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Introduction

Introduction
Many engineering problems require computing some quantities of interest, which are
usually linear functionals applied to the solution of a PDE.
Error estimations on such functionals are called goal-oriented error estimations.
Such estimations are based on the resolution of an adjoint problem, whose solution is
used in the estimator definition, and on the use of some energy-norm error estimators.
Goal of this talk :

Give an overview of such techniques in different contexts,
Provide an upper-bound of the error which can be totally and explicitly computed,
Test the behaviour of such estimators on some numerical benchmarks.

Two models are considered :
Reaction-diffusion problems,
Eddy-current problems.
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The reaction-diffusion problem
Problem definition {

−div(D∇u) + r u = f in Ω ∈ Rd,
u = 0 on ∂Ω,

D ∈ L∞(Ω;Rd×d), symmetric matrix-valued function such that

D(x)ξ · ξ ≳ |ξ|2, ∀ ξ ∈ Rd, and a.e. x ∈ Ω,

r ∈ L∞(Ω) supposed to be nonnegative,
f is supposed to be in L2(Ω).

Variational formulation

B(u, v) =
∫

Ω
(D∇u · ∇v + r u v) dx, ∀ u, v ∈ H1

0 (Ω),

F (v) =
∫

Ω
f v dx, ∀ v ∈ H1

0 (Ω),

B(u, v) = F (v), ∀ v ∈ H1
0 (Ω),

⇒ unique (weak) solution u in H1
0 (Ω).
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Goal-oriented functional and adjoint problem
Output functional

q ∈ L2(Ω) and Q(v) =
∫

Ω
q v dx, ∀ v ∈ L2(Ω).

Question : How to compute an approximation of the value of Q(u) ?

Adjoint problem

We now define u∗ ∈ H1
0 (Ω) solution of the adjoint problem

B(v, u∗) = Q(v), ∀ v ∈ H1
0 (Ω).

The associated strong formulation is{
−div(D∇u∗) + ru∗ = q in Ω,

u∗ = 0 on ∂Ω.

We clearly have
Q(u) = B(u, u∗) = F (u∗).

Since B is here symmetric, we also have:

B(u∗, v) = Q(v), ∀ v ∈ H1
0 (Ω).
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Discrete setting

Mesh and discrete spaces
Let us introduce a triangulation T of Ω made of polygonal elements T that covers
exactly Ω,
We assume that the mesh is simplicial and matching,
We introduce the so-called broken Sobolev space

H1(T ) = {v ∈ L2(Ω) | v|T ∈ H1(T ), ∀ T ∈ T }.

We are looking for :
uh ∈ Vh ⊂ H1(T ) approximation of u,
u∗

h ∈ V ∗
h ⊂ H1(T ) approximation of u∗.

Let us recall that
H(div,Ω) = {ξ ∈ L2(Ω)d; divξ ∈ L2(Ω)}.
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Error estimation
[Mozolevski and Prudhomme, CMAME 2015]
[Mallik, Vohralik and Yousef, JCAM 2020]

Theorem 1

Let sh ∈ H1
0 (Ω), θh ∈ H(div,Ω) and θ∗

h ∈ H(div,Ω). Then we have :

E = Q(u) −Q(uh) = Q(u− uh) = ηQOI + R,

where the estimator ηQOI is given by

ηQOI = (q, sh − uh)Ω + (f − divθh − r uh, u
∗
h)Ω

+ (θh +D∇sh, D
−1θ∗

h)Ω − (r u∗
h, sh − uh)Ω,

while the remainder term R is defined by

R = R1 + R2 + R3 with
R1 = (f − divθh − ruh, u

∗ − u∗
h)Ω,

R2 = −(θh +D∇sh, D
−1θ∗

h + ∇u∗)Ω,

R3 = (r(u∗ − u∗
h), sh − uh)Ω.

9/41



Introduction
The reaction-diffusion problem

An eddy-current problem

Remarks

1 ηQOI has three contributions :
(f − divθh − r uh, u

∗
h)Ω represents the data oscillation with respect to the primal

problem weighted by the dual approximate solution if divθh − r uh is equal to the
L2(Ω) projection of f on the approximation space used to compute uh,
(θh + D∇sh, D

−1
θ

∗
h)Ω measures the deviation of −D∇sh from the reconstructed

flux θh,
(q, sh − uh)Ω − (r u∗

h, sh − uh)Ω measures the deviation of uh from H1
0 (Ω).

2 If Vh ⊂ H1
0 (Ω), then we can take sh = uh and the blue terms vanish.

3 This result occurs whatever the values of

sh ∈ H1
0 (Ω), θh ∈ H(div,Ω) and θ∗

h ∈ H(div,Ω).

