Polynomial-degree-robust a posteriori error estimates for virtual element methods

T. Chaumont-Frelet ${ }^{\star}$, J. Gedicke ${ }^{\dagger}$ and L. Mascotto ${ }^{\ddagger}$

HIPOTHEC kick-off workshop
March 2024, Wissant, France.
*Inria, Univ. Lille, CNRS, UMR 8524 - Laboratoire Paul Painlevé
${ }^{\dagger}$ Institut für Numerische Simulation, Universität Bonn
\ddagger Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca

Motivation

In this talk, we would like to approximately solve the Poisson problem

$$
\left\{\begin{aligned}
-\Delta u & =f \\
u=0 & \text { in } \Omega \subset \mathbb{R}^{2} \\
u & \text { on } \partial \Omega
\end{aligned}\right.
$$

on a polygonal mesh \mathcal{T}_{h} with a virtual finite element method (VEM) with degree p.

Motivation

In this talk, we would like to approximately solve the Poisson problem

$$
\left\{\begin{aligned}
-\Delta u & =f \\
u=0 & \text { in } \Omega \subset \mathbb{R}^{2} \\
u & \text { on } \partial \Omega
\end{aligned}\right.
$$

on a polygonal mesh \mathcal{T}_{h} with a virtual finite element method (VEM) with degree p.
Once the approximation u_{h} is computed, we would like to robustly assess the error.

Motivation

In this talk, we would like to approximately solve the Poisson problem

$$
\left\{\begin{aligned}
-\Delta u & =f \\
u=0 & \text { in } \Omega \subset \mathbb{R}^{2} \\
u & \text { on } \partial \Omega
\end{aligned}\right.
$$

on a polygonal mesh \mathcal{T}_{h} with a virtual finite element method (VEM) with degree p.
Once the approximation u_{h} is computed, we would like to robustly assess the error.
Specifically, we would like to associated with vertex $a \in \mathcal{V}_{h}$ an a number η_{a} s.t.
Reliability and efficiency

$$
\left\|u-u_{h}\right\|_{\Omega}^{2} \lesssim \sum_{a \in \mathcal{V}_{h}} \eta_{a}^{2}, \quad \eta_{a} \lesssim\left\|u-u_{h}\right\|_{\omega^{a}} \quad \forall a \in \mathcal{V}_{h},
$$

with (ideally) constants only depending on the geometry (shape-regularity) of \mathcal{T}_{h}.

Motivation

In this talk, we would like to approximately solve the Poisson problem

$$
\left\{\begin{aligned}
-\Delta u & =f \\
u & \text { in } \Omega \subset \mathbb{R}^{2}, \\
u & \text { on } \partial \Omega,
\end{aligned}\right.
$$

on a polygonal mesh \mathcal{T}_{h} with a virtual finite element method (VEM) with degree p.
Once the approximation u_{h} is computed, we would like to robustly assess the error.
Specifically, we would like to associated with vertex $a \in \mathcal{V}_{h}$ an a number η_{a} s.t.
Reliability and efficiency

$$
\left\|u-u_{h}\right\|_{\Omega}^{2} \lesssim \sum_{a \in \mathcal{V}_{h}} \eta_{a}^{2}, \quad \eta_{a} \lesssim\left\|u-u_{h}\right\|_{\omega^{a}} \quad \forall a \in \mathcal{V}_{h}
$$

with (ideally) constants only depending on the geometry (shape-regularity) of \mathcal{T}_{h}.
In particular, the constants are independent of p and the choice of stabilization.

Disclaimer!

I will make to (harmless) simplification throughout the talk:
(a) The right-hand side is piecewise polynomial, i.e., $f \in \mathcal{P}_{p-1}\left(\mathcal{T}_{h}\right)$.
(b) I won't make distinction between boundary and interior vertices $a \in \mathcal{V}_{h}$.

Disclaimer!

I will make to (harmless) simplification throughout the talk:
(a) The right-hand side is piecewise polynomial, i.e., $f \in \mathcal{P}_{p-1}\left(\mathcal{T}_{h}\right)$.
(b) I won't make distinction between boundary and interior vertices $a \in \mathcal{V}_{h}$.
(a) can be easily remedied by including terms like $(h / p)\left\|f-f_{h}\right\|_{\Omega}$ in the estimator.
(b) is just due to laziness and time constraints, there is no real restriction.

Disclaimer!

I will make to (harmless) simplification throughout the talk:
(a) The right-hand side is piecewise polynomial, i.e., $f \in \mathcal{P}_{p-1}\left(\mathcal{T}_{h}\right)$.
(b) I won't make distinction between boundary and interior vertices $a \in \mathcal{V}_{h}$.
(a) can be easily remedied by including terms like $(h / p)\left\|f-f_{h}\right\|_{\Omega}$ in the estimator.
(b) is just due to laziness and time constraints, there is no real restriction.

Due to time constraints, I will only talk about some aspects of the problem. I will mainly focus on p-robustness, not on robustness w.r.t. the stabilization.

Outline

1 What are the challenges associated with VEM?
2 The approach for "standard" non-conforming methods
(3) A modified approach suitable for VEM

What are the challenges associated with VEM?

What are the challenges associated with VEM? What is VEM anyway?

VEM in a nutshell

We consider a Lipschitz polygonal domain $\Omega \subset \mathbb{R}^{2}$. \mathcal{T}_{h} is a conforming mesh of polygonal elements K, with faces \mathcal{F}_{h}.

VEM in a nutshell

We consider a Lipschitz polygonal domain $\Omega \subset \mathbb{R}^{2}$.
\mathcal{T}_{h} is a conforming mesh of polygonal elements K, with faces \mathcal{F}_{h}.
The VEM discretization space is given by

$$
V_{h}:=\left\{\begin{array}{l|cccc}
w_{h} \in H_{0}^{1}(\Omega) & \left.\Delta w_{h}\right|_{K} & \in & \mathcal{P}_{p-2}(K) & \forall K \in \mathcal{T}_{h} \\
\left.w_{h}\right|_{F} & \in & \mathcal{P}_{p}(F) & \forall F \in \mathcal{F}_{h}
\end{array}\right\} .
$$

VEM in a nutshell

We consider a Lipschitz polygonal domain $\Omega \subset \mathbb{R}^{2}$.
\mathcal{T}_{h} is a conforming mesh of polygonal elements K, with faces \mathcal{F}_{h}.
The VEM discretization space is given by

$$
V_{h}:=\left\{\begin{array}{l|cccc}
w_{h} \in H_{0}^{1}(\Omega) & \left.\Delta w_{h}\right|_{K} & \in & \mathcal{P}_{p-2}(K) & \forall K \in \mathcal{T}_{h} \\
\left.w_{h}\right|_{F} & \in & \mathcal{P}_{p}(F) & \forall F \in \mathcal{F}_{h}
\end{array}\right\} .
$$

V_{h} contains polynomials, but also "virtual" functions that are not computable.

VEM in a nutshell

We consider a Lipschitz polygonal domain $\Omega \subset \mathbb{R}^{2}$.
\mathcal{T}_{h} is a conforming mesh of polygonal elements K, with faces \mathcal{F}_{h}.
The VEM discretization space is given by

$$
V_{h}:=\left\{\begin{array}{l|cccc}
w_{h} \in H_{0}^{1}(\Omega) & \left.\Delta w_{h}\right|_{K} & \in & \mathcal{P}_{p-2}(K) & \forall K \in \mathcal{T}_{h} \\
\left.w_{h}\right|_{F} & \in & \mathcal{P}_{p}(F) & \forall F \in \mathcal{F}_{h}
\end{array}\right\} .
$$

V_{h} contains polynomials, but also "virtual" functions that are not computable.
The degrees of freedom are wisely chosen in such a way that the orthogonal projection

$$
\Pi^{\boldsymbol{\nabla}} w_{h} \in \mathcal{P}_{p}\left(\mathcal{T}_{h}\right)
$$

is fully computable for any $w_{h} \in V_{h}$

VEM in a nutshell

We consider a Lipschitz polygonal domain $\Omega \subset \mathbb{R}^{2}$.
\mathcal{T}_{h} is a conforming mesh of polygonal elements K, with faces \mathcal{F}_{h}.
The VEM discretization space is given by

$$
V_{h}:=\left\{\begin{array}{l|cccc}
w_{h} \in H_{0}^{1}(\Omega) & \left.\Delta w_{h}\right|_{K} & \in & \mathcal{P}_{p-2}(K) & \forall K \in \mathcal{T}_{h} \\
\left.w_{h}\right|_{F} & \in & \mathcal{P}_{p}(F) & \forall F \in \mathcal{F}_{h}
\end{array}\right\} .
$$

V_{h} contains polynomials, but also "virtual" functions that are not computable.
The degrees of freedom are wisely chosen in such a way that the orthogonal projection

$$
\Pi^{\nabla_{w_{h}} \in \mathcal{P}_{p}\left(\mathcal{T}_{h}\right)}
$$

is fully computable for any $w_{h} \in V_{h}$
The VEM discrete problem is to find $u_{h} \in V_{h}$ such that

$$
\left(\boldsymbol{\nabla}_{h}\left(\Pi^{\boldsymbol{\nabla}} u_{u_{h}}\right), \nabla_{h}\left(\Pi^{\nabla_{v_{h}}}\right)\right)_{\Omega}+s_{h}\left(u_{h}-\Pi^{\nabla_{u_{h}}, v_{h}-\Pi^{v_{h}}}\right)=\left(f, v_{h}\right)_{\Omega}, \quad \forall v_{h} \in V_{h}
$$

for a suitable stabilization form s_{h} computable through the dofs.

What are the challenges associated with VEM? What is the "standard" setting?

The setting for "standard" non-conforming method

A general framework for p-robust estimates of non-conforming methods is given in
\square A. Ern and M. Vohralík, SIAM J. Numer. Anal., 2015.

The setting for "standard" non-conforming method

A general framework for p-robust estimates of non-conforming methods is given in
\square A. Ern and M. Vohralík, SIAM J. Numer. Anal., 2015.
\mathcal{T}_{h} is a simplicial mesh of $\Omega \subset \mathbb{R}^{d} . \mathcal{F}_{h}$ and \mathcal{V}_{h} are the faces and vertices of \mathcal{T}_{h}.

The setting for "standard" non-conforming method

A general framework for p-robust estimates of non-conforming methods is given inA. Ern and M. Vohralík, SIAM J. Numer. Anal., 2015.
\mathcal{T}_{h} is a simplicial mesh of $\Omega \subset \mathbb{R}^{d} . \mathcal{F}_{h}$ and \mathcal{V}_{h} are the faces and vertices of \mathcal{T}_{h}.
$u_{h} \in \mathcal{P}_{p}\left(\mathcal{T}_{h}\right)$ is any piecewise polynomial function such that:
(a) for all $a \in \mathcal{V}_{h},\left(\nabla_{h} u_{h}, \nabla \psi^{a}\right)_{\Omega}=\left(f, \psi^{a}\right)_{\Omega}$, with ψ^{a} the hat function of a.
(b) for all $F \in \mathcal{F}_{h},\left(\llbracket u_{h} \rrbracket, 1\right)_{F}=0$.

The setting for "standard" non-conforming method

A general framework for p-robust estimates of non-conforming methods is given inA. Ern and M. Vohralík, SIAM J. Numer. Anal., 2015.
\mathcal{T}_{h} is a simplicial mesh of $\Omega \subset \mathbb{R}^{d} . \mathcal{F}_{h}$ and \mathcal{V}_{h} are the faces and vertices of \mathcal{T}_{h}.
$u_{h} \in \mathcal{P}_{p}\left(\mathcal{T}_{h}\right)$ is any piecewise polynomial function such that:
(a) for all $a \in \mathcal{V}_{h},\left(\nabla_{h} u_{h}, \nabla \psi^{a}\right)_{\Omega}=\left(f, \psi^{a}\right)_{\Omega}$, with ψ^{a} the hat function of a.
(b) for all $F \in \mathcal{F}_{h},\left(\llbracket u_{h} \rrbracket, 1\right)_{F}=0$.

Lagrange and Crouzeix-Raviart elements of arbitrary order satisfy these assumptions.

The setting for "standard" non-conforming method

A general framework for p-robust estimates of non-conforming methods is given inA. Ern and M. Vohralík, SIAM J. Numer. Anal., 2015.
\mathcal{T}_{h} is a simplicial mesh of $\Omega \subset \mathbb{R}^{d} . \mathcal{F}_{h}$ and \mathcal{V}_{h} are the faces and vertices of \mathcal{T}_{h}.
$u_{h} \in \mathcal{P}_{p}\left(\mathcal{T}_{h}\right)$ is any piecewise polynomial function such that:
(a) for all $a \in \mathcal{V}_{h},\left(\nabla_{h} u_{h}, \nabla \psi^{a}\right)_{\Omega}=\left(f, \psi^{a}\right)_{\Omega}$, with ψ^{a} the hat function of a.
(b) for all $F \in \mathcal{F}_{h},\left(\llbracket u_{h} \rrbracket, 1\right)_{F}=0$.

Lagrange and Crouzeix-Raviart elements of arbitrary order satisfy these assumptions.
We will see that (a) is crucial for localizing computations.

