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Introduction

Introduction

Intro n

Many engineering problems require computing some quantities of interest, which are
usually linear functionals applied to the solution of a PDE.

Error estimations on such functionals are called goal-oriented error estimations.

Such estimations are based on the resolution of an adjoint problem, whose solution is

used in the estimator definition, and on the use of some energy-norm error estimators.

Goal of this talk :
o Give an overview of such techniques in different contexts,
o Provide an upper-bound of the error which can be totally and explicitly computed,
o Test the behaviour of such estimators on some numerical benchmarks.

Two models are considered :

o Reaction-diffusion problems,
o Eddy-current problems.
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The reaction-diffusion problem

The reaction-diffusion problem

Problem definition

—div(DVu) +ru = f inQ€R?,
v = 0 ondf,

o D € L (Q;R¥*4), symmetric matrix-valued function such that
D(z)€-£2|¢*, VEER?, and ae. € Q,

@ r € L°°(Q) supposed to be nonnegative,
o f is supposed to be in L2(Q).

Variational formulation

B(u,v) = /(DVu-Vv—i—ruv)dx, Y u,v € Hi(Q),
Q

Fw) = /fvdx,VvGHé(Q),
Q

B(u,v) = F(v), Yve HNQ),

= unique (weak) solution u in HJ ().
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The reaction-diffusion problem

Goal-oriented functional and adjoint problem

Output functional

q € L3(Q) and Q(v) = / qudz, Y v € L*(Q).
Q

Question : How to compute an approximation of the value of Q(u) ?

Adjoint problem

o We now define u* € H}(R) solution of the adjoint problem

B(v,u*) = Q(v), Vv € Hy(R).
@ The associated strong formulation is

—div(DVu*) +ru* = ¢ inQ,
u* = 0 on 0.

o We clearly have
Q(u) = B(u,u") = F(u").
o Since B is here symmetric, we also have:

B(u*,v) = Q(v), Vv € H} (Q).
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The reaction-diffusion problem

Discrete setting

Mesh and discrete spaces

o Let us introduce a triangulation 7 of 2 made of polygonal elements 7" that covers
exactly €2,

o We assume that the mesh is simplicial and matching,

o We introduce the so-called broken Sobolev space
HYT) ={v e L*Q)|vr € H(T), VT €T}

o We are looking for :
o up € Vi, C H'(T) approximation of w,
o uj € V;¥ C H'(T) approximation of u*.

o Let us recall that

H(div, Q) = {¢ € L?(2)%; dive € L2(Q)}.
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The reaction-diffusion problem

Error estimation

Theorem 1
Let s, € HL(Q), 0, € H(div,Q) and 6} € H(div,$2). Then we have :
€ =Q(u) — Qup) = Q(u —upn) =ngor + R,
where the estimator ngo7 is given by
ngor = (¢ 5 —un)o +
+ (6n+DVsp, D 1050 — (rul,sn—un)a,
while the remainder term R is defined by

R=Ri1+R2+R3 with

Ri = (f—divl, —rup, v —ujf)q,
Ra = —(0n+ DVsy, D710} + Vu*)q,
Rz = (r(u* —u}),sp, —up)a-
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The reaction-diffusion problem

Remarks

© 7gor has three contributions :

o (0, + DVsy, D™ ! 0}, ) measures the deviation of —DV s, from the reconstructed
flux 64,
o (q,8n —un)a — (ruj, s, — up)o measures the deviation of u;, from Hé Q).

QIfv, C H&(Q) then we can take s; = uy and the blue terms vanish.

© This result occurs whatever the values of
sp € H(Q), 05, € H(div,Q) and 05 € H(div, Q).

= |ngorl and |R| can both be very high...
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The reaction-diffusion problem

Potential and Flux reconstructions

o We assume that a potential reconstruction s; of uy is available :
sy € H&(Q) and sp ~ up,
@ We assume that some flux reconstructions 65 and 6’; are available, using
respectively (up, f) and (uj,q) :

e 0 € H(div,Q2) and (divly, + rup, — f,1)7 =0, VT € T= 0, ~ —DVuy,

o 0; € H(div,Q) and (divl;, + ruj, —q,1)p =0, VT € T= 0; ~ —DVu;.
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The reaction-diffusion problem

Estimation of the remainder R

@ Once the primal and dual problems have been solved, the value of ngor
can be computed (up to oscillation terms).

o Nevertheless, the value of R can not be evaluated, because of the value of u* in its
definition.