⇒ |ηQOI | and |R| can both be very high...
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Potential and Flux reconstructions

[Ern & Vohralik : A unified framework for a posteriori error estimation in elliptic and
parabolic problems with application to finite volumes. FVCA6, 2011]

We assume that a potential reconstruction sh of uh is available :
sh ∈ H1

0 (Ω) and sh ∼ uh,

We assume that some flux reconstructions θh and θ∗
h are available, using

respectively (uh, f) and (u∗
h, q) :

θh ∈ H(div,Ω) and (divθh + ruh − f, 1)T = 0, ∀ T ∈ T ⇒ θh ∼ −D∇uh,

θ∗
h ∈ H(div,Ω) and (divθ∗

h + ru∗
h − q, 1)T = 0, ∀ T ∈ T ⇒ θ∗

h ∼ −D∇u∗
h.
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Estimation of the remainder R

Question...
Once the primal and dual problems have been solved, the value of ηQOI

can be computed (up to oscillation terms).
Nevertheless, the value of R can not be evaluated, because of the value of u∗ in its
definition.
Question :

Can the value of R be bounded by known quantities ?
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Estimation of the remainder R

Some definitions

∀ w ∈ H1
0 (Ω) ∪ Vh, ∥w∥2

h = ∥D
1
2 ∇hw∥2 + ∥r

1
2w∥2,

η2 =
∑
T ∈T

(η2
NC,T + η2

R,T + η2
DF,T ), with

ηNC,T = ∥uh − sh∥h,T ,

ηR,T = mT ∥f − divθh + ruh∥T ,

ηDF,T = ∥D− 1
2 (θh +D∇uh)∥T ,

mT := min{π−1hT ∥D− 1
2 ∥∞,T , ∥r− 1

2 ∥∞,T }, when T is convex.

Known results

[Ern & Vohralik : A unified framework for a posteriori error estimation in elliptic and
parabolic problems with application to finite volumes. FVCA6, 2011]

∥u− uh∥h ≤ η
and, similarly,

∥u∗ − u∗
h∥h ≤ η∗
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Estimation of the remainder R

Theorem 2

With η and η∗ as defined before, we have |R| ≤ 4 η η∗.

Proof.
We estimate each term of R separetely:

|R1| = |(f − divθh − ruh, u
∗ − u∗

h)Ω|

≤
∣∣∣∑

T ∈T

∫
T

(f − divθh − ruh)
(

(u∗ − u∗
h) − MT (u∗ − u∗

h)
)
dx

∣∣∣
≤

∑
T ∈T

∥f − divθh − ruh∥T mT ∥u∗ − u∗
h∥h,T ≤ η η∗.

|R2| = |(θh +D∇sh, D
−1θ∗

h + ∇u∗)Ω|

≤ ∥D− 1
2 (θh +D∇sh)∥∥D− 1

2 (θ∗
h +D∇u∗)∥

≤ ∥D− 1
2 (θh +D∇sh)∥(∥D− 1

2 (θ∗
h +D∇hu

∗
h)∥ + ∥D

1
2 ∇h(u∗ − u∗

h)∥)
≤ 2 η η∗.

|R3| = |(r(u∗ − u∗
h), sh − uh)Ω| ≤ ∥r

1
2 (u∗ − u∗

h)∥∥r
1
2 (sh − uh)∥ ≤ η η∗.
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Some remarks

1 Thms 1 and 2 ⇒
|E| ≤ |ηQOI | + 4ηη∗.

Nevertheless, such an estimator can overestimate the error.
2 We can estimate the ratio

|R|
|ηQOI |

,

by computing
4ηη∗

|ηQOI |
, during a refinement procedure based on the use of ηQOI

and check if it tends to zero or not.
3 In the positive case, since E = ηQOI + R, this means that the ratio

E
ηQOI

tends

to one and will validate the asymptotic exactness of the estimator ηQOI .
4 In any case, we can use the estimate

|E| ≤ |ηQOI | + 4ηη∗,

and then choose as estimator |ηQOI | + 4ηη∗ to implement an adaptive algorithm.
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Numerical results

Primal problem : Regular solution

d = 2, Ω =]0, 1[2, D = IR2 and r = 0.

u(x, y) = 104x(1 − x)y(1 − y)e−100(ρ(x,y))2 , with

ρ(x, y) = ((x− 0.75)2 + (y − 0.75)2)1/2.

The right-hand side f is computed accordingly
such that f = −div(D∇u).