The setting for "standard" non-conforming method

A general framework for p-robust estimates of non-conforming methods is given inA. Ern and M. Vohralík, SIAM J. Numer. Anal., 2015.
\mathcal{T}_{h} is a simplicial mesh of $\Omega \subset \mathbb{R}^{d} . \mathcal{F}_{h}$ and \mathcal{V}_{h} are the faces and vertices of \mathcal{T}_{h}.
$u_{h} \in \mathcal{P}_{p}\left(\mathcal{T}_{h}\right)$ is any piecewise polynomial function such that:
(a) for all $a \in \mathcal{V}_{h},\left(\nabla_{h} u_{h}, \nabla \psi^{a}\right)_{\Omega}=\left(f, \psi^{a}\right)_{\Omega}$, with ψ^{a} the hat function of a.
(b) for all $F \in \mathcal{F}_{h},\left(\llbracket u_{h} \rrbracket, 1\right)_{F}=0$.

Lagrange and Crouzeix-Raviart elements of arbitrary order satisfy these assumptions.
We will see that (a) is crucial for localizing computations.
The condition in (b) is important to employ the broken Poincaré inequality

$$
\|w\|_{U} \lesssim h_{U}^{-1}\left\|\nabla_{h} w\right\|_{U}
$$

for all $w \in H^{1}\left(\mathcal{T}_{h}\right)$ with $(\llbracket w \rrbracket, 1)_{F}=0$ and $(w, 1)_{U}=0$.

What are the challenges associated with VEM? How does VEM fail to enter the framework?

Non-polynomial solution

A first problem is that $u_{h} \notin \mathcal{P}_{p}\left(\mathcal{T}_{h}\right)$ for VEM.
Perhaps more importantly, we only know the dofs of u_{h} not its actual values. Hence, $\left\|\boldsymbol{\nabla}\left(u-u_{h}\right)\right\|_{\Omega}$ is not a desirable error measure.

Non-polynomial solution

A first problem is that $u_{h} \notin \mathcal{P}_{p}\left(\mathcal{T}_{h}\right)$ for VEM.
Perhaps more importantly, we only know the dofs of u_{h} not its actual values. Hence, $\left\|\boldsymbol{\nabla}\left(u-u_{h}\right)\right\|_{\Omega}$ is not a desirable error measure.

This problem can be remedied by considering $\Pi^{\nabla} u_{h}$ as the "solution".

Non-polynomial solution

A first problem is that $u_{h} \notin \mathcal{P}_{p}\left(\mathcal{T}_{h}\right)$ for VEM.
Perhaps more importantly, we only know the dofs of u_{h} not its actual values. Hence, $\left\|\nabla\left(u-u_{h}\right)\right\|_{\Omega}$ is not a desirable error measure.

This problem can be remedied by considering $\Pi^{\nabla} u_{h}$ as the "solution".

Indeed, then we have $\Pi^{\nabla} u_{h} \in \mathcal{P}_{p}\left(\mathcal{T}_{h}\right)$ and we can use

$$
\left\|\nabla_{h}\left(u-\Pi^{\nabla} u_{h}\right)\right\|_{\Omega}
$$

as an error measure.

Virtual partition of unity

The standard framework uses the hat function ψ^{a} to localize computations.

Virtual partition of unity

The standard framework uses the hat function ψ^{a} to localize computations.

For general polygons however, there is no piecewise polynomial partition of unity.

Virtual partition of unity

The standard framework uses the hat function ψ^{a} to localize computations.

For general polygons however, there is no piecewise polynomial partition of unity.

Nevertheless, the VEM space does contain a partition of unity, given by

$$
\left.\Delta \psi^{a}\right|_{K}=0 \forall K \in \mathcal{T}_{h},\left.\quad \psi^{a}\right|_{F} \in \mathcal{P}_{1}(F) \forall F \in \mathcal{F}_{h}, \quad \psi^{a}(b)=\delta_{a, b} \forall b \in \mathcal{V}_{h} .
$$

for all $a \in \mathcal{V}_{h}$.

Virtual partition of unity

The standard framework uses the hat function ψ^{a} to localize computations.

For general polygons however, there is no piecewise polynomial partition of unity.

Nevertheless, the VEM space does contain a partition of unity, given by

$$
\left.\Delta \psi^{a}\right|_{K}=0 \forall K \in \mathcal{T}_{h},\left.\quad \psi^{a}\right|_{F} \in \mathcal{P}_{1}(F) \forall F \in \mathcal{F}_{h}, \quad \psi^{a}(b)=\delta_{a, b} \forall b \in \mathcal{V}_{h} .
$$

for all $a \in \mathcal{V}_{h}$.

However, unless \mathcal{T}_{h} contains simplices, these ψ^{a} are "virtual".

Lack of Galerkin orthogonality

In order to follow the standard framework, we would need

$$
\left(\nabla_{h}\left(\Pi^{\nabla} u_{h}\right), \boldsymbol{\nabla} \psi^{a}\right)_{\Omega}=\left(f, \psi^{a}\right)_{\Omega} \quad \forall a \in \mathcal{V}_{h}
$$

Lack of Galerkin orthogonality

In order to follow the standard framework, we would need

$$
\left(\nabla_{h}\left(\Pi^{\nabla} u_{h}\right), \nabla \psi^{a}\right)_{\Omega}=\left(f, \psi^{a}\right)_{\Omega} \quad \forall a \in \mathcal{V}_{h}
$$

Unfortunately, due to the stabilization form, we only have

$$
\left(\boldsymbol{\nabla}_{h}\left(\Pi^{\boldsymbol{\nabla}} u_{h}\right), \boldsymbol{\nabla} \psi^{a}\right)_{\Omega}+\boldsymbol{s}_{h}\left(u_{h}-\Pi^{\boldsymbol{\nabla}}{u_{h}}, \psi^{a}-\Pi^{\boldsymbol{\nabla}} \psi^{a}\right)=\left(f, \psi^{a}\right)_{\Omega} .
$$

Lack of Galerkin orthogonality

In order to follow the standard framework, we would need

$$
\left(\boldsymbol{\nabla}_{h}\left(\Pi^{\nabla} u_{h}\right), \boldsymbol{\nabla} \psi^{a}\right)_{\Omega}=\left(f, \psi^{a}\right)_{\Omega} \quad \forall a \in \mathcal{V}_{h}
$$

Unfortunately, due to the stabilization form, we only have

$$
\left(\boldsymbol{\nabla}_{h}\left(\Pi^{\boldsymbol{\nabla}} u_{h}\right), \boldsymbol{\nabla} \psi^{a}\right)_{\Omega}+s_{h}\left(u_{h}-\Pi^{\boldsymbol{\nabla}}{u_{h}}, \psi^{a}-\Pi^{\boldsymbol{\nabla}} \psi^{a}\right)=\left(f, \psi^{a}\right)_{\Omega} .
$$

This can be remedied by post-processing the solution and constructing \mathcal{G}_{h} such that

$$
\left(\mathcal{G}_{h}, \boldsymbol{\nabla} \psi^{a}\right)=\left(f, \psi^{a}\right)_{\Omega}
$$

and then measure the error with

$$
\left\|\nabla u-\mathcal{G}_{h}\right\|_{\Omega} .
$$

Lack of Galerkin orthogonality

In order to follow the standard framework, we would need

$$
\left(\boldsymbol{\nabla}_{h}\left(\Pi^{\nabla} u_{h}\right), \boldsymbol{\nabla} \psi^{a}\right)_{\Omega}=\left(f, \psi^{a}\right)_{\Omega} \quad \forall a \in \mathcal{V}_{h}
$$

Unfortunately, due to the stabilization form, we only have

$$
\left(\boldsymbol{\nabla}_{h}\left(\Pi^{\boldsymbol{\nabla}} u_{h}\right), \boldsymbol{\nabla} \psi^{a}\right)_{\Omega}+\boldsymbol{s}_{h}\left(u_{h}-\Pi^{\boldsymbol{\nabla}}{u_{h}}, \psi^{a}-\Pi^{\boldsymbol{\nabla}} \psi^{a}\right)=\left(f, \psi^{a}\right)_{\Omega} .
$$

This can be remedied by post-processing the solution and constructing \mathcal{G}_{h} such that

$$
\left(\mathcal{G}_{h}, \boldsymbol{\nabla} \psi^{a}\right)=\left(f, \psi^{a}\right)_{\Omega}
$$

and then measure the error with

$$
\left\|\nabla u-\mathcal{G}_{h}\right\|_{\Omega} .
$$

This notion of generalized gradient has been previously used in the past:A. Ern and M. Vohralík, SIAM J. Numer. Anal., 2015.D.A. Di Pietro, J. Droniou, and G. Manzini, J. Comput. Phys., 2018.

What are the challenges associated with VEM?
What is in this talk?

Goal

Due to time constraints, I won't detail how the generalized gradient \mathcal{G}_{h} is constructed.

Goal

Due to time constraints, I won't detail how the generalized gradient \mathcal{G}_{h} is constructed.

Instead, I will show the "virtual" character of the partition of unity can be dealt with.

Goal

Due to time constraints, I won't detail how the generalized gradient \mathcal{G}_{h} is constructed.

Instead, I will show the "virtual" character of the partition of unity can be dealt with.

Specifically, the standard framework explicitly uses the values of the hat functions ψ^{a}.

Goal

Due to time constraints, I won't detail how the generalized gradient \mathcal{G}_{h} is constructed.

Instead, I will show the "virtual" character of the partition of unity can be dealt with.

Specifically, the standard framework explicitly uses the values of the hat functions ψ^{a}.

Here, we will modified it to work under the assumption that the ψ^{a} exist, but without using their actual values.

Goal

Due to time constraints, I won't detail how the generalized gradient \mathcal{G}_{h} is constructed.

Instead, I will show the "virtual" character of the partition of unity can be dealt with.

Specifically, the standard framework explicitly uses the values of the hat functions ψ^{a}.

Here, we will modified it to work under the assumption that the ψ^{a} exist, but without using their actual values.

This leads to in a modified framework, providing to p-robust estimates.

The approach for "standard" non-conforming methods

The approach for "standard" non-conforming methods Setting

Setting

\mathcal{T}_{h} is a simplicial mesh of $\Omega \subset \mathbb{R}^{d} . \mathcal{F}_{h}$ and \mathcal{V}_{h} are the faces and vertices of \mathcal{T}_{h}.

Setting

\mathcal{T}_{h} is a simplicial mesh of $\Omega \subset \mathbb{R}^{d} . \mathcal{F}_{h}$ and \mathcal{V}_{h} are the faces and vertices of \mathcal{T}_{h}.
$u_{h} \in \mathcal{P}_{p}\left(\mathcal{T}_{h}\right)$ is any piecewise polynomial function such that:
(a) for all $a \in \mathcal{V}_{h},\left(\nabla_{h} u_{h}, \nabla \psi^{a}\right)_{\Omega}=\left(f, \psi^{a}\right)_{\Omega}$, with ψ^{a} the hat function of a.
(b) for all $F \in \mathcal{F}_{h},\left(\llbracket u_{h} \rrbracket, 1\right)_{F}=0$.

Setting

\mathcal{T}_{h} is a simplicial mesh of $\Omega \subset \mathbb{R}^{d} . \mathcal{F}_{h}$ and \mathcal{V}_{h} are the faces and vertices of \mathcal{T}_{h}.
$u_{h} \in \mathcal{P}_{p}\left(\mathcal{T}_{h}\right)$ is any piecewise polynomial function such that:
(a) for all $a \in \mathcal{V}_{h},\left(\nabla_{h} u_{h}, \nabla \psi^{a}\right)_{\Omega}=\left(f, \psi^{a}\right)_{\Omega}$, with ψ^{a} the hat function of a.
(b) for all $F \in \mathcal{F}_{h},\left(\llbracket u_{h} \rrbracket, 1\right)_{F}=0$.

We have the broken Poincaré inequality

$$
\|w\|_{U} \lesssim h_{U}^{-1}\left\|\nabla_{h} w\right\|_{U}
$$

for all $w \in H^{1}\left(\mathcal{T}_{h}\right)$ with $(\llbracket w \rrbracket, 1)_{F}=0$ and $(w, 1)_{u}=0$.

Setting

\mathcal{T}_{h} is a simplicial mesh of $\Omega \subset \mathbb{R}^{d} . \mathcal{F}_{h}$ and \mathcal{V}_{h} are the faces and vertices of \mathcal{T}_{h}.
$u_{h} \in \mathcal{P}_{p}\left(\mathcal{T}_{h}\right)$ is any piecewise polynomial function such that:
(a) for all $a \in \mathcal{V}_{h},\left(\nabla_{h} u_{h}, \nabla \psi^{a}\right)_{\Omega}=\left(f, \psi^{a}\right)_{\Omega}$, with ψ^{a} the hat function of a.
(b) for all $F \in \mathcal{F}_{h},\left(\llbracket u_{h} \rrbracket, 1\right)_{F}=0$.

We have the broken Poincaré inequality

$$
\|w\|_{u} \lesssim h_{U}^{-1}\left\|\nabla_{h} w\right\|_{U}
$$

for all $w \in H^{1}\left(\mathcal{T}_{h}\right)$ with $(\llbracket w \rrbracket, 1)_{F}=0$ and $(w, 1)_{u}=0$.

We want to estimate the error in the norm

$$
\left\|\boldsymbol{\nabla} u-\boldsymbol{\nabla}_{h} u_{h}\right\|_{\Omega}=\left\|\nabla_{h}\left(u-u_{h}\right)\right\|_{\Omega} .
$$

The approach for "standard" non-conforming methods Prager-Synge identity

Error splitting

We start by splitting the error $\left\|\nabla_{h}\left(u-u_{h}\right)\right\|_{\Omega}$ in two components.

