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Polynomial interpolation

of scalar values over an interval I ⊂ R

The discrete representation of I depends on the
type of scalar values
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Definition of the polynomial interpolation problem

I ⊂ R interval and Pr (I ) polynomial space
Nr = dim(Pr (I )) =

(n+r
r

)
We have {yi} values at points {xi} in I , i = 1, ...,Nr

** We wish to represent {yi} by a polynomial function Πr f and
here, we construct Πr f that interpolates the {yi} at the {xi} **

Πr f is function such that

(1) Πr f ∈ Pr (I ),

(2) Πr f (xi ) = yi , ∀i = 1, ...,Nr ( xi ̸= xj for i ̸= j )

Francesca Rapetti Basics for polynomial interpolation on simplices
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Prop. ∃ ! Πr f ∈ Pr (I ) that interpolates {yi}i at the {xi}i

→ ! (Uniqueness) as if there were two, their difference would be a
polynomial of degree ≤ r (here Nr = r + 1) with r + 1 zeros in I ,
so it would be identically zero on I .
→ ∃ (Existence) by construction

Πr f (x) =
Nr∑
k=1

yk φk(x), φk(x) =
Nr∏
j=1

j ̸=k

(x − xj)

(xk − xj)

φk is the Lagrangian1 polynomial in Pr (I ) associated with xk

{φk} is the basis of Pr (I ) in duality with the values at the {xk}

φk(xj) = δj ,k =

{
1 j = k
0 j ̸= k .

1Giuseppe Ludovico De la Grange Tournier (1736-1813)
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To compute the function φk

To compute φk with a general technique we can

▶ choose a basis {ψℓ} in Pr (I ) and set (V )j ,ℓ = ψℓ(xj)

▶ write φk(x) =
∑Nr

ℓ=1 c
k
ℓ ψℓ(x)

▶ find the vector ck of coefficient ckℓ by solving V ck = ek .

V is the generalised Vandermonde matrix2 as if ψℓ(x) = xℓ−1 then

det(V ) = det


1 x1 ... x r1
1 x2 ... x r2
... ... ... ...
1 xNr ... x rNr

 =
∏

1≤j≤ℓ≤Nr

(xℓ − xj)

cond(V ) matters (for high r) and it depends on the basis {ψℓ}
2Alexandre-Théophile Vandermonde (1735-1796)
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Runge phenomenon4

The approximation of f by Πr f may give bad results3

lim
r→+∞

||f − Πr f || ≠ 0 if f (x) =
1

(1 + x2)
on I = [−5, 5]
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 fh at equally spaced points 

3Maria Gaetana Agnesi (1718 - 1799), look for “Witch of Agnesi”
4Carl David Tolmé Runge (1856-1927) discovered it in 1901
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Runge phenomenon
Taking other distributions of points, things improve.
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1/(x*x+1)
Equally spaced point interpolant

Tchebychev point interpolant
Equally spaced points

Tchebychev points

The distribution of {xi} has to be optimized ! Yes, but how ?
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The Lebesgue5 constant Λ
Prop. There exists a constant Λ such that

||f − Πr f || ≤ (1 + Λ) ||f − f ∗||
where ||g || = supx∈I |g(x)| and ||f − f ∗|| = infg∈Pr (I ) ||f − g ||

Proof.

||f − Πr f || = ||f − f ∗ + f ∗ − Πr f ||
= ||f − f ∗ +Πr f

∗ − Πr f ||
≤ ||f − f ∗||+ ||Πr (f − f ∗)||
≤ (1 + ||Πr ||) ||f − f ∗|| ≤ (1 + Λ) ||f − f ∗||.

since ||Πr || = supg , ||g ||=1 ||Πrg || and

||Πr || = sup
g ,||g ||=1

max
x∈I

|
∑
i

g(xi )φi (x)| ≤ max
x∈I

∑
i

|φi (x)| = Λ

5Henri-Léon Lebesgue (1875-1941)
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Λ is the condition number for the interpolation problem

Prop. If {ỹi} are perturbations of {yi} with maxi |yi − ỹi | ≤ ϵ,
then

||Πr f − Πr f̃ || ≤ ϵΛ

where Πr f̃ interpolates {ỹi}

Proof.

||Πr f − Πr f̃ || = maxx∈I |
∑

i (yi − ỹi )φi (x)|
≤ (maxi |yi − ỹi |) (maxx∈I

∑
i |φi (x)|) ≤ ϵΛ.

