……

The eddy-current problem

Variational formulation

Find $(\mathbf{A},\varphi)\in \widetilde{X}(D)\times \widetilde{H^1}(D_c)$ such that

$$B((\mathbf{A},\varphi),(\mathbf{A}',\varphi')) = (\mathbf{J}_s,\mathbf{A}'), \quad \forall (\mathbf{A}',\varphi') \in \widetilde{X}(D) \times \widetilde{H^1}(D_c)$$

where

$$\begin{split} B((\mathbf{A},\varphi),(\mathbf{A}',\varphi')) &= \left(\mu^{-1}\mathrm{curl}\mathbf{A},\mathrm{curl}\mathbf{A}'\right)_D \\ +j\omega^{-1}\left(\sigma(j\omega\mathbf{A}+\nabla\varphi),(j\omega\mathbf{A}'+\nabla\varphi')\right)_{D_c},\forall (\mathbf{A},\varphi),(\mathbf{A}',\varphi')\in\widetilde{X}(D)\times\widetilde{H^1}(D_c). \end{split}$$

Well-posedness

[Creusé et al, MMMAS 2012]

Existence and uniqueness of the weak solution $(\mathbf{A}, arphi)$ since it was shown there that

$$\|(\mathbf{A}',\varphi')\|_B := |B((\mathbf{A}',\varphi'),(\mathbf{A}',\varphi'))|^{\frac{1}{2}}, \forall (\mathbf{A}',\varphi') \in \widetilde{X}(D) \times \widetilde{H^1}(D_c),$$

is a norm on $\widetilde{X}(D)\times \widetilde{H^1}(D_c)$ equivalent to the natural one

$$||(\mathbf{A},\varphi)||_{V} = \left(\|\mathbf{A}'\|_{D}^{2} + \|\boldsymbol{\mu}^{-1/2}\mathrm{curl}\mathbf{A}'\|_{D}^{2} + |\varphi'|_{1,D_{c}}^{2}\right)^{\frac{1}{2}}, \forall (\mathbf{A}',\varphi') \in \widetilde{X}(D) \times \widetilde{H^{1}}(D_{c}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - のへで

The goal-oriented functional

Definition

We here consider the output functional given by

$$Q(\mathbf{A}) = \int_{D} \mathbf{q} \cdot \operatorname{curl} \bar{\mathbf{A}} \, dx, \forall \mathbf{A} \in H(\operatorname{curl}, D),$$

where $\mathbf{q} \in L^2(D)^3$ is a given function.

Physical meaning

In many engineering applications, engineers are interested in the computation of the flux through a coil. Indeed, in the case where a coil is included in D, in which a given current \mathbf{J}_s of intensity i is imposed, \mathbf{N} being the unit direction of the coil, it can be shown that the magnetic flux through the surface S of the coil is given by

$$\Phi = \int_{S} \mathbf{curl} \mathbf{A} \cdot \mathbf{n} \, dS,$$

and that it can be evaluated by $\bar{\Phi} = \frac{1}{i}Q(\mathbf{A}) = \frac{1}{i}\int_{D} \mathbf{q} \cdot \mathbf{curl}\bar{\mathbf{A}} dx$, using $\mathbf{q} = \mathbf{H}_s$ where $\mathbf{curl}\mathbf{H}_s = \mathbf{J}_s$, and where as usual $\mathbf{B} = \mathbf{curl}\mathbf{A}$.

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ のへで …

Adjoint problem

Definition of B^{\ast}

$$B^*((\mathbf{A},\varphi),(\mathbf{A}',\varphi')) = \overline{B((\mathbf{A}',\varphi'),(\mathbf{A},\varphi))} \quad \forall (\mathbf{A},\varphi), (\mathbf{A}',\varphi') \in \widetilde{X}(D) \times \widetilde{H^1}(D_c).$$

Adjoint problem

Look for $({\bf A}^*,\varphi^*)\in \widetilde{X}(D)\times \widetilde{H^1}(D_c)$ such that

$$B^*((\mathbf{A}^*,\varphi^*),(\mathbf{A}',\varphi')) = Q(\mathbf{A}'), \quad \forall (\mathbf{A}',\varphi') \in \widetilde{X}(D) \times H^1(D_c)$$

Strong formulation of the adjoint problem

$$\begin{aligned} \operatorname{curl}\left(\mu^{-1}\operatorname{curl}\mathbf{A}^*\right) &- \sigma \bigg(j\omega\mathbf{A}^* + \nabla\varphi^*\bigg) &= \operatorname{curl}\mathbf{q} & \text{ in } D,\\ \operatorname{div}(\sigma(j\omega\mathbf{A}^* + \nabla\varphi^*)) &= 0 & \text{ in } D_c. \end{aligned}$$