Error splitting

We start by splitting the error $\left\|\nabla_{h}\left(u-u_{h}\right)\right\|_{\Omega}$ in two components.
We (abstractly) introduce

$$
s^{\star}:=\arg \min _{s \in H_{0}^{1}(\Omega)}\left\|\nabla_{h}\left(u_{h}-s\right)\right\|_{\Omega},
$$

the orthogonal projection of u_{h} onto $H_{0}^{1}(\Omega)$.

Error splitting

We start by splitting the error $\left\|\nabla_{h}\left(u-u_{h}\right)\right\|_{\Omega}$ in two components.
We (abstractly) introduce

$$
s^{\star}:=\arg \min _{s \in H_{0}^{1}(\Omega)}\left\|\nabla_{h}\left(u_{h}-s\right)\right\|_{\Omega}
$$

the orthogonal projection of u_{h} onto $H_{0}^{1}(\Omega)$.
The Euler-Lagrange equations defining $s^{\star} \in H_{0}^{1}(\Omega)$ are

$$
\left(\boldsymbol{\nabla} s^{\star}, \boldsymbol{\nabla} v\right)_{\Omega}=\left(\boldsymbol{\nabla}_{h} u_{h}, \boldsymbol{\nabla} v\right)_{\Omega} \quad \forall v \in \boldsymbol{H}_{0}^{1}(\Omega)
$$

Error splitting

We start by splitting the error $\left\|\nabla_{h}\left(u-u_{h}\right)\right\|_{\Omega}$ in two components.
We (abstractly) introduce

$$
s^{\star}:=\arg \min _{s \in H_{0}^{1}(\Omega)}\left\|\nabla_{h}\left(u_{h}-s\right)\right\|_{\Omega}
$$

the orthogonal projection of u_{h} onto $H_{0}^{1}(\Omega)$.
The Euler-Lagrange equations defining $s^{\star} \in H_{0}^{1}(\Omega)$ are

$$
\left(\boldsymbol{\nabla} s^{\star}, \boldsymbol{\nabla} v\right)_{\Omega}=\left(\boldsymbol{\nabla}_{h} u_{h}, \boldsymbol{\nabla} v\right)_{\Omega} \quad \forall v \in H_{0}^{1}(\Omega) .
$$

In particular, we have the Pythagorean identity

$$
\left\|\boldsymbol{\nabla}_{h}\left(u-u_{h}\right)\right\|_{\Omega}^{2}=\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s^{\star}\right)\right\|_{\Omega}^{2}+\left\|\boldsymbol{\nabla}\left(u-s^{\star}\right)\right\|_{\Omega}^{2}
$$

where the cross term vanish due to the Euler-Lagrange equations.

Error splitting

We start by splitting the error $\left\|\nabla_{h}\left(u-u_{h}\right)\right\|_{\Omega}$ in two components.
We (abstractly) introduce

$$
s^{\star}:=\arg \min _{s \in H_{0}^{1}(\Omega)}\left\|\nabla_{h}\left(u_{h}-s\right)\right\|_{\Omega}
$$

the orthogonal projection of u_{h} onto $H_{0}^{1}(\Omega)$.
The Euler-Lagrange equations defining $s^{\star} \in H_{0}^{1}(\Omega)$ are

$$
\left(\boldsymbol{\nabla} s^{\star}, \boldsymbol{\nabla} v\right)_{\Omega}=\left(\boldsymbol{\nabla}_{h} u_{h}, \boldsymbol{\nabla} v\right)_{\Omega} \quad \forall v \in \boldsymbol{H}_{0}^{1}(\Omega)
$$

In particular, we have the Pythagorean identity

$$
\left\|\boldsymbol{\nabla}_{h}\left(u-u_{h}\right)\right\|_{\Omega}^{2}=\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s^{\star}\right)\right\|_{\Omega}^{2}+\left\|\boldsymbol{\nabla}\left(u-s^{\star}\right)\right\|_{\Omega}^{2}
$$

where the cross term vanish due to the Euler-Lagrange equations.
We thus split the error as "distance to $H_{0}^{1}(\Omega)$ " + "something else".

What is the second term?

Since $u-s^{\star} \in H_{0}^{1}(\Omega)$, we have

$$
\left\|\nabla\left(u-s^{\star}\right)\right\|_{\Omega}=\sup _{\substack{v \in H_{0}^{1}(\Omega) \\\|\boldsymbol{\nabla} v\|_{\Omega}=1}}\left(\nabla\left(u-s^{\star}\right), \nabla v\right)_{\Omega} .
$$

This is a standard Hilbert space result.

What is the second term?

Since $u-s^{\star} \in H_{0}^{1}(\Omega)$, we have

$$
\left\|\nabla\left(u-s^{\star}\right)\right\|_{\Omega}=\sup _{\substack{v \in H_{0}^{1}(\Omega) \\\|\boldsymbol{\nabla} v\|_{\Omega}=1}}\left(\nabla\left(u-s^{\star}\right), \boldsymbol{\nabla} v\right)_{\Omega} .
$$

This is a standard Hilbert space result.
Recall that, whenever $v \in H_{0}^{1}(\Omega)$, we do have

$$
(\boldsymbol{\nabla} u, \boldsymbol{\nabla} v)_{\Omega}=(f, v)_{\Omega}, \quad\left(\boldsymbol{\nabla} s^{\star}, \boldsymbol{\nabla} v\right)_{\Omega}=\left(\boldsymbol{\nabla}_{h} u_{h}, \boldsymbol{\nabla} v\right)_{\Omega} ;
$$

and therefore

$$
\left\|\boldsymbol{\nabla}\left(u-s^{\star}\right)\right\|_{\Omega}=\sup _{\substack{v \in H_{0}^{1}(\Omega) \\\|\boldsymbol{\nabla} v\|_{\Omega}=1}}\left\{(f, v)_{\Omega}-\left(\boldsymbol{\nabla}_{h} u_{h}, \boldsymbol{\nabla} v\right)_{\Omega}\right\}
$$

What is the second term?

Since $u-s^{\star} \in H_{0}^{1}(\Omega)$, we have

$$
\left\|\nabla\left(u-s^{\star}\right)\right\|_{\Omega}=\sup _{\substack{v \in H_{0}^{1}(\Omega) \\\|\boldsymbol{\nabla} v\|_{\Omega}=1}}\left(\nabla\left(u-s^{\star}\right), \nabla v\right)_{\Omega} .
$$

This is a standard Hilbert space result.
Recall that, whenever $v \in H_{0}^{1}(\Omega)$, we do have

$$
(\boldsymbol{\nabla} u, \boldsymbol{\nabla} v)_{\Omega}=(f, v)_{\Omega}, \quad\left(\boldsymbol{\nabla} s^{\star}, \boldsymbol{\nabla} v\right)_{\Omega}=\left(\boldsymbol{\nabla}_{h} u_{h}, \boldsymbol{\nabla} v\right)_{\Omega} ;
$$

and therefore

$$
\left\|\boldsymbol{\nabla}\left(u-s^{\star}\right)\right\|_{\Omega}=\sup _{\substack{v \in H_{0}^{1}(\Omega) \\\|\boldsymbol{\nabla} v\|_{\Omega}=1}}\left\{(f, v)_{\Omega}-\left(\boldsymbol{\nabla}_{h} u_{h}, \boldsymbol{\nabla} v\right)_{\Omega}\right\}
$$

In other words,

$$
\left\|\nabla\left(u-s^{\star}\right)\right\|_{\Omega}=\sup _{\substack{v \in H_{0}^{1}(\Omega) \\\|\nabla \vee\|_{\Omega}=1}}\left\langle f+\boldsymbol{\nabla} \cdot\left(\boldsymbol{\nabla}_{h} u_{h}\right), v\right\rangle_{\Omega}=\left\|f+\boldsymbol{\nabla} \cdot \boldsymbol{\nabla}_{h} u_{h}\right\|_{H^{-1}(\Omega)},
$$

so that this term measures the PDE residual.

Reformulating as a minimization problem

We have shown earlier that

$$
\left\|\boldsymbol{\nabla}\left(u-s^{\star}\right)\right\|_{\Omega}=\sup _{\substack{v \in H_{0}^{1}(\Omega) \\\|\boldsymbol{\nabla} v\|_{\Omega}=1}}\left\{(f, v)_{\Omega}-\left(\boldsymbol{\nabla}_{h} u_{h}, \boldsymbol{\nabla} v\right)_{\Omega}\right\}
$$

Reformulating as a minimization problem

We have shown earlier that

$$
\left\|\nabla\left(u-s^{\star}\right)\right\|_{\Omega}=\sup _{\substack{v \in H_{0}^{1}(\Omega) \\\|\boldsymbol{\nabla} v\|_{\Omega}=1}}\left\{(f, v)_{\Omega}-\left(\boldsymbol{\nabla}_{h} u_{h}, \boldsymbol{\nabla} v\right)_{\Omega}\right\}
$$

In the context of a posteriori error estimation, we would prefer a "min" to a "sup".

Reformulating as a minimization problem

We have shown earlier that

$$
\left\|\nabla\left(u-s^{\star}\right)\right\|_{\Omega}=\sup _{\substack{v \in H_{0}^{1}(\Omega) \\\|\boldsymbol{\nabla} v\|_{\Omega}=1}}\left\{(f, v)_{\Omega}-\left(\boldsymbol{\nabla}_{h} u_{h}, \boldsymbol{\nabla} v\right)_{\Omega}\right\} .
$$

In the context of a posteriori error estimation, we would prefer a "min" to a "sup". Observe that if $\sigma \in \boldsymbol{H}(\operatorname{div}, \Omega)$ satisfies $\boldsymbol{\nabla} \cdot \boldsymbol{\sigma}=f$, we have

$$
(f, v)_{\Omega}-\left(\nabla_{h} u_{h}, \nabla v\right)_{\Omega}=-\left(\sigma+\nabla_{h} u_{h}, \nabla v\right)_{\Omega} \leq\left\|\sigma+\nabla_{h} u_{h}\right\|_{\Omega}\|\nabla v\|_{\Omega},
$$

for all $v \in H_{0}^{1}(\Omega)$,

Reformulating as a minimization problem

We have shown earlier that

$$
\left\|\nabla\left(u-s^{\star}\right)\right\|_{\Omega}=\sup _{\substack{v \in H_{0}^{1}(\Omega) \\\|\boldsymbol{\nabla} v\|_{\Omega}=1}}\left\{(f, v)_{\Omega}-\left(\boldsymbol{\nabla}_{h} u_{h}, \boldsymbol{\nabla} v\right)_{\Omega}\right\} .
$$

In the context of a posteriori error estimation, we would prefer a "min" to a "sup". Observe that if $\sigma \in \boldsymbol{H}(\operatorname{div}, \Omega)$ satisfies $\boldsymbol{\nabla} \cdot \boldsymbol{\sigma}=f$, we have

$$
(f, v)_{\Omega}-\left(\nabla_{h} u_{h}, \nabla v\right)_{\Omega}=-\left(\sigma+\nabla_{h} u_{h}, \nabla v\right)_{\Omega} \leq\left\|\sigma+\nabla_{h} u_{h}\right\|_{\Omega}\|\nabla v\|_{\Omega}
$$

for all $v \in H_{0}^{1}(\Omega)$, so that

$$
\left\|\nabla\left(u-s^{\star}\right)\right\|_{\Omega} \leq\left\|\sigma+\boldsymbol{\nabla}_{h} u_{h}\right\|_{\Omega} .
$$

Reformulating as a minimization problem

We have shown earlier that

$$
\left\|\nabla\left(u-s^{\star}\right)\right\|_{\Omega}=\sup _{\substack{v \in H_{0}^{1}(\Omega) \\\|\boldsymbol{\nabla} v\|_{\Omega}=1}}\left\{(f, v)_{\Omega}-\left(\boldsymbol{\nabla}_{h} u_{h}, \nabla \nabla\right)_{\Omega}\right\} .
$$

In the context of a posteriori error estimation, we would prefer a "min" to a "sup". Observe that if $\sigma \in \boldsymbol{H}(\operatorname{div}, \Omega)$ satisfies $\boldsymbol{\nabla} \cdot \boldsymbol{\sigma}=f$, we have

$$
(f, v)_{\Omega}-\left(\boldsymbol{\nabla}_{h} u_{h}, \nabla v\right)_{\Omega}=-\left(\sigma+\nabla_{h} u_{h}, \nabla v\right)_{\Omega} \leq\left\|\sigma+\nabla_{h} u_{h}\right\|_{\Omega}\|\nabla v\|_{\Omega},
$$

for all $v \in H_{0}^{1}(\Omega)$, so that

$$
\left\|\nabla\left(u-s^{\star}\right)\right\|_{\Omega} \leq\left\|\sigma+\boldsymbol{\nabla}_{h} u_{h}\right\|_{\Omega} .
$$

In other words, we have

$$
\left\|\boldsymbol{\nabla}\left(u-s^{\star}\right)\right\|_{\Omega} \leq \min _{\substack{\sigma \in \boldsymbol{H}(\operatorname{div}, \Omega) \\ \nabla \cdot \sigma=f}}\left\|\sigma+\boldsymbol{\nabla}_{h} u_{h}\right\|_{\Omega},
$$

and with a bit of extra work, we can show that equality holds.

