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Motivation

In this talk, we would like to approximately solve the Poisson problem{
−∆u = f in Ω ⊂ R2,

u = 0 on ∂Ω,

on a polygonal mesh Th with a virtual finite element method (VEM) with degree p.

Once the approximation uh is computed, we would like to robustly assess the error.

Specifically, we would like to associated with vertex a ∈ Vh an a number ηa s.t.

Reliability and efficiency

|||u − uh|||2Ω .
∑
a∈Vh

η2
a , ηa . |||u − uh|||ωa ∀a ∈ Vh,

with (ideally) constants only depending on the geometry (shape-regularity) of Th.

In particular, the constants are independent of p and the choice of stabilization.
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Disclaimer!

I will make to (harmless) simplification throughout the talk:
(a) The right-hand side is piecewise polynomial, i.e., f ∈ Pp−1(Th).
(b) I won’t make distinction between boundary and interior vertices a ∈ Vh.

(a) can be easily remedied by including terms like (h/p)‖f − f h‖Ω in the estimator.
(b) is just due to laziness and time constraints, there is no real restriction.

Due to time constraints, I will only talk about some aspects of the problem.
I will mainly focus on p-robustness, not on robustness w.r.t. the stabilization.
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Outline

1 What are the challenges associated with VEM?

2 The approach for “standard” non-conforming methods

3 A modified approach suitable for VEM



What are the challenges associated with VEM?



What are the challenges associated with VEM?

What is VEM anyway?



VEM in a nutshell

We consider a Lipschitz polygonal domain Ω ⊂ R2.
Th is a conforming mesh of polygonal elements K , with faces Fh.

The VEM discretization space is given by

Vh :=

{
wh ∈ H1

0 (Ω)

∣∣∣∣ ∆wh|K ∈ Pp−2(K) ∀K ∈ Th
wh|F ∈ Pp(F ) ∀F ∈ Fh

}
.

Vh contains polynomials, but also “virtual” functions that are not computable.

The degrees of freedom are wisely chosen in such a way that the orthogonal projection

Π∇wh ∈ Pp(Th),

is fully computable for any wh ∈ Vh

The VEM discrete problem is to find uh ∈ Vh such that

(∇h(Π∇uh),∇h(Π∇vh))Ω + sh(uh − Π∇uh, vh − Π∇vh) = (f , vh)Ω, ∀vh ∈ Vh

for a suitable stabilization form sh computable through the dofs.
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What are the challenges associated with VEM?

What is the “standard” setting?



The setting for “standard” non-conforming method

A general framework for p-robust estimates of non-conforming methods is given in

A. Ern and M. Vohraĺık, SIAM J. Numer. Anal., 2015.

Th is a simplicial mesh of Ω ⊂ Rd . Fh and Vh are the faces and vertices of Th.

uh ∈ Pp(Th) is any piecewise polynomial function such that:
(a) for all a ∈ Vh, (∇huh,∇ψa)Ω = (f , ψa)Ω, with ψa the hat function of a.
(b) for all F ∈ Fh, ( [[uh]], 1)F = 0.

Lagrange and Crouzeix–Raviart elements of arbitrary order satisfy these assumptions.

We will see that (a) is crucial for localizing computations.

The condition in (b) is important to employ the broken Poincaré inequality

‖w‖U . h−1
U ‖∇hw‖U

for all w ∈ H1(Th) with ( [[w ]], 1)F = 0 and (w , 1)U = 0.
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What are the challenges associated with VEM?

How does VEM fail to enter the framework?



Non-polynomial solution

A first problem is that uh /∈ Pp(Th) for VEM.
Perhaps more importantly, we only know the dofs of uh not its actual values.
Hence, ‖∇(u − uh)‖Ω is not a desirable error measure.

This problem can be remedied by considering Π∇uh as the “solution”.

Indeed, then we have Π∇uh ∈ Pp(Th) and we can use

‖∇h(u − Π∇uh)‖Ω

as an error measure.
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Virtual partition of unity

The standard framework uses the hat function ψa to localize computations.