▲□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Discrete setting

Mesh and discrete spaces

- $\bullet \ H^1(\mathcal{T})=\{v\in L^2(D)\,|\,v_{|T}\in H^1(T), \forall T\in \mathcal{T}\}.$
- $(\mathbf{A}_h, \varphi_h) \in V_h \subset H^1(\mathcal{T})^3 \times H^1(\mathcal{T}_c).$
- $\bullet~ {\rm For}~ {\bf A}_h' \in H^1({\mathcal T})^3$ and $\varphi_h' \in H^1({\mathcal T}_c),$ we denote :

$\operatorname{curl}_h \mathbf{A}'_h$	=	$\operatorname{curl} \mathbf{A}'_h$	on T ,	$\forall T \in \mathcal{T},$
$\nabla_h \varphi_h'$	=	$\nabla \varphi'_h$	on T ,	$\forall T \in \mathcal{T}_c.$

 ${\ensuremath{\,\circ\,}}$ We introduce the discrete counterparts of ${\ensuremath{\,B\,}}$ and ${\ensuremath{\,E\,}}$ by

$$\begin{aligned} \mathbf{B}_h &= \operatorname{curl}_h \mathbf{A}_h, \\ \mathbf{E}_h &= -j \,\omega \, \mathbf{A}_h - \nabla_h \varphi_h. \end{aligned}$$

Potential and Flux reconstructions

- We assume that
 - a potential reconstruction $(\mathbf{S}_h, \psi_h) \in H_0(\operatorname{curl}, D) \times H^1(D_c)$ of $(\mathbf{A}_h, \varphi_h)$ is available,
 - some flux reconstructions \mathbf{H}_h and $\mathbf{J}_{e,h}$ are available that belong respectively to $H(\operatorname{curl}, D)$ and $H(\operatorname{div}, D_c)$ and satisfy the following conservation properties :

$$\begin{aligned} (\operatorname{curl} \mathbf{H}_h - \tilde{\mathbf{J}}_{e,h} - \mathbf{J}_s, \mathbf{e})_T &= 0, \forall T \in \mathcal{T}, \mathbf{e} \in \mathbb{C}^3, \\ \operatorname{div} \mathbf{J}_{e,h} &= 0 \text{ in } D_c, \\ \mathbf{J}_{e,h} \cdot \mathbf{n} &= 0 \text{ on } \partial D_c. \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction The reaction-diffusion problem An eddy-current problem

Energy-norm estimator

The energy error

$$\epsilon_{A,\varphi} = \left(\left\| \mu^{-1/2} \operatorname{curl}_h \epsilon_A \right\|^2 + \left\| \omega^{-1/2} \, \sigma^{1/2} (j \, \omega \epsilon_A + \nabla_h \epsilon_\varphi) \right\|_{D_c}^2 \right)^{1/2},$$

The estimators

• Non conforming estimator :

$$\eta_{NC} = \left(\left\| \mu^{-1/2} \operatorname{curl}_h(\mathbf{A}_h - \mathbf{S}_h) \right\|^2 + \left\| \omega^{-1/2} \, \sigma^{1/2} \left(j \, \omega(\mathbf{A}_h - \mathbf{S}_h) + \nabla_h(\varphi_h - \psi_h) \right) \right\|_{D_c}^2 \right)^{1/2} \right\}$$

• Flux estimator :

$$\eta_{\text{flux}} = \left(\eta_{\text{magn}}^2 + \eta_{\text{elec}}^2\right)^{1/2}$$
, with

 $\eta_{\mathrm{magn}} = \left\| \mu^{1/2} (\mathbf{H}_h - \mu^{-1} \mathbf{B}_h) \right\|_D \text{ and } \eta_{\mathrm{elec}} = \left\| (\omega \sigma)^{-1/2} (\mathbf{J}_{e,h} - \sigma \mathbf{E}_h) \right\|_{D_c},$

• Oscillation estimator (if D is convex)

$$\eta_{\mathcal{O}} = \mu_{\max}^{\frac{1}{2}} \left(\sum_{T \in \mathcal{T}} \pi^{-2} h_T^2 \| \mathbf{J}_s - \operatorname{curl} \mathbf{H}_h + \tilde{\mathbf{J}}_{e,h} \|_T^2 \right)^{\frac{1}{2}}.$$

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト の ヘ

Energy-norm estimator

Theorem 3

Let us define :

$$\eta = 2\eta_{NC} + \eta_{\text{flux}} + \eta_{\mathcal{O}},$$

Then we have :

 $\epsilon_{A,\varphi} \le \eta$

Similarly for the adjoint problem...