* Small changes on yi yield small changes on Πr f only if Λ is small
Francesca Rapetti Basics for polynomial interpolation on simplices
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Remarks
We have limr→+∞ (1 + Λ) ||f − f ∗|| = ∞ . 0

* If Λ grows faster in r than the best-fit error dies away,
convergence in r may be impossible to attain (cf. Runge)

* If Λ grows slowly with r , then Πr f is as good as the f ∗

(Πr f is easier than f ∗ to compute !)

* Λ does not depend on the basis {ψℓ} used to have small cond(V )

* Λ depends heavily on the distribution of points xi in I

x1 • • • • • xNr (uniform) Λ ∼ c exp(r)

x1 • • • • • xNr (Fekete,Tcheb.) Λ ∼ c̃ ln r

Francesca Rapetti Basics for polynomial interpolation on simplices
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How to compute Λ = maxx∈I
∑Nr

i=1 |φi(x) | ?
We replace the interval I by a discrete repres. of same type as {xi}
▶ S = {zq} is a finite set of points zq ∈ I

▶ card(S) ≫ Nr

and compute6 Λ ≈ Λh = maxzq∈S
∑Nr

i=1 |φi (zq) |
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6If S ≡ {xi}, then Λh = 1.
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Polynomial interpolation of a scalar field over a
n-simplex T ⊂ Rn, with n > 1

T is a triangle (2-simplex) or a tetra (3-simplex)

Francesca Rapetti Basics for polynomial interpolation on simplices
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Runge phenomenon in a triangle with equally spaced points

Figure: From the PhD of Michael James Roth, Univ. of Victoria, 2005
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Which distribution of points in a n-simplex ?

Straightforward extension to higher dimension on tensorial domains
(products of 1D intervals)

What can we do on n-simplices ?

Lebesgue points minimizing Λ are not known in 2D and 3D

Fekete points7 are among the best for r > 10 and Λ ≤ Nr

Warp&blend points ≈ Fekete points and have explicit formula

Λ = max
(x ,y)∈T

∑
i

|φi (x , y)|, (n = 2)

7Michael Fekete (1886-1957) Hungarian mathematician
Francesca Rapetti Basics for polynomial interpolation on simplices
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Fekete points (old slide8 with N = r and n = Nr)

8Collaboration with Richard Pasquetti, DR CNRS at the Univ. Côte d’Azur
Francesca Rapetti Basics for polynomial interpolation on simplices
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The Lebesgue constant k = 0, n = 2
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Runge phenomenon in a triangle with Fekete points

Figure: From the PhD of Michael James Roth, Univ. of Victoria, 2005
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If instead of values at points, we used averages ...

I =
Nr−1⋃
i=1

[xi , xi+1] =
Nr−1⋃
i=1

σi , ai =

∫ xi+1

xi

f dx =

∫
σi

f dx

We have {ai} averages on sub-intervals {σi} in I , i = 1, ...,Nr − 1

** We wish to represent {ai} by a polynomial function Πr−1f and
here, we construct Πr−1f that interpolates the {ai} on the {σi} **

We assume σi ∩ σj = ∅, for i ̸= j , thus Πr−1f is function such that

(1) Πr−1f ∈ Pr−1(I ),

(2)
∫
σi
Πr−1f dx =

∫
σi
f dx , ∀i = 1, ...,Nr − 1

Francesca Rapetti Basics for polynomial interpolation on simplices
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Πr−1f (x) =
Nr−1∑
i=1

(

∫
σi

f dx)φi (x),

∫
σj

φi dx = δi ,j

To compute φi use general technique (as before)

▶ choose a basis {ψℓ} in Pr−1(I ) and set (V )j ,ℓ =
∫
σj
ψℓ dx

▶ write φi (x) =
∑Nr−1

ℓ=1 c iℓ ψℓ(x)

▶ find the vector ci of coefficient ckℓ by solving V ci = ei .