IsoValue
0
13.966
27.932
41.8979
55.8639
69.8299
83.7959
97.7618
111.728
125.694
139.66
153.626
167.592
181.558
195.524
209.49
223.456
237.422
251.388
265.354
279.32
293.285
307.251
321.217
335.183
349.149
363.115

Dual problem : Regular solution

q = 1ω , with

ω = {(x, y) ∈ Ω : 1.5 ≤ x+ y ≤ 1.75}
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Numerical results

Numerical parameters
For uh : standard conforming P1 finite elements,
For θh : standard RT1 finite elements,
For u∗

h : standard conforming P2 finite elements,
For θ∗

h : standard RT2 finite elements.

Meshes
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Numerical results

Regular solution

Ieff = |E/ηQOI | Itot
eff = |E|/(|ηQOI | + 4ηη∗)
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Remarks

If we had chosen :
For uh : standard conforming P1 finite elements,
For θh : standard RT1 finite elements,
For u∗

h : standard conforming P1 finite elements,
For θ∗

h : standard RT1 finite elements,
then the quantity η η∗ is no more superconvergent, even if Ieff still tends towards one.
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Numerical results
Primal problem : Singular solution

d = 2, Ω =] − 1, 1[2 and r = 0,

D is piecewise constant in Ω :

∣∣∣∣ 1 a
a 1

∣∣∣∣, 0 < a < 1.

α =
4
π

arctan(
√
a) and u(x, y) = p(x, y)S(x, y), where

p(x, y) = (1 − x4)(1 − y4) is a truncation function
S(x, y) = ραv(θ)

The right-hand side f is computed accordingly.
For any ε > 0 we have u ∈ H1+α−ε(Ω)

IsoValue
-0.179041
-0.165269
-0.151497
-0.137724
-0.123952
-0.110179
-0.0964069
-0.0826345
-0.0688621
-0.0550897
-0.0413172
-0.0275448
-0.0137724
4.13558e-15
0.0137724
0.0275448
0.0413172
0.0550897
0.0688621
0.0826345
0.0964069
0.110179
0.123952
0.137724
0.151497
0.165269
0.179041

Dual problem : Singular solution

q = 1ω , with

ω = (0, 0.5) × (−0.25, 0.25).
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Numerical results

Singular solution with a = 5 so that α ≈ 0.53

Ieff = |E/ηQOI | Itot
eff = |E|/(|ηQOI | + 4ηη∗)
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Remarks: Singular solution

1 The error, the estimator ηQOI and 4ηη∗ all converge towards zero with order
O(h2α).

2 Ieff remains in the order of unity but is no more close to one.
3 The remainder R seems to be no more superconvergent.
4 For such problems with singular solutions, an adaptive algorithm should be based

on the sum of the estimator |ηQOI | and of the product 4 η η∗,
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The eddy-current problem
Problem definition

!

!

D

Γ = ∂D

Dc

∂Dc

µ > 0
σ > 0

Js

µ > 0
σ = 0

Find the electric field E and the magnetic field H solution of{
curlE = −jωB in D,
curlH = Js + Je in D,
divB = 0 in D,

with
{

B = µH in D,
Je = σE in Dc.

Properties and boundary conditions
divJe = 0 in D,
Je · n = 0 on ∂Dc,
B · n = 0 on Γ = ∂D.
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The eddy-current problem
Magnetic vector and electric scalar potentials

B = curlA in D,
E = −jωA − ∇φ in Dc.

Harmonic A-φ formulation

curl
(
µ−1curlA

)
+ σ

(
jωA + ∇φ

)
= Js in D,

div(σ(jωA + ∇φ)) = 0 in Dc,

with the boundary conditions

A × n = 0 on Γ,
σ(jωA + ∇φ) · n = 0 on ∂Dc.

Functional spaces definitions

H0(curl,D) =
{

F ∈ L2(D)3 : curlF ∈ L2(D)3,F × n = 0 on ∂D
}
,

X̃(D) =
{

F ∈ H0(curl,D) : (F,∇ξ)D = 0, ∀ξ ∈ H1
0 (D)

}
,

H̃1(D) =
{
f ∈ H1(D) : (f, 1)D = 0

}
.
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The eddy-current problem
Variational formulation

Find (A, φ) ∈ X̃(D) × H̃1(Dc) such that

B((A, φ), (A′, φ′)) = (Js,A′), ∀(A′, φ′) ∈ X̃(D) × H̃1(Dc),

where

B((A, φ), (A′, φ′)) =
(
µ−1curlA, curlA′

)
D

+jω−1 (σ(jωA + ∇φ), (jωA′ + ∇φ′))Dc
, ∀(A, φ), (A′, φ′) ∈ X̃(D) × H̃1(Dc).