The Prager-Synge identity

Putting together the pieces, we have shown that
Prager-Synge identity

$$
\left\|\boldsymbol{\nabla}_{h}\left(u-u_{h}\right)\right\|_{\Omega}^{2}=\min _{s \in H_{0}^{1}(\Omega)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s\right)\right\|_{\Omega}^{2}+\min _{\substack{\sigma \in \boldsymbol{H}(\mathrm{div}, \Omega) \\ \boldsymbol{\nabla} \cdot \sigma=f}}\left\|\sigma+\boldsymbol{\nabla}_{h} u_{h}\right\|_{\Omega}^{2} .
$$

The Prager-Synge identity

Putting together the pieces, we have shown that

Prager-Synge identity

$$
\left\|\boldsymbol{\nabla}_{h}\left(u-u_{h}\right)\right\|_{\Omega}^{2}=\min _{s \in H_{0}^{1}(\Omega)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s\right)\right\|_{\Omega}^{2}+\min _{\substack{\sigma \in \boldsymbol{H}(\operatorname{div}, \Omega) \\ \boldsymbol{\nabla} \cdot \sigma=f}}\left\|\sigma+\boldsymbol{\nabla}_{h} u_{h}\right\|_{\Omega}^{2} .
$$

The equation $-\Delta u=f$ means (a) $u \in H_{0}^{1}(\Omega)$ and (b) $\nabla \cdot(-\nabla u)=f$.
The two terms of the Prager-Synge quantify how (a) and (b) are violated.

The Prager-Synge identity

Putting together the pieces, we have shown that

Prager-Synge identity

$$
\left\|\boldsymbol{\nabla}_{h}\left(u-u_{h}\right)\right\|_{\Omega}^{2}=\min _{s \in H_{0}^{1}(\Omega)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s\right)\right\|_{\Omega}^{2}+\min _{\substack{\sigma \in \boldsymbol{H}(\operatorname{div}, \Omega) \\ \boldsymbol{\nabla} \cdot \sigma=f}}\left\|\sigma+\boldsymbol{\nabla}_{h} u_{h}\right\|_{\Omega}^{2} .
$$

The equation $-\Delta u=f$ means (a) $u \in H_{0}^{1}(\Omega)$ and (b) $\nabla \cdot(-\nabla u)=f$.
The two terms of the Prager-Synge quantify how (a) and (b) are violated.

Since we "just" want an upper bound, we can input any admissible field s and σ. Constructing a "potential" s and an equilibrated flux " σ " makes an estimator.

The Prager-Synge identity

Putting together the pieces, we have shown that

Prager-Synge identity

$$
\left\|\boldsymbol{\nabla}_{h}\left(u-u_{h}\right)\right\|_{\Omega}^{2}=\min _{s \in H_{0}^{1}(\Omega)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s\right)\right\|_{\Omega}^{2}+\min _{\substack{\sigma \in \boldsymbol{H}(\operatorname{div}, \Omega) \\ \boldsymbol{\nabla} \cdot \sigma=f}}\left\|\sigma+\boldsymbol{\nabla}_{h} u_{h}\right\|_{\Omega}^{2} .
$$

The equation $-\Delta u=f$ means (a) $u \in H_{0}^{1}(\Omega)$ and (b) $\nabla \cdot(-\nabla u)=f$.
The two terms of the Prager-Synge quantify how (a) and (b) are violated.

Since we "just" want an upper bound, we can input any admissible field s and σ. Constructing a "potential" s and an equilibrated flux " σ " makes an estimator.

Of course, to have a good estimator, these need to be close to $\nabla_{h} u_{h}$.

The approach for "standard" non-conforming methods Practical reconstructions

Idealized reconstructions

We have shown earlier that

$$
\left\|\boldsymbol{\nabla}_{h}\left(u-u_{h}\right)\right\|_{\Omega}^{2}=\min _{s \in H_{0}^{1}(\Omega)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s\right)\right\|_{\Omega}^{2}+\min _{\substack{\sigma \in \boldsymbol{H}(\mathrm{div}, \Omega) \\ \boldsymbol{\nabla} \cdot \sigma=f}}\left\|\sigma+\boldsymbol{\nabla}_{h} u_{h}\right\|_{\Omega}^{2} .
$$

Idealized reconstructions

We have shown earlier that

$$
\left\|\boldsymbol{\nabla}_{h}\left(u-u_{h}\right)\right\|_{\Omega}^{2}=\min _{s \in H_{0}^{1}(\Omega)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s\right)\right\|_{\Omega}^{2}+\min _{\substack{\sigma \in \boldsymbol{H}(\operatorname{div}, \Omega) \\ \boldsymbol{\nabla} \cdot \sigma=f}}\left\|\sigma+\boldsymbol{\nabla}_{h} u_{h}\right\|_{\Omega}^{2} .
$$

A natural idea to obtain a guaranteed error bound is simply to say that

$$
\left\|\nabla_{h}\left(u-u_{h}\right)\right\|_{\Omega}^{2} \leq \min _{s_{h} \in H_{0}^{1}(\Omega) \cap \mathcal{P}_{p}\left(\mathcal{T}_{h}\right)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s\right)\right\|_{\Omega}^{2}+\min _{\boldsymbol{\sigma} \in \boldsymbol{H}(\operatorname{div} \boldsymbol{\Omega}) \cap \boldsymbol{R} \cdot \boldsymbol{\sigma} \boldsymbol{T}_{p}\left(\mathcal{T}_{h}\right)}^{\boldsymbol{\nabla} \cdot \sigma=f} \mid\left\|\sigma+\boldsymbol{\nabla}_{h} u_{h}\right\|_{\Omega}^{2}
$$

where the second minimization problem is well-posed since we assumed $f \in \mathcal{P}_{p-1}\left(\mathcal{T}_{h}\right)$.

Idealized reconstructions

We have shown earlier that

$$
\left\|\boldsymbol{\nabla}_{h}\left(u-u_{h}\right)\right\|_{\Omega}^{2}=\min _{s \in H_{0}^{1}(\Omega)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s\right)\right\|_{\Omega}^{2}+\min _{\substack{\sigma \in \mathcal{H}(\operatorname{div}, \Omega) \\ \boldsymbol{\nabla} \cdot \sigma=f}}\left\|\sigma+\boldsymbol{\nabla}_{h} u_{h}\right\|_{\Omega}^{2} .
$$

A natural idea to obtain a guaranteed error bound is simply to say that

$$
\left\|\nabla_{h}\left(u-u_{h}\right)\right\|_{\Omega}^{2} \leq \min _{s_{h} \in H_{0}^{1}(\Omega) \cap \mathcal{P}_{p}\left(\mathcal{T}_{h}\right)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s\right)\right\|_{\Omega}^{2}+\min _{\boldsymbol{\sigma} \in \boldsymbol{H}(\operatorname{div} \boldsymbol{\Omega}) \cap \boldsymbol{R} \cdot \boldsymbol{\sigma} \boldsymbol{T}_{p}\left(\mathcal{T}_{h}\right)}^{\boldsymbol{\nabla} \cdot \sigma=f} \mid\left\|\sigma+\boldsymbol{\nabla}_{h} u_{h}\right\|_{\Omega}^{2}
$$

where the second minimization problem is well-posed since we assumed $f \in \mathcal{P}_{p-1}\left(\mathcal{T}_{h}\right)$.

This approach is "feasible": It does lead to a guaranteed upper bound.

Idealized reconstructions

We have shown earlier that

$$
\left\|\boldsymbol{\nabla}_{h}\left(u-u_{h}\right)\right\|_{\Omega}^{2}=\min _{s \in H_{0}^{1}(\Omega)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s\right)\right\|_{\Omega}^{2}+\min _{\substack{\sigma \in \boldsymbol{H}(\operatorname{div}, \Omega) \\ \boldsymbol{\nabla} \cdot \sigma=f}}\left\|\sigma+\boldsymbol{\nabla}_{h} u_{h}\right\|_{\Omega}^{2} .
$$

A natural idea to obtain a guaranteed error bound is simply to say that

$$
\left\|\nabla_{h}\left(u-u_{h}\right)\right\|_{\Omega}^{2} \leq \min _{s_{h} \in H_{0}^{1}(\Omega) \cap \mathcal{P}_{p}\left(\mathcal{T}_{h}\right)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s\right)\right\|_{\Omega}^{2}+\min _{\boldsymbol{\sigma} \in \boldsymbol{H}(\operatorname{div} \boldsymbol{\Omega}) \cap \boldsymbol{R} \boldsymbol{T}_{p}\left(\mathcal{T}_{h}\right)}^{\boldsymbol{\nabla} \cdot \sigma=f} \mid \boldsymbol{\sigma}+\boldsymbol{\nabla}_{h} u_{h} \|_{\Omega}^{2}
$$

where the second minimization problem is well-posed since we assumed $f \in \mathcal{P}_{p-1}\left(\mathcal{T}_{h}\right)$.

This approach is "feasible": It does lead to a guaranteed upper bound.

However, it is expensive and it is not clear that it leads to localized lower bound.

Localization with the hat functions

As we consider a simplicial mesh \mathcal{T}_{h} here, the "hat functions" $\left\{\psi^{a}\right\}_{a \in \mathcal{V}_{h}}$ form a partition of unity.

Localization with the hat functions

As we consider a simplicial mesh \mathcal{T}_{h} here, the "hat functions" $\left\{\psi^{a}\right\}_{a \in \mathcal{V}_{h}}$ form a partition of unity.

We introduce the short-hand notations $\omega^{a}:=\operatorname{supp} \psi^{a}$ and $\mathcal{T}_{h}^{a}:=\left.\mathcal{T}_{h}\right|_{\omega^{a}}$.

Localization with the hat functions

As we consider a simplicial mesh \mathcal{T}_{h} here, the "hat functions" $\left\{\psi^{a}\right\}_{a \in \mathcal{V}_{h}}$ form a partition of unity.

We introduce the short-hand notations $\omega^{a}:=\operatorname{supp} \psi^{a}$ and $\mathcal{T}_{h}^{a}:=\left.\mathcal{T}_{h}\right|_{\omega^{a}}$.

Then, \mathcal{T}_{h}^{a} only contains a handful of elements K.

Localization with the hat functions

As we consider a simplicial mesh \mathcal{T}_{h} here, the "hat functions" $\left\{\psi^{a}\right\}_{a \in \mathcal{V}_{h}}$ form a partition of unity.

We introduce the short-hand notations $\omega^{a}:=\operatorname{supp} \psi^{a}$ and $\mathcal{T}_{h}^{a}:=\left.\mathcal{T}_{h}\right|_{\omega^{a}}$.

Then, \mathcal{T}_{h}^{a} only contains a handful of elements K.

We use this partition of unity to localize the potential and flux reconstructions.

Potential reconstruction

We focus on the term

$$
\min _{s \in H_{0}^{1}(\Omega)}\left\|\nabla_{h}\left(s-u_{h}\right)\right\|_{\Omega}
$$

and provide an element $s_{h} \in H_{0}^{1}(\Omega) \cap \mathcal{P}_{p+1}\left(\mathcal{T}_{h}\right)$ close to u_{h} from local computations.

Potential reconstruction

We focus on the term

$$
\min _{s \in H_{0}^{1}(\Omega)}\left\|\nabla_{h}\left(s-u_{h}\right)\right\|_{\Omega}
$$

and provide an element $s_{h} \in H_{0}^{1}(\Omega) \cap \mathcal{P}_{p+1}\left(\mathcal{T}_{h}\right)$ close to u_{h} from local computations.

Observe that $s_{h} \in H_{0}^{1}(\Omega)$ should mimic u_{h} on Ω.

Potential reconstruction

We focus on the term

$$
\min _{s \in H_{0}^{1}(\Omega)}\left\|\nabla_{h}\left(s-u_{h}\right)\right\|_{\Omega}
$$

and provide an element $s_{h} \in H_{0}^{1}(\Omega) \cap \mathcal{P}_{p+1}\left(\mathcal{T}_{h}\right)$ close to u_{h} from local computations.

Observe that $s_{h} \in H_{0}^{1}(\Omega)$ should mimic u_{h} on Ω. The decomposition

$$
u_{h}=\sum_{a \in \mathcal{V}_{h}} \psi^{a} u_{h}
$$

motivates to build $s_{h}^{a} \in H_{0}^{1}\left(\omega^{a}\right)$ close to $\psi^{a} u_{h}$, and then set

$$
s_{h}=\sum_{a \in \mathcal{V}_{h}} s_{h}^{a} .
$$

Potential reconstruction (continued)

We solve for each $a \in \mathcal{V}_{h}$ the problem
Localized potential reconstruction

$$
s_{h}^{a}:=\arg \min _{w_{h} \in H_{0}^{1}\left(\omega^{a}\right) \cap \mathcal{P}_{p+1}\left(\mathcal{T}_{h}^{a}\right)}\left\|\nabla_{h}\left(\psi^{a} u_{h}-s_{h}^{a}\right)\right\|_{\omega^{a}} .
$$

Potential reconstruction (continued)

We solve for each $a \in \mathcal{V}_{h}$ the problem
Localized potential reconstruction

$$
s_{h}^{a}:=\arg \min _{w_{h} \in H_{0}^{1}\left(\omega^{a}\right) \cap \mathcal{P}_{p+1}\left(\mathcal{T}_{h}^{a}\right)}\left\|\nabla_{h}\left(\psi^{a} u_{h}-s_{h}^{a}\right)\right\|_{\omega^{a}} .
$$

This leads to a set of uncoupled small finite element problem each involving few dofs.