Runge phenomenon if {σi} is a uniform distribution in I

Similar estimates on the interpolation error ... the norm changes

Francesca Rapetti Basics for polynomial interpolation on simplices
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Generalized Lebesgue constant Λ1 (Alonso & R., JCP’21)
The mass9 of a segment s (1-simplex) is |s|0 = diam(s)
If s =

∑
j∈J cj sj then |s|0 =

∑
j∈J |cj | |sj |0

Λ1 = max
s⊂I

1

|s|0

∑
i

|σi |0 |
∫
σi

φi dx | (φi dx is a 1− form)

* the mass of any point x (0-simplex) is |x |0 = 1
*
∫
x φidx = φi (x)

* If σi ; xi and s ; x , then Λ1 ; Λ0 = Λ (||g ||0 ; ||g ||)
We can still prove that

||f −Πr−1f ||0 ≤ (1 + Λ1) ||f − f̃ ∗||0, ||g ||0 = sup
s ̸=0, s⊂I

|
∫
s g dx |
|s|0

9The mass |σ|0 of a k-simplex σ is its k-dimensional Hausdorff measure.
Francesca Rapetti Basics for polynomial interpolation on simplices
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Estimated Λ0
h and Λ1

h for n = 1
Estimated generalised Lebesgue constants in an interval associated
with the uniform and the GLLobatto distribution of nodes.

k = 0 ΛUn ΛLb

3 1.63 1.66
4 2.21 1.80
5 3.11 1.99
6 4.55 2.08
7 6.93 2.20
8 10.95 2.27
9 17.85 2.36
10 29.90 2.42
11 51.21 2.49
12 89.32 2.54
13 158.09 2.60
14 283.18 2.64

k = 1 ΛUn ΛLb

3 3.32 2.66
4 5.31 3.15
5 8.47 3.54
6 13.71 3.85
7 22.68 4.12
8 38.30 4.34
9 65.97 4.52
10 115.57 4.67
11 205.40 4.79
12 369.40 4.89
13 670.91 4.97
14 1228.48 5.03

In the first column the number of subintervals. On the left it is the degree

of the polynomial differential form, on the right it is the degree plus one.
Francesca Rapetti Basics for polynomial interpolation on simplices
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Λ0
h and Λ1

h for n = 1
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Polynomial interpolation of any field over

a n-simplex T ⊂ Rn

Can we still talk about Lebesgue constant, etc. ?

Francesca Rapetti Basics for polynomial interpolation on simplices
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Fields of any type
Let T ⊂ R3 be a tetrahedron.

grad curl div
H1(T ) −→ H(curl;T ) −→ H(div;T ) −→ L2(T )

Lr (T ) −→ Nr (T ) −→ RTr (T ) −→ DPr−1(T )

Lr (T ) is Pr (T ) = W 0
r (T )

Nr (T ) is W 1
r (T )

RTr (T ) is W 2
r (T )

DPr−1(T ) is discontinuous-Pr−1(T ) = W 3
r−1(T ).

They can be identified with the spaces of trimmed polynomial
differential k-forms

P−
r Λk(T ) k = 0, 1, 2, 3 respectively.