For general polygons however, there is no piecewise polynomial partition of unity.

Nevertheless, the VEM space does contain a partition of unity, given by

∆ψa |K = 0 ∀K ∈ Th, ψa |F ∈ P1(F ) ∀F ∈ Fh, ψa(b) = δa,b ∀b ∈ Vh.

for all a ∈ Vh.

However, unless Th contains simplices, these ψa are “virtual”.
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Lack of Galerkin orthogonality

In order to follow the standard framework, we would need

(∇h(Π∇uh),∇ψa)Ω = (f , ψa)Ω ∀a ∈ Vh.

Unfortunately, due to the stabilization form, we only have

(∇h(Π∇uh),∇ψa)Ω + sh(uh − Π∇uh, ψ
a − Π∇ψa) = (f , ψa)Ω.

This can be remedied by post-processing the solution and constructing Gh such that

(Gh,∇ψa) = (f , ψa)Ω

and then measure the error with

‖∇u − Gh‖Ω.

This notion of generalized gradient has been previously used in the past:

A. Ern and M. Vohraĺık, SIAM J. Numer. Anal., 2015.

D.A. Di Pietro, J. Droniou, and G. Manzini, J. Comput. Phys., 2018.
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A. Ern and M. Vohraĺık, SIAM J. Numer. Anal., 2015.

D.A. Di Pietro, J. Droniou, and G. Manzini, J. Comput. Phys., 2018.

8/36 T. Chaumont-Frelet Polynomial-degree-robust estimates for VEM



What are the challenges associated with VEM?

What is in this talk?



Goal

Due to time constraints, I won’t detail how the generalized gradient Gh is constructed.

Instead, I will show the “virtual” character of the partition of unity can be dealt with.

Specifically, the standard framework explicitly uses the values of the hat functions ψa .

Here, we will modified it to work under the assumption that the ψa exist,
but without using their actual values.

This leads to in a modified framework, providing to p-robust estimates.
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Th is a simplicial mesh of Ω ⊂ Rd . Fh and Vh are the faces and vertices of Th.

uh ∈ Pp(Th) is any piecewise polynomial function such that:
(a) for all a ∈ Vh, (∇huh,∇ψa)Ω = (f , ψa)Ω, with ψa the hat function of a.
(b) for all F ∈ Fh, ( [[uh]], 1)F = 0.

We have the broken Poincaré inequality

‖w‖U . h−1
U ‖∇hw‖U

for all w ∈ H1(Th) with ( [[w ]], 1)F = 0 and (w , 1)U = 0.

We want to estimate the error in the norm

‖∇u −∇huh‖Ω = ‖∇h(u − uh)‖Ω.
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The approach for “standard” non-conforming methods

Prager–Synge identity



Error splitting

We start by splitting the error ‖∇h(u − uh)‖Ω in two components.

We (abstractly) introduce

s? := arg min
s∈H1

0 (Ω)
‖∇h(uh − s)‖Ω,

the orthogonal projection of uh onto H1
0 (Ω).

The Euler-Lagrange equations defining s? ∈ H1
0 (Ω) are

(∇s?,∇v)Ω = (∇huh,∇v)Ω ∀v ∈ H1
0 (Ω).

In particular, we have the Pythagorean identity

‖∇h(u − uh)‖2
Ω = ‖∇h(uh − s?)‖2

Ω + ‖∇(u − s?)‖2
Ω

where the cross term vanish due to the Euler-Lagrange equations.

We thus split the error as “distance to H1
0 (Ω)” + “something else”.
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What is the second term?

Since u − s? ∈ H1
0 (Ω), we have

‖∇(u − s?)‖Ω = sup
v∈H1

0 (Ω)
‖∇v‖Ω=1

(∇(u − s?),∇v)Ω.

This is a standard Hilbert space result.

Recall that, whenever v ∈ H1
0 (Ω), we do have

(∇u,∇v)Ω = (f , v)Ω, (∇s?,∇v)Ω = (∇huh,∇v)Ω;

and therefore

‖∇(u − s?)‖Ω = sup
v∈H1

0 (Ω)
‖∇v‖Ω=1

{(f , v)Ω − (∇huh,∇v)Ω} .