Potential reconstruction (continued)

We solve for each $a \in \mathcal{V}_{h}$ the problem
Localized potential reconstruction

$$
s_{h}^{a}:=\arg \min _{w_{h} \in H_{0}^{1}\left(\omega^{a}\right) \cap \mathcal{P}_{p+1}\left(\mathcal{T}_{h}^{a}\right)}\left\|\nabla_{h}\left(\psi^{a} u_{h}-s_{h}^{a}\right)\right\|_{\omega^{a}} .
$$

This leads to a set of uncoupled small finite element problem each involving few dofs.
After parallel solves, we assemble the contributions into

$$
s_{h}:=\sum_{a \in \mathcal{V}_{h}} s_{h}^{a} \in H_{0}^{1}(\Omega) .
$$

Potential reconstruction (continued)

We solve for each $a \in \mathcal{V}_{h}$ the problem
Localized potential reconstruction

$$
s_{h}^{a}:=\arg \min _{w_{h} \in H_{0}^{1}\left(\omega^{a}\right) \cap \mathcal{P}_{p+1}\left(\mathcal{T}_{h}^{a}\right)}\left\|\nabla_{h}\left(\psi^{a} u_{h}-s_{h}^{a}\right)\right\|_{\omega^{a}} .
$$

This leads to a set of uncoupled small finite element problem each involving few dofs.
After parallel solves, we assemble the contributions into

$$
s_{h}:=\sum_{a \in \mathcal{V}_{h}} s_{h}^{a} \in H_{0}^{1}(\Omega) .
$$

The first term of the Prager-Synge identity is then controlled by

$$
\min _{s \in H_{0}^{1}(\Omega)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s\right)\right\|_{\Omega} \leq\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s_{h}\right)\right\|_{\Omega} .
$$

Potential reconstruction (continued)

We solve for each $a \in \mathcal{V}_{h}$ the problem
Localized potential reconstruction

$$
s_{h}^{a}:=\arg \min _{w_{h} \in H_{0}^{1}\left(\omega^{a}\right) \cap \mathcal{P}_{p+1}\left(\mathcal{T}_{h}^{a}\right)}\left\|\nabla_{h}\left(\psi^{a} u_{h}-s_{h}^{a}\right)\right\|_{\omega^{a}} .
$$

This leads to a set of uncoupled small finite element problem each involving few dofs.
After parallel solves, we assemble the contributions into

$$
s_{h}:=\sum_{a \in \mathcal{V}_{h}} s_{h}^{a} \in H_{0}^{1}(\Omega) .
$$

The first term of the Prager-Synge identity is then controlled by

$$
\min _{s \in H_{0}^{1}(\Omega)}\left\|\nabla_{h}\left(u_{h}-s\right)\right\|_{\Omega} \leq\left\|\nabla_{h}\left(u_{h}-s_{h}\right)\right\|_{\Omega} .
$$

Note that the values of the ψ^{a} are required to assemble the right-hand sides.

Flux reconstruction

We follow a similar strategy to build $\sigma_{h} \in \boldsymbol{H}(\operatorname{div}, \Omega) \cap \boldsymbol{R} \boldsymbol{T}_{p+1}\left(\mathcal{T}_{h}\right)$. For each $a \in \mathcal{V}_{h}$,
Localized flux reconstruction

$$
\boldsymbol{\sigma}_{h}^{a}:=\arg \min _{\substack{\boldsymbol{\xi}_{h} \in \boldsymbol{H}_{0}\left(\operatorname{div}, \omega^{a}\right) \cap \boldsymbol{R} \boldsymbol{T}_{p+1}\left(\mathcal{T}_{h}^{a}\right) \\ \boldsymbol{\nabla} \cdot \boldsymbol{\xi}_{h}=\psi^{a} f-\boldsymbol{\nabla} \psi^{a} \cdot \boldsymbol{\nabla}_{h} u_{h}}}\left\|\boldsymbol{\xi}_{h}+\psi^{a} \boldsymbol{\nabla}_{h} u_{h}\right\|_{\omega^{a}} .
$$

Flux reconstruction

We follow a similar strategy to build $\sigma_{h} \in \boldsymbol{H}(\operatorname{div}, \Omega) \cap \boldsymbol{R} \boldsymbol{T}_{p+1}\left(\mathcal{T}_{h}\right)$. For each $a \in \mathcal{V}_{h}$,
Localized flux reconstruction

$$
\boldsymbol{\sigma}_{h}^{a}:=\arg \min _{\substack{\boldsymbol{\xi}_{h} \in \boldsymbol{H}_{0}\left(\text { div }^{a}\right) \cap \boldsymbol{\omega ^ { 2 }} \\ \boldsymbol{\nabla} \cdot \boldsymbol{\xi}_{h}=\boldsymbol{\psi}^{a} f-\boldsymbol{\nabla}-\psi^{a} \cdot \boldsymbol{\nabla}_{h}\left(\mathcal{T}_{h}^{a}\right)}}\left\|\boldsymbol{\xi}_{h}+\psi^{a} \boldsymbol{\nabla}_{h} u_{h}\right\|_{\omega^{a}} .
$$

Crucially the Stokes' compatibility condition is satisfied due to Galerkin orthogonality:

$$
\left(\psi^{a} f-\boldsymbol{\nabla} \psi^{a} \cdot \boldsymbol{\nabla}_{h} u_{h}, \mathbf{1}\right)_{\omega^{a}}=\left(\boldsymbol{\nabla}_{h} u_{h}, \boldsymbol{\nabla} \psi^{a}\right)_{\Omega}-\left(f, \psi^{a}\right)_{\Omega}=0 .
$$

Flux reconstruction

We follow a similar strategy to build $\sigma_{h} \in \boldsymbol{H}(\operatorname{div}, \Omega) \cap \boldsymbol{R} \boldsymbol{T}_{p+1}\left(\mathcal{T}_{h}\right)$. For each $a \in \mathcal{V}_{h}$,
Localized flux reconstruction

$$
\boldsymbol{\sigma}_{h}^{a}:=\arg \min _{\substack{\boldsymbol{\xi}_{h} \in \boldsymbol{H}_{0}\left(\operatorname{div}, \omega^{a}\right) \cap \boldsymbol{R} \boldsymbol{T}_{p+1}\left(\mathcal{T}_{h}^{a}\right) \\ \boldsymbol{\nabla} \cdot \boldsymbol{\xi}_{h}=\psi^{a} f-\boldsymbol{\nabla} \psi^{a} \cdot \boldsymbol{\nabla}_{h} u_{h}}}\left\|\boldsymbol{\xi}_{h}+\psi^{a} \boldsymbol{\nabla}_{h} \boldsymbol{u}_{h}\right\|_{\omega^{a}} .
$$

Crucially the Stokes' compatibility condition is satisfied due to Galerkin orthogonality:

$$
\left(\psi^{a} f-\boldsymbol{\nabla} \psi^{a} \cdot \boldsymbol{\nabla}_{h} u_{h}, \mathbf{1}\right)_{\omega^{a}}=\left(\boldsymbol{\nabla}_{h} u_{h}, \boldsymbol{\nabla} \psi^{a}\right)_{\Omega}-\left(f, \psi^{a}\right)_{\Omega}=0 .
$$

After summation over $a \in \mathcal{V}_{h}$, we have $\boldsymbol{\nabla} \cdot \boldsymbol{\sigma}_{h}=f$. We control the second term with

$$
\min _{\substack{\sigma \in \boldsymbol{H}(\operatorname{div}, \Omega) \\ \boldsymbol{\nabla} \cdot \sigma=f}}\left\|\sigma+\boldsymbol{\nabla}_{h} u_{h}\right\|_{\Omega} \leq\left\|\sigma_{h}+\nabla_{h} u_{h}\right\|_{\Omega} .
$$

Summary

We solve the local problems
Localized potential reconstruction

$$
s_{h}^{a}:=\arg \min _{w_{h} \in H_{0}^{1}\left(\omega^{a}\right) \cap \mathcal{P}_{p+1}\left(\mathcal{T}_{h}^{a}\right)}\left\|\nabla_{h}\left(\psi^{a} u_{h}-s_{h}^{a}\right)\right\|_{\omega^{a}}
$$

and

Localized flux reconstruction

$$
\boldsymbol{\sigma}_{h}^{a}:=\arg \min _{\substack{\boldsymbol{\xi}_{h} \in \boldsymbol{H}_{0}\left(\operatorname{div}, \omega^{a}\right) \cap \boldsymbol{R} \boldsymbol{T}_{p+1}\left(\mathcal{T}_{h}^{a}\right) \\ \boldsymbol{\nabla} \cdot \boldsymbol{\xi}_{h}=\psi^{a} f-\boldsymbol{\nabla} \psi^{a} \cdot \boldsymbol{\nabla}_{h} u_{h}}}\left\|\boldsymbol{\xi}_{h}+\psi^{a} \boldsymbol{\nabla}_{h} \boldsymbol{u}_{h}\right\|_{\omega^{a}}
$$

for each $a \in \mathcal{V}_{h}$.
After summing up the contributions, we have

Guaranteed upper bound

$$
\left\|\nabla_{h}\left(u-u_{h}\right)\right\|_{\Omega}^{2} \leq\left\|\nabla_{h}\left(u_{h}-s_{h}\right)\right\|_{\Omega}^{2}+\left\|\sigma_{h}+\nabla u_{h}\right\|_{\Omega}^{2}
$$

The approach for "standard" non-conforming methods Efficiency

Discrete stable minimization

For all $\boldsymbol{\tau}_{h} \in \mathcal{P}_{p}\left(\mathcal{T}_{h}^{a}\right)$, we have
Unconstrained H^{1} minimization

$$
\min _{w_{h} \in H_{0}^{1}\left(\omega^{a}\right) \cap \mathcal{P}_{p+1}\left(\mathcal{T}_{h}^{a}\right)}\left\|\boldsymbol{\tau}_{h}-\nabla w_{h}\right\|_{\omega^{a}} \lesssim \min _{w \in H_{0}^{1}\left(\omega^{a}\right)}\left\|\boldsymbol{\tau}_{h}-\nabla w\right\|_{\omega^{a}}
$$

with a constant independent of p.

Discrete stable minimization

For all $\boldsymbol{\tau}_{h} \in \mathcal{P}_{p}\left(\mathcal{T}_{h}{ }^{a}\right)$, we have
Unconstrained H^{1} minimization

$$
\min _{w_{h} \in H_{0}^{1}\left(\omega^{a}\right) \cap \mathcal{P}_{p+1}\left(\mathcal{T}_{h}^{a}\right)}\left\|\boldsymbol{\tau}_{h}-\nabla w_{h}\right\|_{\omega^{a}} \lesssim \min _{w \in H_{0}^{1}\left(\omega^{a}\right)}\left\|\boldsymbol{\tau}_{h}-\nabla w\right\|_{\omega^{a}}
$$

with a constant independent of p.
Similarly, for all $\tau_{h} \in \mathcal{P}_{p+1}\left(\mathcal{T}_{h}^{a}\right)$ and $q_{h} \in \mathcal{P}_{p+1}\left(\mathcal{T}_{h}^{a}\right)$ with $\left(q_{h}, 1\right)_{\omega^{a}}=0$, we have

Unconstrained H^{1} minimization

with a constant independent of p.

Discrete stable minimization

For all $\boldsymbol{\tau}_{h} \in \mathcal{P}_{p}\left(\mathcal{T}_{h}{ }^{a}\right)$, we have
Unconstrained H^{1} minimization

$$
\min _{w_{h} \in H_{0}^{1}\left(\omega^{a}\right) \cap \mathcal{P}_{p+1}\left(\mathcal{T}_{h}^{a}\right)}\left\|\tau_{h}-\nabla w_{h}\right\|_{\omega^{a}} \lesssim \min _{w \in H_{0}^{1}\left(\omega^{a}\right)}\left\|\tau_{h}-\nabla w\right\|_{\omega^{a}}
$$

with a constant independent of p.
Similarly, for all $\tau_{h} \in \mathcal{P}_{p+1}\left(\mathcal{T}_{h}^{a}\right)$ and $q_{h} \in \mathcal{P}_{p+1}\left(\mathcal{T}_{h}^{a}\right)$ with $\left(q_{h}, 1\right)_{\omega^{a}}=0$, we have

Unconstrained H^{1} minimization

with a constant independent of p.

Application to the localized reconstructions

Using the discrete minimization, we have

$$
\begin{aligned}
\left\|\nabla_{h}\left(\psi^{a} u_{h}-s_{h}^{a}\right)\right\|_{\omega^{a}} & =\min _{w_{h} \in H_{0}^{1}\left(\omega^{a}\right) \cap \mathcal{P}_{p+1}\left(\mathcal{T}_{h}^{a}\right)}\left\|\nabla_{h}\left(\psi^{a} u_{h}\right)-\nabla w_{h}\right\|_{\omega^{a}} \\
& \lesssim \min _{w \in H_{0}^{1}\left(\omega^{a}\right)}\left\|\nabla_{h}\left(\psi^{a} u_{h}\right)-\nabla w\right\|_{\omega^{a}} \\
& \leq\left\|\nabla_{h}\left(\psi^{a}\left(u_{h}-u\right)\right)\right\|_{\omega^{a}}
\end{aligned}
$$

by picking $w=\psi^{a} u$.