Francesca Rapetti Basics for polynomial interpolation on simplices
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Figure: D.N.Arnold, Periodic table of FEs
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Notation
Given a 3-simplex T = [v0, v1, v2, v3] and j ∈ {0, 1, 2, 3}
▶ ∆j(T ) denotes the set of j-subsimplices of T ;
▶ λj(x) denote the barycentric coordinates of the point x with

respect to the vertices of t.
The principal lattice of order r of t is the set of points

Σr (t) =

{
x ∈ t : λj(x) ∈

{
0,

1

r
, . . .

r − 1

r
, 1

}
∀ j ∈ {0, 1, 2, 3}

}

Figure: The principal lattice of a triangle for r = 4.
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Lr(T ): degrees of freedom

Classical degrees of freedom for fh ∈ Lr (T ) are the values
(weights) of fh at the points of the principal lattices of T

fh(xi ) for each xi ∈ Σr (T )

How is it possible to define weights for other types of fields ?

Francesca Rapetti Basics for polynomial interpolation on simplices
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Small k-simplices in a simplex T (R. & Bossavit, 2009)

v

v

v

3

0

1

2

v

▶ The small volumes are 1
r homothetic to T and their vertices are

points of the principal lattice Σr (T )

▶ Small edges and small faces are edges and faces of the small
volumes. Small nodes are the points of Σr (T ).

▶ A small k-simplex is {α, s}, α ∈ I(r − 1, n), s ∈ ∆k(T ).

For r = 3 (left): small edge {(1, 1, 0, 0), [v0, v1]},
small face {(0, 1, 0, 1), [v1, v2, v3]}, small tetra {(0, 0, 0, 2), t}.

Francesca Rapetti Basics for polynomial interpolation on simplices
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Weights for fields in W k
r (T )

The weights were introduced by R. and Bossavit (2009).

The degrees of freedom for a k-form ω ∈ P−
r Λk are integrals 10 on

k-chains σ ∈ Ck(T ): ∫
σ
ω

Consider in particular the integrals on the so-called small
k-simplices associated to the principal lattice of order r of T

σ =
∑
α, s

c{α,s}{α, s},
∫
σ
ω =

∑
α, s

c{α,s}

∫
{α,s}

ω

10If k = 0, σ is a point and
∫
σ
ω = ω(σ). If k = 1, 2 then

∫
σ
ω is the

circulation or the flux on σ respectively.
Francesca Rapetti Basics for polynomial interpolation on simplices
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Unisolvence

The integrals of a k-form ω ∈ P−
r Λk on the small k simplices of T

are unisolvent, namely, if X k
r (T ) denotes the set of small k

simplices of order r in T then

if ω ∈ P−
r Λk ,

∫
σ
ω = 0 ∀σ ∈ X k

r ⇒ ω = 0 .

For the proof see Christiansen and R. (2016).

However, for k = 1 and k = 2 in R3, the number of elements of
X k
r is greater than the dimension of P−

r Λk .

Minimality for k = 1, 2 : find Sk
r ⊂ X k

r s.t. #Sk
r = dimP−

r Λk .
(See Alonso, Bruni Bruno and R. (2019).)

Francesca Rapetti Basics for polynomial interpolation on simplices
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Example
Minimal and unisolvent sets of small edges (k = 1).

▶ 2D (r = 4).

▶ 3D (r = 3)
0

1

2

3
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Lebesgue constant
From interpolation at nodes to interpolation at edges

Interpolation of differential k-forms

▶ A set Sk
r of k-simplices σ = {α, s} α ∈ I(r − 1, n), s ∈ ∆k(T ),

is minimal and unisolvent in P−
r Λk then the weight matrix V

is invertible

Vi ,j =

∫
σi

ψσj , i , j = 1, ...,#Sk
r , ψσ = Bn

αω
s

Bn
α =

(n
α

)
λα Bernstein polyn., ωs Whitney k-form of deg. 1.

▶ Given a set Sk
r of k-simplices that are minimal and unisolvent

in P−
r Λk the associated canonical basis {φσ}σ∈Sk

r
is such that∫

σ′
φσ =

{
1 if σ = σ′

0 otherwise
ψσj =

∑
ℓ

Vℓ,j φσℓ
.