In other words,

‖∇(u − s?)‖Ω = sup
v∈H1

0 (Ω)
‖∇v‖Ω=1

〈f + ∇ · (∇huh), v〉Ω = ‖f + ∇ ·∇huh‖H−1(Ω),

so that this term measures the PDE residual.
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Reformulating as a minimization problem

We have shown earlier that

‖∇(u − s?)‖Ω = sup
v∈H1

0 (Ω)
‖∇v‖Ω=1

{(f , v)Ω − (∇huh,∇v)Ω} .

In the context of a posteriori error estimation, we would prefer a “min” to a “sup”.

Observe that if σ ∈ H(div,Ω) satisfies ∇ · σ = f , we have

(f , v)Ω − (∇huh,∇v)Ω = −(σ + ∇huh,∇v)Ω ≤ ‖σ + ∇huh‖Ω‖∇v‖Ω,

for all v ∈ H1
0 (Ω), so that

‖∇(u − s?)‖Ω ≤ ‖σ + ∇huh‖Ω.

In other words, we have

‖∇(u − s?)‖Ω ≤ min
σ∈H(div,Ω)

∇·σ=f

‖σ + ∇huh‖Ω,

and with a bit of extra work, we can show that equality holds.
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The Prager-Synge identity

Putting together the pieces, we have shown that

Prager-Synge identity

‖∇h(u − uh)‖2
Ω = min

s∈H1
0 (Ω)
‖∇h(uh − s)‖2

Ω + min
σ∈H(div,Ω)

∇·σ=f

‖σ + ∇huh‖2
Ω.

The equation −∆u = f means (a) u ∈ H1
0 (Ω) and (b) ∇ · (−∇u) = f .

The two terms of the Prager–Synge quantify how (a) and (b) are violated.

Since we “just” want an upper bound, we can input any admissible field s and σ.
Constructing a “potential” s and an equilibrated flux “σ” makes an estimator.

Of course, to have a good estimator, these need to be close to ∇huh.
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The approach for “standard” non-conforming methods

Practical reconstructions



Idealized reconstructions

We have shown earlier that

‖∇h(u − uh)‖2
Ω = min

s∈H1
0 (Ω)
‖∇h(uh − s)‖2

Ω + min
σ∈H(div,Ω)

∇·σ=f

‖σ + ∇huh‖2
Ω.

A natural idea to obtain a guaranteed error bound is simply to say that

‖∇h(u − uh)‖2
Ω ≤ min

sh∈H1
0 (Ω)∩Pp(Th)

‖∇h(uh − s)‖2
Ω + min

σ∈H(div,Ω)∩RTp(Th)
∇·σ=f

‖σ + ∇huh‖2
Ω.

where the second minimization problem is well-posed since we assumed f ∈ Pp−1(Th).

This approach is “feasible”: It does lead to a guaranteed upper bound.

However, it is expensive and it is not clear that it leads to localized lower bound.
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Localization with the hat functions

As we consider a simplicial mesh Th here, the
“hat functions” {ψa}a∈Vh form a partition of unity.

We introduce the short-hand notations ωa := suppψa and T a
h := Th|ωa .

Then, T a
h only contains a handful of elements K .

We use this partition of unity to localize the potential and flux reconstructions.

16/36 T. Chaumont-Frelet Polynomial-degree-robust estimates for VEM



Localization with the hat functions

As we consider a simplicial mesh Th here, the
“hat functions” {ψa}a∈Vh form a partition of unity.

We introduce the short-hand notations ωa := suppψa and T a
h := Th|ωa .

Then, T a
h only contains a handful of elements K .

We use this partition of unity to localize the potential and flux reconstructions.

16/36 T. Chaumont-Frelet Polynomial-degree-robust estimates for VEM



Localization with the hat functions

As we consider a simplicial mesh Th here, the
“hat functions” {ψa}a∈Vh form a partition of unity.