• The energy error :

$$\epsilon_{A^*,\varphi^*} = \left(\left\| \mu^{-1/2} \operatorname{curl}_h \epsilon_{A^*} \right\|^2 + \left\| \omega^{-1/2} \sigma^{1/2} (j \,\omega \epsilon_{A^*} + \nabla_h \epsilon_{\varphi^*}) \right\|_{D_c}^2 \right)^{1/2}$$

• The estimators :

$$\eta^*_{NC}, \ \eta^*_{\rm flux}, \ \eta^*_{\mathcal{O}} \ \text{and} \ \eta^* = 2\eta^*_{NC} + \eta^*_{\rm flux} + \eta^*_{\mathcal{O}},$$

• The estimation :

$$\epsilon_{A^*,\varphi^*} \leq \eta^*$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Goal-oriented estimator

Theorem 4

Let $(\mathbf{S}_h, \psi_h) \in H_0(\operatorname{curl}, D) \times \widetilde{H^1}(D_c)$ (resp. $(\mathbf{S}_h^*, \psi_h^*)$) be a potential reconstruction of $(\mathbf{A}_h, \varphi_h)$ (resp. $(\mathbf{A}_h^*, \varphi_h^*)$), then the error on the quantity of interest defined by

$$\mathcal{E} = \sum_{T \in \mathcal{T}} \int_{T} \mathbf{q} \cdot \operatorname{curl}(\overline{\mathbf{A} - \mathbf{A}_{h}}) \, dx$$

admits the splitting

$$\mathcal{E} = \eta_{\text{QOI}} + \mathcal{R}_{\text{c}}$$

where the estimator η_{QOI} is given by

$$\begin{split} \eta_{\text{QOI}} &= \sum_{T \in \mathcal{T}} \int_{T} \mathbf{q} \cdot \text{curl} \overline{(\mathbf{S}_{h} - \mathbf{A}_{h})} \, dx \\ &+ \int_{D} \mathbf{S}_{h}^{*} \cdot \overline{(\mathbf{J}_{s} - \text{curl} \mathbf{H}_{h} + \tilde{\mathbf{J}}_{e,h})} \, dx \\ &- j \omega^{-1} \int_{D_{c}} \sigma^{-1} \mathbf{J}_{e,h}^{*} \cdot \overline{\left(\sigma(j \omega \mathbf{S}_{h} + \nabla \psi_{h}) + \mathbf{J}_{e,h}\right)} \, dx \\ &- \int_{D} \mathbf{H}_{h}^{*} \cdot \left(\text{curl} \overline{\mathbf{S}_{h}} - \mu \overline{\mathbf{H}_{h}}\right) dx, \end{split}$$

Goal-oriented estimator

Theorem 4 ctd

while the remainder term $\ensuremath{\mathcal{R}}$ is defined by

$$\mathcal{R} = \int_{D} (\mathbf{A}^{*} - \mathbf{S}_{h}^{*}) \cdot \overline{(\mathbf{J}_{s} - \operatorname{curl}\mathbf{H}_{h} + \tilde{\mathbf{J}}_{e,h})} \, dx$$

+ $j\omega^{-1} \int_{D_{c}} (\sigma^{-1}\mathbf{J}_{e,h}^{*} - \mathbf{E}^{*}) \cdot \overline{(\sigma(j\omega\mathbf{S}_{h} + \nabla\psi_{h}) + \mathbf{J}_{e,h})} \, dx$
- $\int_{D} (\mu^{-1}\operatorname{curl}\mathbf{A}^{*} - \mathbf{H}_{h}^{*}) \cdot (\operatorname{curl}\overline{\mathbf{S}_{h}} - \mu\overline{\mathbf{H}_{h}}) \, dx$

Theorem 6

With η (resp. η^*) defined before, we have

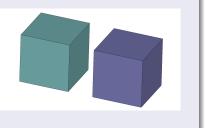
$$|\mathcal{R}| \le 6\eta\eta^*.$$

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ つ へ (* 33/41

Numerical results

Primal problem

- d = 3,
- $D = [-2, 5] \times [-2, 2] \times [-2, 2]$,
- $D_s = [-1, 1]^3$
- $D_c = [2,4] \times [-1,1] \times [-1,1].$
- $\mu \equiv 1$ in D, $\sigma \equiv 1$ in D_c and $\omega = 2\pi$.



• The exact solution is given by $\varphi \equiv 0$ and

$$\mathbf{A} = \mathrm{curl} \left(\begin{array}{c} f \\ 0 \\ 0 \end{array} \right) \mbox{ with } f(x,y,z) = \left\{ \begin{array}{cc} (x^2 - 1)^4 (y^2 - 1)^4 (z^2 - 1)^4 & \mbox{ in } D_s, \\ 0 & \mbox{ in } D \backslash D_s. \end{array} \right.$$

• The value of \mathbf{J}_s is computed accordingly.