Application to the localized reconstructions

Using the discrete minimization, we have

$$
\begin{aligned}
\left\|\nabla_{h}\left(\psi^{a} u_{h}-s_{h}^{a}\right)\right\|_{\omega^{a}} & =\min _{w_{h} \in H_{0}^{1}\left(\omega^{a}\right) \cap \mathcal{P}_{p+1}\left(\mathcal{T}_{h}^{a}\right)}\left\|\nabla_{h}\left(\psi^{a} u_{h}\right)-\nabla w_{h}\right\|_{\omega^{a}} \\
& \lesssim \min _{w \in H_{0}^{1}\left(\omega^{a}\right)}\left\|\nabla_{h}\left(\psi^{a} u_{h}\right)-\nabla w\right\|_{\omega^{a}} \\
& \leq\left\|\nabla_{h}\left(\psi^{a}\left(u_{h}-u\right)\right)\right\|_{\omega^{a}}
\end{aligned}
$$

by picking $w=\psi^{a} u$. We can further show that

$$
\left\|\boldsymbol{\nabla}_{h}\left(\psi^{a}\left(u_{h}-s_{h}^{a}\right)\right)\right\|_{\omega^{a}} \lesssim\left\|\boldsymbol{\nabla}_{h}\left(u-u_{h}\right)\right\|_{\omega^{a}}
$$

using Galerkin orthogonality and a broken Poincaré inequality.

Application to the localized reconstructions

Using the discrete minimization, we have

$$
\begin{aligned}
\left\|\nabla_{h}\left(\psi^{a} u_{h}-s_{h}^{a}\right)\right\|_{\omega^{a}} & =\min _{w_{h} \in H_{0}^{1}\left(\omega^{a}\right) \cap \mathcal{P}_{p+1}\left(\mathcal{T}_{h}^{a}\right)}\left\|\nabla_{h}\left(\psi^{a} u_{h}\right)-\nabla w_{h}\right\|_{\omega^{a}} \\
& \lesssim \min _{w \in H_{0}^{1}\left(\omega^{a}\right)}\left\|\nabla_{h}\left(\psi^{a} u_{h}\right)-\nabla w\right\|_{\omega^{a}} \\
& \leq\left\|\nabla_{h}\left(\psi^{a}\left(u_{h}-u\right)\right)\right\|_{\omega^{a}}
\end{aligned}
$$

by picking $w=\psi^{a} u$. We can further show that

$$
\left\|\boldsymbol{\nabla}_{h}\left(\psi^{a}\left(u_{h}-s_{h}^{a}\right)\right)\right\|_{\omega^{a}} \lesssim\left\|\boldsymbol{\nabla}_{h}\left(u-u_{h}\right)\right\|_{\omega^{a}}
$$

using Galerkin orthogonality and a broken Poincaré inequality.
After playing a bit with summation, we can in fact show that

$$
\left\|\nabla_{h}\left(u_{h}-s_{h}\right)\right\|_{k} \lesssim\left\|\nabla_{h}\left(u-u_{h}\right)\right\|_{\tilde{K}}
$$

with a constant independent of p.

Application to the localized reconstructions

Using the discrete minimization, we have

$$
\begin{aligned}
\left\|\nabla_{h}\left(\psi^{a} u_{h}-s_{h}^{a}\right)\right\|_{\omega^{a}} & =\min _{w_{h} \in H_{0}^{1}\left(\omega^{a}\right) \cap \mathcal{P}_{p+1}\left(\mathcal{T}_{h}^{a}\right)}\left\|\nabla_{h}\left(\psi^{a} u_{h}\right)-\nabla w_{h}\right\|_{\omega^{a}} \\
& \lesssim \min _{w \in H_{0}^{1}\left(\omega^{a}\right)}\left\|\nabla_{h}\left(\psi^{a} u_{h}\right)-\nabla w\right\|_{\omega^{a}} \\
& \leq\left\|\nabla_{h}\left(\psi^{a}\left(u_{h}-u\right)\right)\right\|_{\omega^{a}}
\end{aligned}
$$

by picking $w=\psi^{a} u$. We can further show that

$$
\left\|\boldsymbol{\nabla}_{h}\left(\psi^{a}\left(u_{h}-s_{h}^{a}\right)\right)\right\|_{\omega^{a}} \lesssim\left\|\boldsymbol{\nabla}_{h}\left(u-u_{h}\right)\right\|_{\omega^{a}}
$$

using Galerkin orthogonality and a broken Poincaré inequality.
After playing a bit with summation, we can in fact show that

$$
\left\|\nabla_{h}\left(u_{h}-s_{h}\right)\right\|_{k} \lesssim\left\|\nabla_{h}\left(u-u_{h}\right)\right\|_{\tilde{K}}
$$

with a constant independent of p.
A similar argument applies to $\left\|\boldsymbol{\sigma}_{h}^{a}+\psi^{a} \boldsymbol{\nabla}_{h} u_{h}\right\|_{\omega^{a}}$.

Efficiency

We have established earlier that
Guaranteed upper bound

$$
\left\|\boldsymbol{\nabla}\left(u-u_{h}\right)\right\|_{\Omega}^{2} \leq\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s_{h}\right)\right\|_{\Omega}^{2}+\left\|\boldsymbol{\sigma}_{h}+\boldsymbol{\nabla}_{h} u_{h}\right\|_{\Omega}^{2} .
$$

Efficiency

We have established earlier that

Guaranteed upper bound

$$
\left\|\boldsymbol{\nabla}\left(u-u_{h}\right)\right\|_{\Omega}^{2} \leq\left\|\nabla_{h}\left(u_{h}-s_{h}\right)\right\|_{\Omega}^{2}+\left\|\boldsymbol{\sigma}_{h}+\nabla_{h} u_{h}\right\|_{\Omega}^{2} .
$$

The converse bound, namely

Local lower bound

$$
\left\|\nabla_{h}\left(u_{h}-s_{h}\right)\right\|_{K}^{2}+\left\|\sigma_{h}+\boldsymbol{\nabla}_{h} u_{h}\right\|_{K}^{2} \lesssim\left\|\boldsymbol{\nabla}\left(u-u_{h}\right)\right\|_{\widetilde{K}}^{2}
$$

holds, even locally, up a constant independent of p.

Efficiency

We have established earlier that

Guaranteed upper bound

$$
\left\|\nabla\left(u-u_{h}\right)\right\|_{\Omega}^{2} \leq\left\|\nabla_{h}\left(u_{h}-s_{h}\right)\right\|_{\Omega}^{2}+\left\|\boldsymbol{\sigma}_{h}+\nabla_{h} u_{h}\right\|_{\Omega}^{2}
$$

The converse bound, namely

Local lower bound

$$
\left\|\nabla_{h}\left(u_{h}-s_{h}\right)\right\|_{K}^{2}+\left\|\sigma_{h}+\nabla_{h} u_{h}\right\|_{K}^{2} \lesssim\left\|\nabla\left(u-u_{h}\right)\right\|_{\widetilde{K}}^{2}
$$

holds, even locally, up a constant independent of p.
In particular, the overestimation in the upper bound cannot be too large.

The approach for "standard" non-conforming methods Summary

Summary

The error bounds

Guaranteed upper bound

$$
\left\|\boldsymbol{\nabla}\left(u-u_{h}\right)\right\|_{\Omega}^{2} \leq\left\|\nabla_{h}\left(u_{h}-s_{h}\right)\right\|_{\Omega}^{2}+\left\|\boldsymbol{\sigma}_{h}+\boldsymbol{\nabla}_{h} u_{h}\right\|_{\Omega}^{2}
$$

and
Local lower bound

$$
\left\|\nabla_{h}\left(u_{h}-s_{h}\right)\right\|_{K}^{2}+\left\|\sigma_{h}+\nabla_{h} u_{h}\right\|_{K}^{2} \lesssim\left\|\boldsymbol{\nabla}\left(u-u_{h}\right)\right\|_{\widetilde{K}}^{2}
$$

can be obtained by solving local uncoupled finite element problems.

Summary

The error bounds

Guaranteed upper bound

$$
\left\|\nabla\left(u-u_{h}\right)\right\|_{\Omega}^{2} \leq\left\|\nabla_{h}\left(u_{h}-s_{h}\right)\right\|_{\Omega}^{2}+\left\|\boldsymbol{\sigma}_{h}+\nabla_{h} u_{h}\right\|_{\Omega}^{2}
$$

and
Local lower bound

$$
\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s_{h}\right)\right\|_{K}^{2}+\left\|\sigma_{h}+\nabla_{h} u_{h}\right\|_{K}^{2} \lesssim\left\|\boldsymbol{\nabla}\left(u-u_{h}\right)\right\|_{\widetilde{K}}^{2}
$$

can be obtained by solving local uncoupled finite element problems.
The partition of the unity by the hat function ψ^{a} plays a important role.
It is crucial that the ψ^{a} are computable and polynomial.

Summary

The error bounds

Guaranteed upper bound

$$
\left\|\nabla\left(u-u_{h}\right)\right\|_{\Omega}^{2} \leq\left\|\nabla_{h}\left(u_{h}-s_{h}\right)\right\|_{\Omega}^{2}+\left\|\boldsymbol{\sigma}_{h}+\nabla_{h} u_{h}\right\|_{\Omega}^{2}
$$

and
Local lower bound

$$
\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s_{h}\right)\right\|_{K}^{2}+\left\|\sigma_{h}+\nabla_{h} u_{h}\right\|_{K}^{2} \lesssim\left\|\boldsymbol{\nabla}\left(u-u_{h}\right)\right\|_{\widetilde{K}}^{2}
$$

can be obtained by solving local uncoupled finite element problems.
The partition of the unity by the hat function ψ^{a} plays a important role.
It is crucial that the ψ^{a} are computable and polynomial.
Unfortunately, the VEM partition in unity is virtual.

A modified approach suitable for VEM

A modified approach suitable for VEM Key ideas

Virtual partition of unity

In the approach we have just seen, the ψ^{a} are explicitly used in the computations.

Virtual partition of unity

In the approach we have just seen, the ψ^{a} are explicitly used in the computations.

The expression of the ψ^{a} must be available to compute s_{h}^{a} and σ_{h}^{a}. The fact that ψ^{a} is piecewise affine is also important for the lower bounds.

Virtual partition of unity

In the approach we have just seen, the ψ^{a} are explicitly used in the computations.

The expression of the ψ^{a} must be available to compute s_{h}^{a} and σ_{h}^{a}.
The fact that ψ^{a} is piecewise affine is also important for the lower bounds.

Here, we want to extend the approach to a situation where
a) a partition of unity ψ^{a} exists
b) the ψ^{a} satisfy the natural scaling $\left|\psi^{a}\right| \lesssim 1$ and $\left|\nabla \psi^{a}\right| \lesssim h_{\omega^{a}}^{-1}$.
c) the ψ^{a} need not be computable.

Virtual partition of unity

In the approach we have just seen, the ψ^{a} are explicitly used in the computations.

The expression of the ψ^{a} must be available to compute s_{h}^{a} and σ_{h}^{a}.
The fact that ψ^{a} is piecewise affine is also important for the lower bounds.

Here, we want to extend the approach to a situation where
a) a partition of unity ψ^{a} exists
b) the ψ^{a} satisfy the natural scaling $\left|\psi^{a}\right| \lesssim 1$ and $\left|\nabla \psi^{a}\right| \lesssim h_{\omega^{a}}^{-1}$.
c) the ψ^{a} need not be computable.

In other words, the ψ^{a} will appear in the analysis, but not in the algorithms.

Broken Prager-Synger inequality

Earlier, we used the
Prager-Synge identity

$$
\left\|\boldsymbol{\nabla}_{h}\left(u-u_{h}\right)\right\|_{\Omega}^{2}=\min _{s \in H_{0}^{1}(\Omega)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s\right)\right\|_{\Omega}^{2}+\min _{\substack{\sigma \in H \mathcal{H}(\operatorname{div}, \Omega) \\ \boldsymbol{\nabla} \cdot \sigma=f}}\left\|\sigma+\boldsymbol{\nabla}_{h} u_{h}\right\|_{\Omega}^{2},
$$

with suitable s and σ constructed through local problems explicitly involving ψ^{a}.

Broken Prager-Synger inequality

Earlier, we used the

Prager-Synge identity

$$
\left\|\boldsymbol{\nabla}_{h}\left(u-u_{h}\right)\right\|_{\Omega}^{2}=\min _{s \in H_{0}^{1}(\Omega)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s\right)\right\|_{\Omega}^{2}+\min _{\substack{\sigma \in \boldsymbol{H}(\mathrm{div}, \Omega) \\ \boldsymbol{\nabla} \cdot \sigma=f}}\left\|\sigma+\boldsymbol{\nabla}_{h} u_{h}\right\|_{\Omega}^{2},
$$

with suitable s and σ constructed through local problems explicitly involving ψ^{a}.
Here, we would like to invoke a

Broken Prager-Synge inequality

$$
\left\|\boldsymbol{\nabla}_{h}\left(u-u_{h}\right)\right\|_{\Omega}^{2} \lesssim \sum_{a \in \mathcal{V}_{h}}\left(\min _{s^{a} \in H^{1}\left(\omega^{a}\right)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s^{a}\right)\right\|_{\omega^{a}}^{2}+\min _{\substack{\sigma \in \boldsymbol{H}\left(\operatorname{div}, \omega^{a}\right) \\ \boldsymbol{\nabla} \cdot \sigma=f}}\left\|\sigma^{a}+\boldsymbol{\nabla}_{h} u_{h}\right\|_{\omega^{a}}^{2}\right)
$$

where s^{a} and σ^{a} may be computed without explicitly knowing ψ^{a}.