We introduce the short-hand notations ωa := suppψa and T a
h := Th|ωa .

Then, T a
h only contains a handful of elements K .

We use this partition of unity to localize the potential and flux reconstructions.

16/36 T. Chaumont-Frelet Polynomial-degree-robust estimates for VEM



Localization with the hat functions

As we consider a simplicial mesh Th here, the
“hat functions” {ψa}a∈Vh form a partition of unity.

We introduce the short-hand notations ωa := suppψa and T a
h := Th|ωa .

Then, T a
h only contains a handful of elements K .

We use this partition of unity to localize the potential and flux reconstructions.

16/36 T. Chaumont-Frelet Polynomial-degree-robust estimates for VEM



Potential reconstruction

We focus on the term
min

s∈H1
0 (Ω)
‖∇h(s − uh)‖Ω

and provide an element sh ∈ H1
0 (Ω) ∩ Pp+1(Th) close to uh from local computations.

Observe that sh ∈ H1
0 (Ω) should mimic uh on Ω. The decomposition

uh =
∑
a∈Vh

ψauh

motivates to build sa
h ∈ H1

0 (ωa) close to ψauh, and then set

sh =
∑
a∈Vh

sa
h .
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Potential reconstruction (continued)

We solve for each a ∈ Vh the problem

Localized potential reconstruction

sa
h := arg min

wh∈H1
0 (ωa)∩Pp+1(T a

h
)
‖∇h(ψauh − sa

h )‖ωa .

This leads to a set of uncoupled small finite element problem each involving few dofs.

After parallel solves, we assemble the contributions into

sh :=
∑
a∈Vh

sa
h ∈ H1

0 (Ω).

The first term of the Prager-Synge identity is then controlled by

min
s∈H1

0 (Ω)
‖∇h(uh − s)‖Ω ≤ ‖∇h(uh − sh)‖Ω.

Note that the values of the ψa are required to assemble the right-hand sides.
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Flux reconstruction

We follow a similar strategy to build σh ∈ H(div,Ω) ∩ RT p+1(Th). For each a ∈ Vh,

Localized flux reconstruction

σa
h := arg min

ξh∈H0(div,ωa)∩RTp+1(T a
h )

∇·ξh=ψa f−∇ψa ·∇huh

‖ξh + ψa∇huh‖ωa .

Crucially the Stokes’ compatibility condition is satisfied due to Galerkin orthogonality:

(ψaf −∇ψa ·∇huh, 1)ωa = (∇huh,∇ψa)Ω − (f , ψa)Ω = 0.

After summation over a ∈ Vh, we have ∇ · σh = f . We control the second term with

min
σ∈H(div,Ω)

∇·σ=f

‖σ + ∇huh‖Ω ≤ ‖σh + ∇huh‖Ω.
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Summary

We solve the local problems

Localized potential reconstruction

sa
h := arg min

wh∈H1
0 (ωa)∩Pp+1(T a

h
)
‖∇h(ψauh − sa

h )‖ωa .

and

Localized flux reconstruction

σa
h := arg min

ξh∈H0(div,ωa)∩RTp+1(T a
h )

∇·ξh=ψa f−∇ψa ·∇huh

‖ξh + ψa∇huh‖ωa .

for each a ∈ Vh.

After summing up the contributions, we have

Guaranteed upper bound

‖∇h(u − uh)‖2
Ω ≤ ‖∇h(uh − sh)‖2

Ω + ‖σh + ∇uh‖2
Ω.
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The approach for “standard” non-conforming methods

Efficiency



Discrete stable minimization

For all τ h ∈ Pp(T a
h ), we have

Unconstrained H1 minimization

min
wh∈H1

0 (ωa)∩Pp+1(T a
h

)
‖τ h −∇wh‖ωa . min

w∈H1
0 (ωa)

‖τ h −∇w‖ωa

with a constant independent of p.