Numerical results

Discrete spaces for the primal problem

$$(\mathbf{A}_h, \varphi_h) \in \mathbf{V}_h = \tilde{X}_h imes \tilde{\Theta}_h, ext{ where }$$

$$\begin{split} \tilde{\Theta}_h &= \{\varphi'_h \in \widetilde{H^1}(D_c) : \varphi'_{h|T} \in \mathbb{P}_1(T), \forall T \in \mathcal{T} \cap \bar{D}_c\}, \\ \Theta^0_h &= \{\psi_h \in H^1_0(D) : \psi_{h|T} \in \mathbb{P}_1(T), \forall T \in \mathcal{T}\}, \\ X_h &= \{\mathbf{A}'_h \in H_0(\operatorname{curl}, D) : \mathbf{A}'_{h|T} \in \mathcal{ND}_1(T), \forall T \in \mathcal{T}\}, \\ \tilde{X}_h &= \{\mathbf{A}'_h \in X_h : \int_D \mathbf{A}'_h \cdot \nabla \psi_h = 0, \forall \psi_h \in \Theta^0_h\}. \end{split}$$

Dual problem : regular solution

 $\mathbf{q} = \mathbf{H}_s = \mathrm{curl} \mathbf{A}$, and we recall that we are interested in

$$\mathcal{E} = \int_D \mathbf{H}_s \cdot \operatorname{curl}(\overline{\mathbf{A} - \mathbf{A}_h}) \, dx.$$

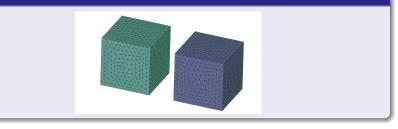
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Numerical results

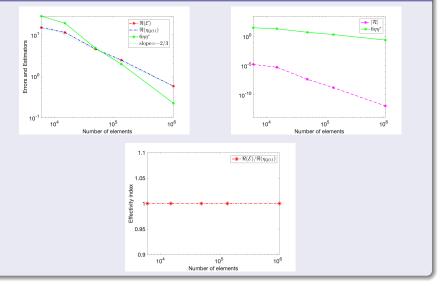
Discrete spaces for the dual problem

$$\begin{split} (\mathbf{A}_h^*,\varphi_h^*) \in \mathbf{V}_h^* &= \tilde{X}_h^* \times \tilde{\Theta}_h^*, \text{ where} \\ \tilde{\Theta}_h^* &= \{\varphi_h' \in \widetilde{H^1}(D_c) \ : \varphi_{h|T}' \in \mathbb{P}_2(T), \forall T \in \mathcal{T} \cap \bar{D}_c\}, \\ \Theta_h^{*,0} &= \{\psi_h \in H_0^1(D) \ : \psi_{h|T} \in \mathbb{P}_2(T), \forall T \in \mathcal{T}\}, \\ X_h^* &= \{\mathbf{A}_h' \in H_0(\text{curl}, D) \ : \ \mathbf{A}_{h|T}' \in \mathcal{ND}_2(T), \forall T \in \mathcal{T}\}, \\ \tilde{X}_h^* &= \{\mathbf{A}_h' \in X_h^* \ : \int_D \mathbf{A}_h' \cdot \nabla \psi_h = 0, \forall \psi_h \in \Theta_h^{*,0}\}. \end{split}$$

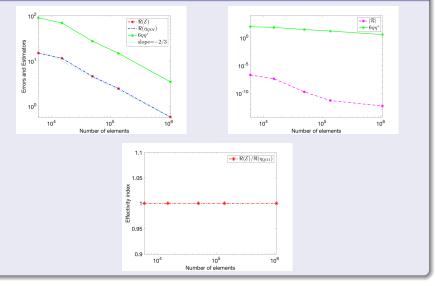
Meshes



Numerical results



Numerical results



▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

Numerical results

Dual problem : singular solution

$$\mathbf{q} = \left(\begin{array}{c} \rho_s \\ 0 \\ 0 \end{array} \right)$$

with

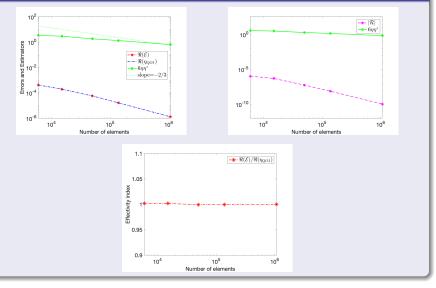
$$\rho_s(x, y, z) = e^{-\frac{(x-3)^2 + y^2 + z^2}{\log(10)/4}}, \forall (x, y, z) \in D,$$

and we recall that we are interested in

$$\mathcal{E} = \int_D \mathbf{q} \cdot \operatorname{curl}(\overline{\mathbf{A} - \mathbf{A}_h}) \, dx.$$

▲□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Numerical results



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへで…

◆□▼ ▲□▼ ▲目▼ ▲目▼ ▲□▼