Broken Prager-Synger inequality

Earlier, we used the

Prager-Synge identity

$$
\left\|\boldsymbol{\nabla}_{h}\left(u-u_{h}\right)\right\|_{\Omega}^{2}=\min _{s \in H_{0}^{1}(\Omega)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s\right)\right\|_{\Omega}^{2}+\min _{\substack{\sigma \in \boldsymbol{H}(\mathrm{div}, \Omega) \\ \boldsymbol{\nabla} \cdot \sigma=f}}\left\|\sigma+\boldsymbol{\nabla}_{h} u_{h}\right\|_{\Omega}^{2},
$$

with suitable s and σ constructed through local problems explicitly involving ψ^{a}.
Here, we would like to invoke a

Broken Prager-Synge inequality

$$
\left\|\boldsymbol{\nabla}_{h}\left(u-u_{h}\right)\right\|_{\Omega}^{2} \lesssim \sum_{a \in \mathcal{V}_{h}}\left(\min _{s^{a} \in H^{1}\left(\omega^{a}\right)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s^{a}\right)\right\|_{\omega^{a}}^{2}+\min _{\substack{\sigma \in \boldsymbol{\sigma}\left(\operatorname{div}, \omega^{a}\right) \\ \boldsymbol{\nabla} \cdot \sigma=f}}\left\|\sigma^{a}+\nabla_{h} u_{h}\right\|_{\omega^{a}}^{2}\right)
$$

where s^{a} and σ^{a} may be computed without explicitly knowing ψ^{a}.
The scaling properties of ψ^{a} will appear in \lesssim.

A modified approach suitable for VEM Broken Prager-Synge inequality

Broken Prager-Synge inequality

Our goal is to derive an inequality of the form

Prager-Synge inequality

$$
\left\|\boldsymbol{\nabla}_{h}\left(u-u_{h}\right)\right\|_{\Omega}^{2} \lesssim \sum_{a \in \mathcal{V}_{h}}\left(\min _{s^{a} \in H^{1}\left(\omega^{a}\right)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s^{a}\right)\right\|_{\omega^{a}}^{2}+\min _{\substack{\sigma \in \boldsymbol{H}\left(\operatorname{div}, \omega^{a}\right) \\ \boldsymbol{\nabla} \cdot \sigma=f}}\left\|\sigma^{a}+\boldsymbol{\nabla}_{h} u_{h}\right\|_{\omega^{a}}^{2}\right)
$$

Broken Prager-Synge inequality

Our goal is to derive an inequality of the form

Prager-Synge inequality

$$
\left\|\boldsymbol{\nabla}_{h}\left(u-u_{h}\right)\right\|_{\Omega}^{2} \lesssim \sum_{a \in \mathcal{V}_{h}}\left(\min _{s^{a} \in H^{1}\left(\omega^{a}\right)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s^{a}\right)\right\|_{\omega^{a}}^{2}+\min _{\substack{\sigma \in \boldsymbol{H}\left(\operatorname{div}, \omega^{a}\right) \\ \boldsymbol{\nabla} \cdot \sigma=f}}\left\|\sigma^{a}+\boldsymbol{\nabla}_{h} u_{h}\right\|_{\omega^{a}}^{2}\right)
$$

More specifically, it is in fact possible to show that

$$
\min _{s \in H_{0}^{1}(\Omega)}\left\|\boldsymbol{\nabla}\left(u_{h}-s\right)\right\|_{\omega^{a}}^{2} \lesssim \min _{s^{a} \in H^{1}\left(\omega^{a}\right)}\left\|\nabla_{h}\left(u_{h}-s^{a}\right)\right\|_{\omega^{a}}^{2}
$$

and

$$
\min _{\substack{\sigma \in \boldsymbol{H}(\operatorname{div}, \Omega) \\ \boldsymbol{\nabla} \cdot \sigma=f}}\left\|\sigma^{a}+\boldsymbol{\nabla}_{h} u_{h}\right\|_{\Omega}^{2} \lesssim \min _{\substack{\boldsymbol{\sigma} \in \boldsymbol{H}\left(\operatorname{div}, \omega^{a}\right) \\ \boldsymbol{\nabla} \cdot \boldsymbol{\sigma}=f}}\left\|\sigma^{a}+\nabla_{h} u_{h}\right\|_{\omega^{a}}^{2} .
$$

Broken Prager-Synge inequality

Our goal is to derive an inequality of the form

Prager-Synge inequality

$$
\left\|\boldsymbol{\nabla}_{h}\left(u-u_{h}\right)\right\|_{\Omega}^{2} \lesssim \sum_{a \in \mathcal{V}_{h}}\left(\min _{s^{a} \in H^{1}\left(\omega^{a}\right)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s^{a}\right)\right\|_{\omega^{a}}^{2}+\min _{\substack{\sigma \in \boldsymbol{H}\left(\operatorname{div}, \omega^{a}\right) \\ \boldsymbol{\nabla} \cdot \sigma=f}}\left\|\sigma^{a}+\boldsymbol{\nabla}_{h} u_{h}\right\|_{\omega^{a}}^{2}\right)
$$

More specifically, it is in fact possible to show that

$$
\min _{s \in H_{0}^{1}(\Omega)}\left\|\nabla\left(u_{h}-s\right)\right\|_{\omega^{a}}^{2} \lesssim \min _{s^{a} \in H^{1}\left(\omega^{a}\right)}\left\|\nabla_{h}\left(u_{h}-s^{a}\right)\right\|_{\omega^{a}}^{2}
$$

and

$$
\min _{\substack{\sigma \in \boldsymbol{H}(\operatorname{div}, \Omega) \\ \boldsymbol{\nabla} \cdot \sigma=f}}\left\|\sigma^{a}+\boldsymbol{\nabla}_{h} u_{h}\right\|_{\Omega}^{2} \lesssim \min _{\substack{\boldsymbol{\sigma} \in \boldsymbol{H}\left(\operatorname{div}, \omega^{a}\right) \\ \boldsymbol{\nabla} \cdot \boldsymbol{\sigma}=f}}\left\|\sigma^{a}+\nabla_{h} u_{h}\right\|_{\omega^{a}}^{2} .
$$

I am going to detail how the first inequality is obtained.

Potential reconstruction

We want to upper bound

$$
\min _{s \in H_{0}^{1}(\Omega)}\left\|\nabla_{h}\left(u_{h}-s\right)\right\|_{\Omega}
$$

Potential reconstruction

We want to upper bound

$$
\min _{s \in H_{0}^{1}(\Omega)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s\right)\right\|_{\Omega}
$$

We will do so by using functions $s \in H_{0}^{1}(\Omega)$ of a specific form. Namely,

$$
s^{\star}:=\sum_{a \in \mathcal{V}_{h}} \psi^{a} s^{a} \in H_{0}^{1}(\Omega)
$$

where, for each $a \in \mathcal{V}_{h}, s^{a} \in H^{1}\left(\omega^{a}\right)$ satisfies $\left(s^{a}, 1\right)_{\omega^{a}}=\left(u_{h}, 1\right)_{\omega^{a}}$.

Potential reconstruction

We want to upper bound

$$
\min _{s \in H_{0}^{1}(\Omega)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s\right)\right\|_{\Omega}
$$

We will do so by using functions $s \in H_{0}^{1}(\Omega)$ of a specific form. Namely,

$$
s^{\star}:=\sum_{a \in \mathcal{V}_{h}} \psi^{a} s^{a} \in H_{0}^{1}(\Omega)
$$

where, for each $a \in \mathcal{V}_{h}, s^{a} \in H^{1}\left(\omega^{a}\right)$ satisfies $\left(s^{a}, 1\right)_{\omega^{a}}=\left(u_{h}, 1\right)_{\omega^{a}}$.

Our first task is to show that

$$
\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s^{\star}\right)\right\|_{\Omega}^{2} \leq(d+1) \sum_{a \in \mathcal{V}_{h}}\left\|\boldsymbol{\nabla}_{h}\left(\psi^{a}\left(u_{h}-s^{a}\right)\right)\right\|_{\omega^{a}}^{2} .
$$

Potential reconstruction (continued)

To do so, we fix an element $K \in \mathcal{T}_{h}$. Due to the limited support of the ψ^{a}, we have

$$
\left\|\boldsymbol{\nabla}_{h}\left(u-s^{\star}\right)\right\|_{K}=\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-\sum_{a \in \mathcal{V}_{h}(K)} \psi^{a} s^{a}\right)\right\|_{K}=\left\|\sum_{a \in \mathcal{V}_{h}(K)} \nabla_{h}\left(\psi^{a}\left(u_{h}-s^{a}\right)\right)\right\|_{K} .
$$

Potential reconstruction (continued)

To do so, we fix an element $K \in \mathcal{T}_{h}$. Due to the limited support of the ψ^{a}, we have

$$
\left\|\boldsymbol{\nabla}_{h}\left(u-s^{\star}\right)\right\|_{K}=\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-\sum_{a \in \mathcal{V}_{h}(K)} \psi^{a} s^{a}\right)\right\|_{K}=\left\|\sum_{a \in \mathcal{V}_{h}(K)} \nabla_{h}\left(\psi^{a}\left(u_{h}-s^{a}\right)\right)\right\|_{K} .
$$

Since each K as $d+1$ vertices, the triangle and Cauchy-Schwarz inequality gives:

$$
\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-\sum_{a \in \mathcal{V}_{h}} \psi^{a} s^{a}\right)\right\|_{K}^{2} \leq(d+1) \sum_{a \in \mathcal{V}_{h}(K)}\left\|\nabla_{h}\left(\psi^{a}\left(u_{h}-s^{a}\right)\right)\right\|_{K}^{2}
$$

Potential reconstruction (continued)

To do so, we fix an element $K \in \mathcal{T}_{h}$. Due to the limited support of the ψ^{a}, we have

$$
\left\|\boldsymbol{\nabla}_{h}\left(u-s^{\star}\right)\right\|_{K}=\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-\sum_{a \in \mathcal{V}_{h}(K)} \psi^{a} s^{a}\right)\right\|_{K}=\left\|\sum_{a \in \mathcal{V}_{h}(K)} \nabla_{h}\left(\psi^{a}\left(u_{h}-s^{a}\right)\right)\right\|_{K}
$$

Since each K as $d+1$ vertices, the triangle and Cauchy-Schwarz inequality gives:

$$
\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-\sum_{a \in \mathcal{V}_{h}} \psi^{a} s^{a}\right)\right\|_{K}^{2} \leq(d+1) \sum_{a \in \mathcal{V}_{h}(K)}\left\|\nabla_{h}\left(\psi^{a}\left(u_{h}-s^{a}\right)\right)\right\|_{K}^{2}
$$

After summation over the K, we obtain

$$
\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-\sum_{a \in \mathcal{V}_{h}} \psi^{a} s^{a}\right)\right\|_{\Omega}^{2} \leq(d+1) \sum_{a \in \mathcal{V}_{h}}\left\|\boldsymbol{\nabla}_{h}\left(\psi^{a}\left(u_{h}-s^{a}\right)\right)\right\|_{\omega^{a}}^{2},
$$

and we have sucessfully loacalized the norm.

Potential reconstruction (continued)

To do so, we fix an element $K \in \mathcal{T}_{h}$. Due to the limited support of the ψ^{a}, we have

$$
\left\|\boldsymbol{\nabla}_{h}\left(u-s^{\star}\right)\right\|_{K}=\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-\sum_{a \in \mathcal{V}_{h}(K)} \psi^{a} s^{a}\right)\right\|_{K}=\left\|\sum_{a \in \mathcal{V}_{h}(K)} \nabla_{h}\left(\psi^{a}\left(u_{h}-s^{a}\right)\right)\right\|_{K}
$$

Since each K as $d+1$ vertices, the triangle and Cauchy-Schwarz inequality gives:

$$
\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-\sum_{a \in \mathcal{V}_{h}} \psi^{a} s^{a}\right)\right\|_{K}^{2} \leq(d+1) \sum_{a \in \mathcal{V}_{h}(K)}\left\|\nabla_{h}\left(\psi^{a}\left(u_{h}-s^{a}\right)\right)\right\|_{K}^{2}
$$

After summation over the K, we obtain

$$
\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-\sum_{a \in \mathcal{V}_{h}} \psi^{a} s^{a}\right)\right\|_{\Omega}^{2} \leq(d+1) \sum_{a \in \mathcal{V}_{h}}\left\|\boldsymbol{\nabla}_{h}\left(\psi^{a}\left(u_{h}-s^{a}\right)\right)\right\|_{\omega^{a}}^{2},
$$

and we have sucessfully loacalized the norm.
The next step is to remove the hat function.

Removing the hat function

Consider a vertex $a \in \mathcal{V}_{h}$. Then, due to assumptions on ψ^{a}, we have

$$
\left\|\nabla_{h}\left(\psi^{a}\left(u_{h}-s^{a}\right)\right)\right\|_{\omega^{a}} \lesssim\left\|\nabla_{h}\left(u_{h}-s^{a}\right)\right\|_{\omega^{a}}+h_{\omega^{a}}^{-1}\left\|u_{h}-s^{a}\right\|_{\omega^{a}}
$$

Removing the hat function

Consider a vertex $a \in \mathcal{V}_{h}$. Then, due to assumptions on ψ^{a}, we have

$$
\left\|\boldsymbol{\nabla}_{h}\left(\psi^{a}\left(u_{h}-s^{a}\right)\right)\right\|_{\omega^{a}} \lesssim\left\|\nabla_{h}\left(u_{h}-s^{a}\right)\right\|_{\omega^{a}}+h_{\omega^{a}}^{-1}\left\|u_{h}-s^{a}\right\|_{\omega^{a}} .
$$

Since $\left(u_{h}-s^{a}, 1\right)_{\omega^{a}}=0$, the broken Poincaré inequality controls the second term, and

$$
\left\|\boldsymbol{\nabla}_{h}\left(\psi^{a}\left(u_{h}-s^{a}\right)\right)\right\|_{\omega^{a}} \lesssim\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s^{a}\right)\right\|_{\omega^{a}}
$$

for all $s^{a} \in H^{1}\left(\omega^{a}\right)$ with $\left(s^{a}, 1\right)_{\omega^{a}}=\left(u_{h}, 1\right)_{\omega^{a}}$.