Similarly, for all τ h ∈ Pp+1(T a
h ) and qh ∈ Pp+1(T a

h ) with (qh, 1)ωa = 0, we have

Unconstrained H1 minimization

min
ξh∈H0(div,ωa)∩RTp+1(T a

h )
∇·ξh=qh

‖ξh + τ h‖ωa . min
ξ∈H0(div,ωa)

∇·ξ=qh

‖ξ + τ h‖ωa

with a constant independent of p.

T. Chaumont-Frelet and M. Vohraĺık, arXiv, 2023.

21/36 T. Chaumont-Frelet Polynomial-degree-robust estimates for VEM



Discrete stable minimization

For all τ h ∈ Pp(T a
h ), we have

Unconstrained H1 minimization

min
wh∈H1

0 (ωa)∩Pp+1(T a
h

)
‖τ h −∇wh‖ωa . min

w∈H1
0 (ωa)

‖τ h −∇w‖ωa

with a constant independent of p.

Similarly, for all τ h ∈ Pp+1(T a
h ) and qh ∈ Pp+1(T a

h ) with (qh, 1)ωa = 0, we have

Unconstrained H1 minimization

min
ξh∈H0(div,ωa)∩RTp+1(T a

h )
∇·ξh=qh

‖ξh + τ h‖ωa . min
ξ∈H0(div,ωa)

∇·ξ=qh

‖ξ + τ h‖ωa

with a constant independent of p.

T. Chaumont-Frelet and M. Vohraĺık, arXiv, 2023.
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Application to the localized reconstructions

Using the discrete minimization, we have

‖∇h(ψauh − sa
h )‖ωa = min

wh∈H1
0 (ωa)∩Pp+1(T a

h
)
‖∇h(ψauh)−∇wh‖ωa

. min
w∈H1

0 (ωa)
‖∇h(ψauh)−∇w‖ωa

≤ ‖∇h(ψa(uh − u))‖ωa

by picking w = ψau.

We can further show that

‖∇h(ψa(uh − sa
h ))‖ωa . ‖∇h(u − uh)‖ωa

using Galerkin orthogonality and a broken Poincaré inequality.

After playing a bit with summation, we can in fact show that

‖∇h(uh − sh)‖K . ‖∇h(u − uh)‖
K̃

with a constant independent of p.

A similar argument applies to ‖σa
h + ψa∇huh‖ωa .
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Efficiency

We have established earlier that

Guaranteed upper bound

‖∇(u − uh)‖2
Ω ≤ ‖∇h(uh − sh)‖2

Ω + ‖σh + ∇huh‖2
Ω.

The converse bound, namely

Local lower bound

‖∇h(uh − sh)‖2
K + ‖σh + ∇huh‖2

K . ‖∇(u − uh)‖2
K̃
,

holds, even locally, up a constant independent of p.

In particular, the overestimation in the upper bound cannot be too large.
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The approach for “standard” non-conforming methods

Summary



Summary

The error bounds

Guaranteed upper bound

‖∇(u − uh)‖2
Ω ≤ ‖∇h(uh − sh)‖2

Ω + ‖σh + ∇huh‖2
Ω

and

Local lower bound

‖∇h(uh − sh)‖2
K + ‖σh + ∇huh‖2

K . ‖∇(u − uh)‖2
K̃

can be obtained by solving local uncoupled finite element problems.

The partition of the unity by the hat function ψa plays a important role.
It is crucial that the ψa are computable and polynomial.

Unfortunately, the VEM partition in unity is virtual.
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A modified approach suitable for VEM



A modified approach suitable for VEM

Key ideas



Virtual partition of unity

In the approach we have just seen, the ψa are explicitly used in the computations.

The expression of the ψa must be available to compute sa
h and σa

h.
The fact that ψa is piecewise affine is also important for the lower bounds.

Here, we want to extend the approach to a situation where
a) a partition of unity ψa exists

b) the ψa satisfy the natural scaling |ψa | . 1 and |∇ψa | . h−1
ωa .

c) the ψa need not be computable.