Francesca Rapetti Basics for polynomial interpolation on simplices
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Lebesgue constant
From interpolation at nodes to interpolation at edges

Interpolation of differential k-forms

▶ If ω is a differential k-form we denote Πk
r ω the unique

element of P−
r Λk such that∫

σ

ω =

∫
σ

Πk
r ω ∀σ ∈ Sk

r .

▶ If {φσ}σ∈Sk
r
is the canonical basis associated to Sk

r then

Πk
r ω =

∑
σ∈Sk

r

(∫
σ

ω

)
φσ

Francesca Rapetti Basics for polynomial interpolation on simplices
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Lebesgue constant
From interpolation at nodes to interpolation at edges

Interpolation of differential k-forms: Lebesgue constant
Let ω and ω̃ be two differential k-forms such that for any
k-simplex σ of measure |σ|

1

|σ|

∣∣∣∣∫
σ

(ω − ω̃)

∣∣∣∣ ≤ ϵ. 11

Then
1

|c |

∣∣∣∣∫
c

(
Πk

r+1ω − Πk
r+1ω̃

)∣∣∣∣ ≤ ϵ
∑

σ∈Sk
r+1

1

|c |
|σ|

∣∣∣∣∫
c

φσ

∣∣∣∣. (1)

The generalised Lebesgue constant for differential k-forms is
defined as

Λ(Sk
r ) := sup

c

∑
σ∈Sk

r+1

1

|c |
|σ|

∣∣∣∣∫
c

φσ

∣∣∣∣ .
being {φσ}σ∈Sk

r+1
the canonical basis associated to Sk

r .

(See Alonso and Rapetti (2021)).
11|ω|0 := supc

1
|c|

∣∣∫
c
ω
∣∣ is a norm for regular k-forms.
Francesca Rapetti Basics for polynomial interpolation on simplices
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Lebesgue constant
From interpolation at nodes to interpolation at edges

Proof of (1)

1

|c|

∣∣∣∣∫
c

(
Π1

rω − Π1
r ω̃

)∣∣∣∣ = 1

|c|

∣∣∣∣∣∣
∫
c

∑
σ∈Sk

r

(∫
σ

(ω − ω̃)

)
φσ

∣∣∣∣∣∣
=

1

|c|

∣∣∣∣∣∣
∑
σ∈Sk

r

∫
σ

(ω − ω̃)

∫
c

φσ

∣∣∣∣∣∣ ≤ 1

|c|
∑
σ∈Sk

r

∣∣∣∣∫
σ

(ω − ω̃)

∣∣∣∣ ∣∣∣∣∫
c

φσ

∣∣∣∣
≤ 1

|c|
∑
σ∈Sk

r

ϵ|σ|
∣∣∣∣∫

c

φσ

∣∣∣∣ = ϵ
∑
σ∈Sk

r

1

|c| |σ|
∣∣∣∣∫

c

φσ

∣∣∣∣
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Lebesgue constant
From interpolation at nodes to interpolation at edges

Interpolation nodes and edges on the simplex

We investigate if spatial distributions of nodes that are suitable for
high-order Lagrange interpolation on the triangle and
tetrahedron12 induce (by a simplicial map) small k-simplices
suitable for the interpolation in P−

r Λk(T ).

Interpolation nodes: Uniform, Lobatto, and symmetrised Lobatto.

12See Blyth, Luo, and Pozrikidis (2006), Warburton (2006).
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Estimated Lebesgue constant

We estimate the generalised Lebesgue constant for different
configurations of nodes.

▶ We consider a ”reference” mesh TR of t and compute

max
c∈∆k (TR)

∑
σ∈Sk

r

1

|c|
|σ|

∣∣∣∣∫
c
φσ

∣∣∣∣ ≈ Λ(Sk
r ).

We compare the classical results for k = 0 with those obtained for
k = 1 in dimension 1, 2 and 3 when increasing the polynomial
degree13.