Removing the hat function

Consider a vertex $a \in \mathcal{V}_{h}$. Then, due to assumptions on ψ^{a}, we have

$$
\left\|\boldsymbol{\nabla}_{h}\left(\psi^{a}\left(u_{h}-s^{a}\right)\right)\right\|_{\omega^{a}} \lesssim\left\|\nabla_{h}\left(u_{h}-s^{a}\right)\right\|_{\omega^{a}}+h_{\omega^{a}}^{-1}\left\|u_{h}-s^{a}\right\|_{\omega^{a}} .
$$

Since $\left(u_{h}-s^{a}, 1\right)_{\omega^{a}}=0$, the broken Poincaré inequality controls the second term, and

$$
\left\|\boldsymbol{\nabla}_{h}\left(\psi^{a}\left(u_{h}-s^{a}\right)\right)\right\|_{\omega^{a}} \lesssim\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s^{a}\right)\right\|_{\omega^{a}}
$$

for all $s^{a} \in H^{1}\left(\omega^{a}\right)$ with $\left(s^{a}, 1\right)_{\omega^{a}}=\left(u_{h}, 1\right)_{\omega^{a}}$.

After summation over $a \in \mathcal{V}_{h}$, we have

$$
\min _{s \in H_{0}^{1}(\Omega)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s\right)\right\|_{\Omega}^{2} \leq\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s^{\star}\right)\right\|_{\Omega}^{2} \lesssim \sum_{a \in \mathcal{V}_{h}}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s^{a}\right)\right\|_{\omega^{a}}^{2}
$$

for all $s^{a} \in H^{1}\left(\omega^{a}\right)$ with $\left(s^{a}, 1\right)_{\omega^{a}}=\left(u_{h}, 1\right)_{\omega^{a}}$.

Broken localization of the potential reconstruction

We have just established

$$
\min _{s \in H_{0}^{1}(\Omega)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s\right)\right\|_{\Omega}^{2} \lesssim \sum_{a \in \mathcal{V}_{h}}\left\|\nabla_{h}\left(u_{h}-s^{a}\right)\right\|_{\omega^{a}}^{2}
$$

for all $s^{a} \in H^{1}\left(\omega^{a}\right)$ with $\left(s^{a}, 1\right)_{\omega^{a}}=\left(u_{h}, 1\right)_{\omega^{a}}$.

Broken localization of the potential reconstruction

We have just established

$$
\min _{s \in H_{0}^{1}(\Omega)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s\right)\right\|_{\Omega}^{2} \lesssim \sum_{a \in \mathcal{V}_{h}}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s^{a}\right)\right\|_{\omega^{a}}^{2}
$$

for all $s^{a} \in H^{1}\left(\omega^{a}\right)$ with $\left(s^{a}, 1\right)_{\omega^{a}}=\left(u_{h}, 1\right)_{\omega^{a}}$.
As can be seen, only the gradients of the s^{a} matter in the last bound.
We can freely shift them by a constant to remove the mean-value constraint.

Broken localization of the potential reconstruction

We have just established

$$
\min _{s \in H_{0}^{1}(\Omega)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s\right)\right\|_{\Omega}^{2} \lesssim \sum_{a \in \mathcal{V}_{h}}\left\|\nabla_{h}\left(u_{h}-s^{a}\right)\right\|_{\omega^{a}}^{2}
$$

for all $s^{a} \in H^{1}\left(\omega^{a}\right)$ with $\left(s^{a}, 1\right)_{\omega^{a}}=\left(u_{h}, 1\right)_{\omega^{a}}$.
As can be seen, only the gradients of the s^{a} matter in the last bound.
We can freely shift them by a constant to remove the mean-value constraint.
After minimizing, we obtain
Broken localization of the potential

$$
\min _{s \in H_{0}^{1}(\Omega)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s\right)\right\|_{\Omega}^{2} \lesssim \sum_{a \in \mathcal{V}_{h}} \min _{s^{a} \in H^{1}\left(\omega^{a}\right)}\left\|\nabla_{h}\left(u_{h}-s^{a}\right)\right\|_{\omega^{a}}^{2}
$$

where \lesssim depends on the broken Poincaré constants and the scaling of ψ^{a}.

Broken localization of the flux

The proof of the equilibrated flux term is slightly more involved, but essentially uses the same ideas. It is used in another context in

```
\(\square\) T. Chaumont-Frelet, A. Ern and M. Vohralík, Math. Comp., 2022.
```

We can rigorously show that

Broken localization of the potential

$$
\min _{\substack{\sigma \in \boldsymbol{H}(\operatorname{div}, \Omega) \\ \boldsymbol{\nabla} \cdot \sigma=f}}\left\|\sigma+\boldsymbol{\nabla}_{h} u_{h}\right\|_{\Omega}^{2} \lesssim \sum_{a \in \mathcal{V}_{h}} \min _{\substack{\sigma^{a} \in \boldsymbol{H}\left(\text { div, } \omega^{a}\right) \\ \boldsymbol{\nabla} \cdot \boldsymbol{\sigma}^{a}=f}}\left\|\sigma^{a}+\boldsymbol{\nabla}_{h} u_{h}\right\|_{\omega^{a}}^{2}
$$

where \lesssim depends on the Poincaré constants and the scaling of ψ^{a}.

A broken Prager-Synge inequality

Combining the two estimates we commented earlier, we have
A broken Prager-Synge inequality

$$
\left\|\boldsymbol{\nabla}_{h}\left(u-u_{h}\right)\right\|_{\Omega}^{2} \lesssim \sum_{a \in \mathcal{V}_{h}}\left(\min _{s^{a} \in H^{1}\left(\omega^{a}\right)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s^{a}\right)\right\|_{\omega^{a}}^{2}+\min _{\substack{\sigma^{a} \in \boldsymbol{H}\left(\operatorname{div}, \omega^{a}\right) \\ \boldsymbol{\nabla} \cdot \sigma^{a}=f}}\left\|\sigma^{a}+\boldsymbol{\nabla}_{h} u_{h}\right\|_{\omega^{a}}^{2}\right)
$$

The hidden constant only depends on
a) the Poincaré constant of the patch ω^{a}
b) the scaling of the ψ^{a},
i.e., only on geometrical property of \mathcal{T}_{h}.

A modified approach suitable for VEM Practical construction and efficiency

Practical construction

The localization has been performed at the continuous level:
A broken Prager-Synge inequality

$$
\left\|\boldsymbol{\nabla}_{h}\left(u-u_{h}\right)\right\|_{\Omega}^{2} \lesssim \sum_{a \in \mathcal{V}_{h}}\left(\min _{s^{a} \in \boldsymbol{H}^{1}\left(\omega^{a}\right)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s^{a}\right)\right\|_{\omega^{a}}^{2}+\min _{\substack{\sigma^{a} \in \boldsymbol{H}\left(\mathrm{div}, \omega^{a}\right) \\ \boldsymbol{\nabla} \cdot \sigma^{a}=f}}\left\|\sigma^{a}+\boldsymbol{\nabla}_{h} u_{h}\right\|_{\omega^{a}}^{2}\right)
$$

Practical construction

The localization has been performed at the continuous level:
A broken Prager-Synge inequality

$$
\left\|\boldsymbol{\nabla}_{h}\left(u-u_{h}\right)\right\|_{\Omega}^{2} \lesssim \sum_{a \in \mathcal{V}_{h}}\left(\min _{\substack{a \\ s^{a} \in \mathcal{H}^{1}\left(\omega^{a}\right)}}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s^{a}\right)\right\|_{\omega^{a}}^{2}+\min _{\substack{\sigma^{a} \in \boldsymbol{H}\left(\text { div, } \omega^{a}\right) \\ \boldsymbol{\nabla} \cdot \sigma^{2}=f}}\left\|\sigma^{a}+\boldsymbol{\nabla}_{h} u_{h}\right\|_{\omega^{a}}^{2}\right)
$$

To obtain a practical estimator, we simply use the discretized version
Computable upper-bound

$$
\left\|\nabla_{h}\left(u-u_{h}\right)\right\|_{\Omega}^{2} \lesssim \sum_{a \in \mathcal{V}_{h}} \eta_{a}^{2}
$$

where

$$
\eta_{a}^{2}=\min _{s_{h}^{a} \in \boldsymbol{H}^{1}\left(\omega^{a}\right) \cap \mathcal{P}_{p}\left(\mathcal{T}_{h}^{a}\right)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s_{h}^{a}\right)\right\|_{\omega^{a}}^{2}+\min _{\substack{\boldsymbol{\sigma}_{h}^{a} \in \boldsymbol{H}\left(\operatorname{div}, \omega^{a}\right) \cap \boldsymbol{R} \boldsymbol{T}_{p}\left(\mathcal{T}_{h}^{a}\right) \\ \boldsymbol{\nabla} \cdot \boldsymbol{\sigma}_{h}^{a}=f}}\left\|\boldsymbol{\sigma}_{h}^{a}+\boldsymbol{\nabla}_{h} u_{h}\right\|_{\omega^{a}}^{2} .
$$

Efficiency

The efficiency proof also uses the stable discrete minimization property.

Efficiency

The efficiency proof also uses the stable discrete minimization property.

For instance, we have

$$
\min _{s_{h}^{a} \in H^{1}\left(\omega^{a}\right) \cap \mathcal{P}_{p}\left(\mathcal{T}_{h}\right)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s_{h}^{a}\right)\right\|_{\omega^{a}} \lesssim \min _{s^{a} \in H^{1}\left(\omega^{a}\right)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s^{a}\right)\right\|_{\omega^{a}} \leq\left\|\nabla_{h}\left(u-u_{h}\right)\right\|_{\omega^{a}}
$$

for all $a \in \mathcal{T}_{h}$.

Efficiency

The efficiency proof also uses the stable discrete minimization property.

For instance, we have

$$
\min _{s_{h}^{a} \in H^{1}\left(\omega^{a}\right) \cap \mathcal{P}_{p}\left(\mathcal{T}_{h}\right)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s_{h}^{a}\right)\right\|_{\omega^{a}} \lesssim \min _{s^{a} \in H^{1}\left(\omega^{a}\right)}\left\|\boldsymbol{\nabla}_{h}\left(u_{h}-s^{a}\right)\right\|_{\omega^{a}} \leq\left\|\nabla_{h}\left(u-u_{h}\right)\right\|_{\omega^{a}}
$$

for all $a \in \mathcal{T}_{h}$.

A similar analysis of the flux term shows that

Efficiency

$$
\eta_{a} \lesssim\left\|\nabla_{h}\left(u-u_{h}\right)\right\|_{\omega^{a}}
$$

with a constant independent of p.

Concluding remarks

Concluding remarks

 Summary
Concluding remarks

The framework introduced inA. Ern and M. Vohralík, SIAM J. Numer. Anal., 2015.
can be extended to situation where the partition of unity is virtual.

Concluding remarks

The framework introduced in

A. Ern and M. Vohralík, SIAM J. Numer. Anal., 2015.
can be extended to situation where the partition of unity is virtual.
This leads to a "vertex based" error estimator η_{a}, with each η_{a} is independently computed through small finite element problems.

Concluding remarks

The framework introduced in

A. Ern and M. Vohralík, SIAM J. Numer. Anal., 2015.
can be extended to situation where the partition of unity is virtual.
This leads to a "vertex based" error estimator η_{a}, with each η_{a} is independently computed through small finite element problems.

Together with the idea of constructing a generalized \mathcal{G}_{h}, this paves the way towards estimates

Reliability and efficiency

$$
\left\|\nabla u-\mathcal{G}_{h}\right\|_{\Omega}^{2} \lesssim \sum_{a \in \mathcal{T}_{h}} \eta_{a}^{2}, \quad \eta_{a} \lesssim\left\|\nabla u-\mathcal{G}_{h}\right\|_{\omega^{a}}
$$

with constants independent of p and the choice of stabilization.

Concluding remarks

The framework introduced in

A. Ern and M. Vohralík, SIAM J. Numer. Anal., 2015.
can be extended to situation where the partition of unity is virtual.
This leads to a "vertex based" error estimator η_{a}, with each η_{a} is independently computed through small finite element problems.

Together with the idea of constructing a generalized \mathcal{G}_{h}, this paves the way towards estimates

Reliability and efficiency

$$
\left\|\nabla u-\mathcal{G}_{h}\right\|_{\Omega}^{2} \lesssim \sum_{a \in \mathcal{T}_{h}} \eta_{a}^{2}, \quad \eta_{a} \lesssim\left\|\nabla u-\mathcal{G}_{h}\right\|_{\omega^{a}}
$$

with constants independent of p and the choice of stabilization.
\square T. Chaumont-Frelet, J. Gedicke and L. Mascotto, arXiv, next Monday.