In other words, the ψa will appear in the analysis, but not in the algorithms.
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Broken Prager–Synger inequality

Earlier, we used the

Prager–Synge identity

‖∇h(u − uh)‖2
Ω = min

s∈H1
0 (Ω)
‖∇h(uh − s)‖2

Ω + min
σ∈H(div,Ω)

∇·σ=f

‖σ + ∇huh‖2
Ω,

with suitable s and σ constructed through local problems explicitly involving ψa .

Here, we would like to invoke a

Broken Prager–Synge inequality

‖∇h(u − uh)‖2
Ω .

∑
a∈Vh

(
min

sa∈H1(ωa)
‖∇h(uh − sa)‖2

ωa + min
σ∈H(div,ωa)

∇·σ=f

‖σa + ∇huh‖2
ωa

)

where sa and σa may be computed without explicitly knowing ψa .

The scaling properties of ψa will appear in ..
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A modified approach suitable for VEM

Broken Prager-Synge inequality



Broken Prager–Synge inequality

Our goal is to derive an inequality of the form

Prager–Synge inequality

‖∇h(u − uh)‖2
Ω .

∑
a∈Vh

(
min

sa∈H1(ωa)
‖∇h(uh − sa)‖2

ωa + min
σ∈H(div,ωa)

∇·σ=f

‖σa + ∇huh‖2
ωa

)

More specifically, it is in fact possible to show that

min
s∈H1

0 (Ω)
‖∇(uh − s)‖2

ωa . min
sa∈H1(ωa)

‖∇h(uh − sa)‖2
ωa

and
min

σ∈H(div,Ω)
∇·σ=f

‖σa + ∇huh‖2
Ω . min

σ∈H(div,ωa)
∇·σ=f

‖σa + ∇huh‖2
ωa .

I am going to detail how the first inequality is obtained.
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Potential reconstruction

We want to upper bound
min

s∈H1
0 (Ω)
‖∇h(uh − s)‖Ω.

We will do so by using functions s ∈ H1
0 (Ω) of a specific form. Namely,

s? :=
∑
a∈Vh

ψasa ∈ H1
0 (Ω).

where, for each a ∈ Vh, sa ∈ H1(ωa) satisfies (sa , 1)ωa = (uh, 1)ωa .

Our first task is to show that

‖∇h(uh − s?)‖2
Ω ≤ (d + 1)

∑
a∈Vh

‖∇h(ψa(uh − sa))‖2
ωa .
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Potential reconstruction (continued)

To do so, we fix an element K ∈ Th. Due to the limited support of the ψa , we have

‖∇h(u − s?)‖K = ‖∇h(uh −
∑

a∈Vh(K)

ψasa)‖K = ‖
∑

a∈Vh(K)

∇h(ψa(uh − sa))‖K .

Since each K as d + 1 vertices, the triangle and Cauchy-Schwarz inequality gives:

‖∇h(uh −
∑
a∈Vh

ψasa)‖2
K ≤ (d + 1)

∑
a∈Vh(K)

‖∇h(ψa(uh − sa))‖2
K

After summation over the K , we obtain

‖∇h(uh −
∑
a∈Vh

ψasa)‖2
Ω ≤ (d + 1)

∑
a∈Vh

‖∇h(ψa(uh − sa))‖2
ωa ,

and we have sucessfully loacalized the norm.

The next step is to remove the hat function.
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Removing the hat function

Consider a vertex a ∈ Vh. Then, due to assumptions on ψa , we have

‖∇h(ψa(uh − sa))‖ωa . ‖∇h(uh − sa)‖ωa + h−1
ωa ‖uh − sa‖ωa .

Since (uh − sa , 1)ωa = 0, the broken Poincaré inequality controls the second term, and

‖∇h(ψa(uh − sa))‖ωa . ‖∇h(uh − sa)‖ωa

for all sa ∈ H1(ωa) with (sa , 1)ωa = (uh, 1)ωa .

After summation over a ∈ Vh, we have

min
s∈H1

0 (Ω)
‖∇h(uh − s)‖2

Ω ≤ ‖∇h(uh − s?)‖2
Ω .