13See PhD of Ludovico Bruni Bruno, Univ. of Trento, 2022
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Estimated Lebesgue constant: d = 2, k = 0

k = 0 uniform in 2D nonuniform in 2D
r ΛUn ΛLb sym ΛWB

3 2.27 2.11 2.11
4 3.47 2.66 2.66
5 5.45 3.14 3.12
6 8.75 3.87 3.70
7 14.35 4.66 4.27
8 24.01 5.93 4.96
9 40.92 7.39 5.74
10 70.89 9.83 6.67
11 124.53 12.92 7.90
12 221.41 17.78 9.36

Lebesgue constants in a triangle T associated with a uniform and

nonuniform (symmetrised Lobatto and ”warp and blend”) distribution of

nodes for different polynomial degrees r ≥ 3, as computed in Warburton

(2006).
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Estimated Lebesgue constant: n = 2, k = 1

k = 1 uniform in 2D nonuniform in 2D
r ΛUn ΛLb ΛLb sym ΛWB

3 7.92 6.67 6.71 6.71
4 12.17 9.17 8.16 8.16
5 18.92 14.51 9.61 9.60
6 29.95 23.49 11.80 11.62
7 48.31 41.55 14.71 14.51
8 79.45 77.15 18.13 17.65
9 133.03 154.18 20.99 20.32
10 226.20 327.36 28.74 24.44
11 389.59 827.80 38.15 29.19
12 678.10 2142.45 52.97 35.85

Lebesgue constants in a triangle T , associated with uniform and
nonuniform distributions of small edges for different polynomial degrees.

The ending points of the small edges are either in the uniform or in the

nonuniform (Lobatto, symmetrised Lobatto and ”warp and blend”) sets.
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Estimated Lebesgue constant: n = 3, k = 0

k = 0 uniform in 3D nonuniform in 3D
r ΛUn ΛLb sym ΛWB

3 2.94 2.93 3.11
4 4.88 4.07 4.07
5 8.09 5.38 5.32
6 13.66 7.53 7.01
7 23.38 10.17 9.21
8 40.55 14.63 12.54
9 71.15 20.46 17.02

Lebesgue constants in a tetrahedron T associated with a uniform and

nonuniform (symmetrised Lobatto and ”warp and blend”) distributions of

nodes for different polynomial degrees r ≥ 3, as computed in Warburton

(2006).
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Estimated Lebesgue constant: n = 3, k = 1

k = 1 uniform in 3D nonuniform in 3D
r ΛUn ΛLb ΛLb sym ΛWB

3 11.23 11.40 10.80 10.80
4 18.04 22.38 15.25 15.25
5 29.37 69.45 20.09 20.79
6 46.76 274.58 26.73 28.32
7 74.19 1168.36 36.57 36.03
8 127.53 5443.19 48.66 45.82
9 218.19 26323.67 61.90 57.24

Lebesgue constants in a tetrahedron T , associated with uniform and

nonuniform distributions of small edges for different polynomial degrees

r ≥ 3. The ending points of the small edges are either in the uniform or

in the nonuniform (Lobatto, symmetrised Lobatto or ”warp and blend”)

sets.
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Legend

▶ k = 0 ; ∗ k = 1 ; □

▶ Uniform nodes ; red Nonuniform nodes ; blue (or cyan)

▶ d = 1 ; · · · d = 2 ; — d = 3 ; -·-

The ∗ lines and the □ lines are almost parallel.
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Estimated Lebesgue constant: k = 0 and k = 1
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Estimated Lebesgue constant for n=1, 2, and 3
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Conclusions

The ∗ lines and the □ lines are essentially parallel.

So, the well-known results for k = 0 hold also true for k = 1:

▶ the interpolation on uniform distribution of the support of the
degrees of freedom is not stable on the polynomial degree;

▶ the problem increases with the dimension of the space;

▶ the Lebesgue constant ”measures” the stability on the
polynomial degree of the polynomial interpolation problem;

▶ the distribution of the supports that minimises the Lebesgue
constant is not uniform.

For k = 1 (and k = 2), the generalized Lebesgue constant depends
on the shape of the element.
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