@ Question :
Can the value of R be bounded by known quantities ?
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The reaction-diffusion problem

Estimation of the remainder R

Some definitions

1 1
e Vwe Hé (Q) UV, ||w||% = ||D2 Vw2 + [|r2wl||?,

o n?= Z (TYJQVC,T + U%,T + 772DF,T)v with

TeT
nvo,r =  |lun = sulle,T,
nr,r = mr ||f —divl, +rupT,
_i
nprr = |ID72(0h + DVup)|T,

N 1 1 )
myp :=min{r " hr||D” 2 ||, 1, |7 2 ||co,7}, when T is convex.

Known results

lu —urlln <n
and, similarly,

lu* —uplln <n*
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The reaction-diffusion problem

Estimation of the remainder R

With ) and n* as defined before, we have IR| < 4nn*.

We estimate each term of R separetely:

IRil = |(f — divos — rup,u* —u)al
< ’Z/(ffdiVOhfruh) ((u*fu;)fMT(u*fu;)) dx
Ter T
< Y I —divhn — runlln mr = g llnr < 0
TeT
IRal = |6+ DVsp, D716} + Vu*)g|
< D% (0n + DVsp)||ID~2 (6], + DVu)||
-1 -1 * * 1 * *
< IDT2 (0 + DVsp)|[(ID2 (65, + DVup)| + D2 Vi (w* — u3)))
< 2qnt.

*

1 1
IRs| (r(u® = uh)s s —un)al < Ir2 (u® —up)llllr? (sn —un)ll <nn.




The reaction-diffusion problem

Some remarks

Q@ Thms1land 2 =
€] < Ingorl + 4nn*.
Nevertheless, such an estimator can overestimate the error.

@ We can estimate the ratio

[R]
Inqorl’
L A . '
by computing K during a refinement procedure based on the use of ngor
nQor

and check if it tends to zero or not.

© In the positive case, since £ = nQor + ‘R, this means that the ratio tends

nQor
to one and will validate the asymptotic exactness of the estimator ngo7.

@ In any case, we can use the estimate

€] < Ingorl + 4mm™,

and then choose as estimator |[ngor| + 4nn™* to implement an adaptive algorithm.
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The reaction-diffusion problem

Numerical results

Primal problem : Regular solution

e d=2 Q2=]0,1[2, D = Iz2 and 7 = 0.
o u(x,y) = 10%z(1 — 2)y(1 — y)e_wo(p(w’y))z, with
pla,y) = ((z - 0.75)> + (y — 0.75)%) /.

@ The right-hand side f is computed accordingly
such that f = —div(DVu).

Dual problem : Regular solution

e g =1, with

w={(z,y) €Q:15<zx+y <175}
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The reaction-diffusion problem

Numerical results

Numerical parameters

@ For uy, : standard conforming Py finite elements,
o For 6, : standard RT; finite elements,
e For u’fl : standard conforming P2 finite elements,

e For 0; . standard RTs finite elements.
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The reaction-diffusion problem

Numerical results
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The reaction-diffusion problem

Remarks

If we had chosen :
@ For uy, : standard conforming Py finite elements,
@ For 0, : standard RT; finite elements,
e For u; . standard conforming P; finite elements,
e For 0; . standard RT finite elements,
then the quantity ™ is no more superconvergent, even if I s still tends towards one.
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The reaction-diffusion problem

Numerical results

Primal problem : Singular solution

ed=20Q=]-1,1[2 and r =0,

1]a

a |l

D is piecewise constant in €2 : ,0<a< 1.

4
e a = —arctan(v/a) and u(z,y) = p(z, y) S(z,y), where
s
o p(x,y) = (1 — z*)(1 — y*) is a truncation function
o S(z,y) = p*v(6)
@ The right-hand side f is computed accordingly.
For any € > 0 we have u € HT>~¢(Q)

Dual problem : Singular solution

e g = 1y, with

w = (0,0.5) x (—0.25,0.25).
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The reaction-diffusion problem

Numerical results
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The reaction-diffusion problem

Remarks: Singular solution

©

The error, the estimator ngos and 4nn™ all converge towards zero with order
O(h?2).

I, remains in the order of unity but is no more close to one.