∑
a∈Vh

‖∇h(uh − sa)‖2
ωa

for all sa ∈ H1(ωa) with (sa , 1)ωa = (uh, 1)ωa .
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Broken localization of the potential reconstruction

We have just established

min
s∈H1

0 (Ω)
‖∇h(uh − s)‖2

Ω .
∑
a∈Vh

‖∇h(uh − sa)‖2
ωa

for all sa ∈ H1(ωa) with (sa , 1)ωa = (uh, 1)ωa .

As can be seen, only the gradients of the sa matter in the last bound.
We can freely shift them by a constant to remove the mean-value constraint.

After minimizing, we obtain

Broken localization of the potential

min
s∈H1

0 (Ω)
‖∇h(uh − s)‖2

Ω .
∑
a∈Vh

min
sa∈H1(ωa)

‖∇h(uh − sa)‖2
ωa

where . depends on the broken Poincaré constants and the scaling of ψa .
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Broken localization of the flux

The proof of the equilibrated flux term is slightly more involved,
but essentially uses the same ideas. It is used in another context in

T. Chaumont-Frelet, A. Ern and M. Vohraĺık, Math. Comp., 2022.

We can rigorously show that

Broken localization of the potential

min
σ∈H(div,Ω)

∇·σ=f

‖σ + ∇huh‖2
Ω .

∑
a∈Vh

min
σa∈H(div,ωa)

∇·σa=f

‖σa + ∇huh‖2
ωa

where . depends on the Poincaré constants and the scaling of ψa .
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A broken Prager–Synge inequality

Combining the two estimates we commented earlier, we have

A broken Prager–Synge inequality

‖∇h(u − uh)‖2
Ω .

∑
a∈Vh

(
min

sa∈H1(ωa)
‖∇h(uh − sa)‖2

ωa + min
σa∈H(div,ωa)

∇·σa=f

‖σa + ∇huh‖2
ωa

)

The hidden constant only depends on
a) the Poincaré constant of the patch ωa

b) the scaling of the ψa ,
i.e., only on geometrical property of Th.
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A modified approach suitable for VEM

Practical construction and efficiency



Practical construction

The localization has been performed at the continuous level:

A broken Prager–Synge inequality

‖∇h(u − uh)‖2
Ω .

∑
a∈Vh

(
min

sa∈H1(ωa)
‖∇h(uh − sa)‖2

ωa + min
σa∈H(div,ωa)

∇·σa=f

‖σa + ∇huh‖2
ωa

)

To obtain a practical estimator, we simply use the discretized version

Computable upper-bound

‖∇h(u − uh)‖2
Ω .

∑
a∈Vh

η2
a

where

η2
a = min

sa
h
∈H1(ωa)∩Pp(T a

h
)
‖∇h(uh − sa

h )‖2
ωa + min

σa
h∈H(div,ωa)∩RTp(T a

h )

∇·σa
h=f

‖σa
h + ∇huh‖2

ωa .
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Efficiency

The efficiency proof also uses the stable discrete minimization property.

For instance, we have

min
sa
h
∈H1(ωa)∩Pp(Th)

‖∇h(uh − sa
h )‖ωa . min

sa∈H1(ωa)
‖∇h(uh − sa)‖ωa ≤ ‖∇h(u − uh)‖ωa

for all a ∈ Th.

A similar analysis of the flux term shows that

Efficiency

ηa . ‖∇h(u − uh)‖ωa

with a constant independent of p.
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Concluding remarks

Summary



Concluding remarks

The framework introduced in

A. Ern and M. Vohraĺık, SIAM J. Numer. Anal., 2015.

can be extended to situation where the partition of unity is virtual.

This leads to a “vertex based” error estimator ηa ,
with each ηa is independently computed through small finite element problems.

Together with the idea of constructing a generalized Gh,
this paves the way towards estimates

Reliability and efficiency

‖∇u − Gh‖2
Ω .

∑
a∈Th

η2
a , ηa . ‖∇u − Gh‖ωa

with constants independent of p and the choice of stabilization.

T. Chaumont-Frelet, J. Gedicke and L. Mascotto, arXiv, next Monday.
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