Well-posedness

[Creusé et al, MMMAS 2012]
Existence and uniqueness of the weak solution (A, φ) since it was shown there that

∥(A′, φ′)∥B := |B((A′, φ′), (A′, φ′))|
1
2 , ∀(A′, φ′) ∈ X̃(D) × H̃1(Dc),

is a norm on X̃(D) × H̃1(Dc) equivalent to the natural one

||(A, φ)||V =
(

∥A′∥2
D + ∥µ−1/2curlA′∥2

D + |φ′|21,Dc

) 1
2 , ∀(A′, φ′) ∈ X̃(D) × H̃1(Dc).
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The goal-oriented functional
Definition
We here consider the output functional given by

Q(A) =
∫

D

q · curlĀ dx, ∀A ∈ H(curl, D),

where q ∈ L2(D)3 is a given function.

Physical meaning
In many engineering applications, engineers are interested in the computation of the flux
through a coil. Indeed, in the case where a coil is included in D, in which a given current
Js of intensity i is imposed, N being the unit direction of the coil, it can be shown that the
magnetic flux through the surface S of the coil is given by

Φ =
∫

S

curlA · n dS,

and that it can be evaluated by Φ̄ =
1
i
Q(A) =

1
i

∫
D

q · curlĀ dx,

using q = Hs where curlHs = Js, and where as usual B = curlA.
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Adjoint problem

Definition of B∗

B∗((A, φ), (A′, φ′)) = B((A′, φ′), (A, φ)) ∀(A, φ), (A′, φ′) ∈ X̃(D) × H̃1(Dc).

Adjoint problem

Look for (A∗, φ∗) ∈ X̃(D) × H̃1(Dc) such that

B∗((A∗, φ∗), (A′, φ′)) = Q(A′), ∀(A′, φ′) ∈ X̃(D) × H̃1(Dc),

Strong formulation of the adjoint problem

curl
(
µ−1curlA∗

)
−σ

(
jωA∗ + ∇φ∗

)
= curlq in D,

div(σ(jωA∗ + ∇φ∗)) = 0 in Dc.
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Discrete setting
Mesh and discrete spaces

H1(T ) = {v ∈ L2(D) | v|T ∈ H1(T ), ∀T ∈ T }.

(Ah, φh) ∈ Vh ⊂ H1(T )3 ×H1(Tc).
For A′

h ∈ H1(T )3 and φ′
h ∈ H1(Tc), we denote :

curlhA′
h = curlA′

h on T, ∀T ∈ T ,
∇hφ

′
h = ∇φ′

h on T, ∀T ∈ Tc.

We introduce the discrete counterparts of B and E by

Bh = curlhAh,
Eh = −j ωAh − ∇hφh.

Potential and Flux reconstructions
We assume that

a potential reconstruction (Sh, ψh) ∈ H0(curl, D) × H̃1(Dc) of (Ah, φh) is available,
some flux reconstructions Hh and Je,h are available that belong respectively to H(curl, D)
and H(div, Dc) and satisfy the following conservation properties :

(curlHh − J̃e,h − Js, e)T = 0, ∀T ∈ T , e ∈ C3,
divJe,h = 0 in Dc,
Je,h · n = 0 on ∂Dc.
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Energy-norm estimator
The energy error

ϵA,φ =
(∥∥µ−1/2curlhϵA

∥∥2
+
∥∥ω−1/2 σ1/2(j ωϵA + ∇hϵφ)

∥∥2
Dc

)1/2
,

The estimators
Non conforming estimator :

ηNC =
(∥∥µ−1/2curlh(Ah − Sh)

∥∥2

+
∥∥ω−1/2 σ1/2 (j ω(Ah − Sh) + ∇h(φh − ψh))

∥∥2
Dc

)1/2
,

Flux estimator :
ηflux =

(
η2

magn + η2
elec
)1/2

, with

ηmagn =
∥∥µ1/2(Hh − µ−1Bh)

∥∥
D

and ηelec =
∥∥(ωσ)−1/2(Je,h − σEh)

∥∥
Dc

,

Oscillation estimator (if D is convex)

ηO = µ
1
2
max

(∑
T ∈T

π−2h2
T ∥Js − curlHh + J̃e,h∥2

T

) 1
2

.
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Energy-norm estimator
Theorem 3
Let us define :

η = 2ηNC + ηflux + ηO,

Then we have :
ϵA,φ ≤ η

Similarly for the adjoint problem...
The energy error :

ϵA∗,φ∗ =
(∥∥µ−1/2curlhϵA∗

∥∥2
+
∥∥ω−1/2 σ1/2(j ωϵA∗ + ∇hϵφ∗ )

∥∥2
Dc

)1/2
.