The remainder R seems to be no more superconvergent.

For such problems with singular solutions, an adaptive algorithm should be based
on the sum of the estimator [ngor| and of the product 47 7n*,
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An eddy-current problem

The eddy-current problem

Problem definition

Find the electric field E and the magnetic field H solution of

curlE = —jwB in D, B
curlH = Js+Je in D, with { 3
divB = 0 in D, €

= pH inD,
oE in De¢.

Properties and boundary conditions
e divJe =0in D,
@ Je-n=0o0n 0D,
B - n=0onT=0D.
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An eddy-current problem

The eddy-current problem

Magnetic vector and electric scalar potentials

B = curlA in D,
E —JjwA — V¢ in De.

Harmonic A-p formulation

curl (,u_lcurlA) + a(ij + ch) = Js inD,
div(o(jwA +Ve)) = 0 in De,

with the boundary conditions

Axn = 0 onT,
o(jwA+Ve)-n = 0 ondD..
Ho(curl,D) = JF € L?*D)3:cwlF € L?(D)3,F xn =0 on 87)},
X(D) = {F e Hy(cur],D): (F,VEp =0, VE € H&(D)},
7o) = {rem®:no=o}.
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An eddy-current problem

The eddy-current problem

Variational formulation

Find (A, @) € X(D) x H'(D,) such that

B((A,9), (A, ¢) = (Js,A"), V(A',¢') € X(D) x H(D.),
where

B((A,¢),(A"¢")) = (u'curlA,curlA’)
+jw™ ! (0 (jwA + Vi), (jwA' + V) V(A 9), (A',¢") € X(D) x H (D).

Well-posedness

Existence and uniqueness of the weak solution (A, ¢) since it was shown there that

1

1A, &")l|5 = | B((A", ¢"), (A, )7, (A, o) € X(D) x HL(D,),

is a norm on X (D) x H(D.) equivalent to the natural one

1 ~ e
(A, @)llv = (1115 + ln~" 2curl A"}, + 1¢'1F b, ) 2, V(A',¢') € X(D) x H'(De).
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An eddy-current problem

The goal-oriented functional

We here consider the output functional given by
Q(A) = / q - curlA dz,VA € H(curl, D),
D

where q € L?(D)?3 is a given function.

Physical meaning

In many engineering applications, engineers are interested in the computation of the flux
through a coil. Indeed, in the case where a coil is included in D, in which a given current
Js of intensity ¢ is imposed, N being the unit direction of the coil, it can be shown that the
magnetic flux through the surface S of the coil is given by

@:/curlA~ndS,
S

_ 1 1 _
and that it can be evaluated by ® = —Q(A) = f/ q - curlA dz,
i i

using q = Hs where curlHs = Jg, and where as usual B = curlA.
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An eddy-current problem

Adjoint problem

Definition of B*

B*((A,%), (A',¢") = B(A, &), (A,9)) V(A,9),(A",¢') € X(D) x H(D,).

Adjoint problem

Look for (A*,p*) € XV(D) X ﬁ(Dc) such that

B (A", ¢%), (A", ¢))) = Q(A), V(A',¢') € X(D) x H1(De),

Strong formulation of the adjoint problem

curlq in D,

curl (,u_lcurlA*) —0 (ij* + Vp*
div(o(jwA* + Ve*)) = 0 in De.
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An eddy-current problem

Discrete setting

Mesh and discrete spaces
o HY(T)={v e L*D)|vr € H(T),VT € T}.
o (An,pn) € Vi C HY(T)? x HY(T).
o For A} € HY(T)3 and ¢, € H'(7¢), we denote :

curl, A}, = curlA] onT, VTET,
Ve, = Vg onT, VTE¢€ET..

o We introduce the discrete counterparts of B and E by

B, = curlAy,
Ep —JjwAp — Virph.

Potential and Flux reconstructions

o We assume that

o a potential reconstruction (Sp, 1) € Ho(curl, D) X H'(D.) of (A, ¢p) is available,
o some flux reconstructions Hj, and J. ; are available that belong respectively to H (curl, D)
and H(div, D.) and satisfy the following conservation properties :

(curlHy, — je,h —Js,e)r
divJe n
Jen -

0,YT € T,e € C3,
0in D,
0on dD,..
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An eddy-current problem

Energy-norm estimator

The energy error

) 5 \1/2
eA,<p:(Hu’1/2<:urlh6AH +Hw*l/%l/Q(waA+Vh€w)HDC) ;

The estimators

@ Non conforming estimator :

nNe = (Hﬂ_l/chrlh(Ah*Sh)Hz

5 \1/2

@ Flux estimator : 12
2 2 .
Mfux = (nmagn + 77e1ec) ; with

Mmagn = ||i'/2(Hy — 7' By)|| , and neiec = || (o) 2 Ten — B[

o Oscillation estimator (if D is convex)

=

1 =
N0 = pdax | D 7 20335 — curlHy + I ul3
TeT
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An eddy-current problem

Energy-norm estimator

Let us define :
n=2nNc + Naux + N0,
Then we have :
€A, < n

Similarly for the adjoint problem...

@ The energy error :
‘2 1/2
D, .

2
+ Hw71/2 Ul/z(jUJEA* + Vipepr)

EA* p* = ("“71/2Cur1h€A*
@ The estimators :

Nes Mux Mo and 1% = 20N o + Ny + 10,

@ The estimation :

€EA* p* S 77*~
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An eddy-current problem

Goal-oriented estimator
Theorem 4

Let (Sp,%n) € Ho(curl, D) x Ifﬁ(Dc) (resp. (S},%})) be a potential reconstruction
of (An,n) (resp. (A}, ¥} )), then the error on the quantity of interest defined by

£ = Z/Tqmurl(A—Ah)dx

TeT

admits the splitting
£ =mnqor +R,

where the estimator nqo1 is given by

ngotr = Z/q-curl(sthh)da:

TeTVT

+ / Sy - (Js — curlHy, + J ) dz
D

- jw*l/ o1 3%, (0(wSh + Vo) + Je ) do
D(‘.

— / H; - (curlSy, — pHy) dz,
D
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An eddy-current problem

Goal-oriented estimator

Theorem 4 ctd

while the remainder term R is defined by

R

/ (A* —S7) - (Js — curlHy, + J. ) dz
D

4+ jw*l/ (07132, —E*) - (0(jwSh + Vo) + Je p) do

c

- (p~teurlA* — H}) - (curlSy, — uHy,) dz
D

Theorem 6

With 1 (resp. n*) defined before, we have

IR| < 6nn*.
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An eddy-current problem

Numerical results

Primal problem

e d=3,
o D=[-2,5x[-2,2] x [-2,2],
e Dy =[-1,1]3

D. = [2,4] x [-1,1] x [-1,1].
e u=1inD,oc=1in D, and
w = 2m.

@ The exact solution is given by ¢ =0 and

(2 — D*? - D*(=2—-1)* in Ds,

f
A=curl| O with f(z,y,2) = { 0 in  D\D
50

0

@ The value of J; is computed accordingly.
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An eddy-current problem

Numerical results

Discrete spaces for the primal problem

(A, on) € Vi, = X, x Oy, where

On = {¢}, € HI(De) : ¢l € P1(T),YT € TN D},
©f = {¢n € Hy(D) : ¢nr € P1(T),VT € T},
X = {A}, € Ho(cwl, D) : A} - € NDi(T),VT € T},

X ={A) € Xy, ;/A;-vwhzo,\whe@g}.
D

Dual problem : regular solution

q = H; = curlA, and we recall that we are interested in

8:/ H, - curl(A — Ay) da.
D
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An eddy-current problem

Numerical results

Discrete spaces for the dual problem

(A}, 1) € VE = X; x ©5, where
6;, = {¢}, € HY(Dc) : v}, p € P2(T),VT € TN Dc},

050 = {4y, € HY(D) :9pr € Po(T),¥T € T},
X ={A}, € Ho(curl, D) : A;1|T € NDo(T),NT € T},

X ={A} € X} : / A}, Vi, =0,V € 67°).
D

A\

Meshes

.
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An eddy-current problem

Numerical results
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An eddy-current problem

Numerical results

Regular solution
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An eddy-current problem

Numerical results

Dual problem : singular solution

qa=|( 0

with
_(@=3)24y2 422
ps(xvyvz) =e€ log(10)/4 7v($=y7 Z) € D7

and we recall that we are interested in

6:/ q-curl(A — Ap) dz.
D
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An eddy-current problem

Numerical results
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