The estimators :

η∗
NC , η

∗
flux, η

∗
O and η∗ = 2η∗

NC + η∗
flux + η∗

O,

The estimation :
ϵA∗,φ∗ ≤ η∗.
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Goal-oriented estimator
Theorem 4

Let (Sh, ψh) ∈ H0(curl, D) × H̃1(Dc) (resp. (S∗
h, ψ

∗
h)) be a potential reconstruction

of (Ah, φh) (resp. (A∗
h, φ

∗
h)), then the error on the quantity of interest defined by

E =
∑
T ∈T

∫
T

q · curl(A − Ah) dx

admits the splitting
E = ηQOI + R,

where the estimator ηQOI is given by

ηQOI =
∑
T ∈T

∫
T

q · curl(Sh − Ah) dx

+
∫

D

S∗
h · (Js − curlHh + J̃e,h) dx

− jω−1
∫

Dc

σ−1J∗
e,h ·

(
σ(jωSh + ∇ψh) + Je,h

)
dx

−
∫

D

H∗
h · (curlSh − µHh) dx,
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Goal-oriented estimator

Theorem 4 ctd
while the remainder term R is defined by

R =
∫

D

(A∗ − S∗
h) · (Js − curlHh + J̃e,h) dx

+ jω−1
∫

Dc

(σ−1J∗
e,h − E∗) ·

(
σ(jωSh + ∇ψh) + Je,h

)
dx

−
∫

D

(µ−1curlA∗ − H∗
h) · (curlSh − µHh) dx

Theorem 6

With η (resp. η∗) defined before, we have

|R| ≤ 6ηη∗.
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Numerical results

Primal problem

d = 3,
D = [−2, 5] × [−2, 2] × [−2, 2],
Ds = [−1, 1]3

Dc = [2, 4] × [−1, 1] × [−1, 1].
µ ≡ 1 in D, σ ≡ 1 in Dc and
ω = 2π.

The exact solution is given by φ ≡ 0 and

A = curl

(
f
0
0

)
with f(x, y, z) =

{
(x2 − 1)4(y2 − 1)4(z2 − 1)4 in Ds,

0 in D\Ds.

The value of Js is computed accordingly.
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Numerical results

Discrete spaces for the primal problem

(Ah, φh) ∈ Vh = X̃h × Θ̃h, where

Θ̃h = {φ′
h ∈ H̃1(Dc) : φ′

h|T ∈ P1(T ), ∀T ∈ T ∩ D̄c},

Θ0
h = {ψh ∈ H1

0 (D) : ψh|T ∈ P1(T ), ∀T ∈ T },
Xh = {A′

h ∈ H0(curl, D) : A′
h|T ∈ N D1(T ), ∀T ∈ T },

X̃h = {A′
h ∈ Xh :

∫
D

A′
h · ∇ψh = 0, ∀ψh ∈ Θ0

h}.

Dual problem : regular solution
q = Hs = curlA, and we recall that we are interested in

E =
∫

D

Hs · curl(A − Ah) dx.
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Numerical results

Discrete spaces for the dual problem

(A∗
h, φ

∗
h) ∈ V∗

h = X̃∗
h × Θ̃∗

h, where

Θ̃∗
h = {φ′

h ∈ H̃1(Dc) : φ′
h|T ∈ P2(T ),∀T ∈ T ∩ D̄c},

Θ∗,0
h

= {ψh ∈ H1
0 (D) : ψh|T ∈ P2(T ), ∀T ∈ T },

X∗
h = {A′

h ∈ H0(curl, D) : A′
h|T ∈ N D2(T ),∀T ∈ T },

X̃∗
h = {A′

h ∈ X∗
h :
∫

D

A′
h · ∇ψh = 0, ∀ψh ∈ Θ∗,0

h
}.

Meshes

36/41



Introduction
The reaction-diffusion problem

An eddy-current problem

Numerical results
Regular solution, (A∗

h, φ
∗
h) ∈ V∗

h

37/41



Introduction
The reaction-diffusion problem

An eddy-current problem

Numerical results
Regular solution (A∗, φ∗)

38/41



Introduction
The reaction-diffusion problem

An eddy-current problem

Numerical results

Dual problem : singular solution

q =

(
ρs

0
0

)
with

ρs(x, y, z) = e
− (x−3)2+y2+z2

log(10)/4 , ∀(x, y, z) ∈ D,

and we recall that we are interested in

E =
∫

D

q · curl(A − Ah) dx.
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