Causal Modeling

Michèle Sebag

TAU: Tackling the Underspecified

CNRS - INRIA - LRI - Université Paris-Saclay

Paris – Jan. 13th, 2020

Artificial Intelligence / Machine Learning / Data Science

A Case of Irrational Scientific Exuberance

- Underspecified goals
- Underspecified limitations
- Underspecified caveats

Big Data cures everything Big Data can do anything (if big enough) Big Data and Big Brother

Wanted: An AI with common decency

Fair	no biases
Accountable	models can be explained
Transparent	decisions can be explained
Robust	w.r.t. malicious examples

ML & AI, 2

In practice

- Data are ridden with biases
- Learned models are biased (prejudices are transmissible to AI agents)

Issues with robustness

Models are used out of their scope

More

- C. O'Neill, Weapons of Math Destruction, 2016
- Zeynep Tufekci, We're building a dystopia just to make people click on ads, Ted Talks, Oct 2017.

Machine Learning: discriminative or generative modellingGiven a training setiid samples $\sim P(X, Y)$

$$\mathcal{E} = \{(\mathbf{x}_i, y_i), \mathbf{x}_i \in \mathbb{R}^d, i \in [[1, n]]\}$$

Find

- Supervised learning: $\hat{h}: X \mapsto Y$ or $\widehat{P}(Y|X)$
- Generative model $\widehat{P}(X, Y)$

Predictive modelling might be based on correlations If umbrellas in the street. Then it rains

 $\Rightarrow \rightarrow$

The implicit big data promise:

If you can predict what will happen,

then how to make it happen what you want ?

```
\textbf{Knowledge} \rightarrow \textbf{Prediction} \rightarrow \textbf{Control}
```

ML models will be expected to support interventions:

- health and nutrition
- education
- economics/management
- climate

The implicit big data promise, 2

Intervention

Pearl 2009

Intervention do(X = a) forces variable X to value a

Direct cause $X \rightarrow Y$

$$P_{Y|\mathrm{do}(X=a,\mathbf{Z}=\mathbf{c})} \neq P_{Y|\mathrm{do}(X=b,\mathbf{Z}=\mathbf{c})}$$

Example C: Cancer, S : Smoking, G : Genetic factors $P(C|do{S = 0, G = 0}) \neq P(C|do{S = 1, G = 0})$

Intervention

Correlations do not support interventions

F. H. Messerli: Chocolate Consumption, Cognitive Function, and Nobel Laureates, N Engl J Med 2012

Causal models are needed to support interventions

Consumption of chocolate enables to predict # of Nobel prizes but eating more chocolates does not increase # of Nobel prizes

$\textbf{Predictive model} \not\rightarrow \textbf{Causal model}$

Consider

$$X, E_Y, E_Z \sim \text{Uniform}(0, 1),$$
$$Y \leftarrow 0.5X + E_Y,$$
$$Z \leftarrow Y + E_Z,$$

with $E_Y, E_Z \sim \mathcal{N}(0, 1)$ (noise)

Predicting Y

$$\widehat{Y} = 0.25X + 0.5Z$$

8 / 75

If interpreted as a causal model, suggests that Y depends on Z.

Issue

Causes can often be predicted from their effects

Confounders: When correlations do not imply causality

F. H. Messerli: Chocolate Consumption, Cognitive Function, and Nobel Laureates, N Engl J Med 2012

Tentative explanation

- ▶ Both effects of a same cause, $C \not\perp N$.
- But C and N are conditionally independent given W

$C \perp | N | W$

Causality and paradoxes

Facts

- If mother smokes, child weight tends to be low
- If child weight is low, more health problems
- However, low child weight AND mother smokes > low child weight

Interpretation mother smoking beneficial to child's health ?

Explaining away

Many possible causes for low child weight Many of these severely affect child's health (genetic diseases) Compared to these, mother smoking is rather a good news...

An AI with common decency

Desired properties

► Fair	no biases
Accountable	models can be explained
Transparent	decisions can be explained
Robust	w.r.t. malicious examples

Relevance of Causal Modeling

- Decreased sensitivity wrt data distribution
- Support interventions
- Hopes of explanations / bias detection

clamping variable value

1.State of the art

The Causal Discovery Setting

Assume random variables

 $X_1, \ldots X_d$: random variables

and a sample of their joint distribution

$$\mathcal{D} = \{\mathbf{x}_i, i = 1 \dots n\}$$

to be given.

Formal background: Overview

- 1. Key concepts
- 2. Framework
- 3. Approaches

Key concepts: 1. Dependence among pairs of variables

Independent variables X and Y (X $\perp \perp$ Y)

$$X \perp Y$$
 iff $P(X, Y) = P(X).P(Y)$

Dependency tests

Correlation

limited to linear dependencies

Independent variables X and Y (X $\perp \perp$ Y)

$$X \perp Y$$
 iff $P(X, Y) = P(X).P(Y)$

Dependency tests

Correlation

limited to linear dependencies

[Gretton et al., 2005] HSIC, Hilbert-Schmitt Independence Criterion

$$extsf{HSIC}(\mathop{ extsf{Pr}}_{\operatorname{ ilde{XY}}}, \mathcal{F}, \mathcal{G}) := ||\mathcal{C}_{\operatorname{ ilde{XY}}}||^2$$

where $|| \cdot ||$ denotes the Hilbert-Schmidt norm, and C_{XY} a kernel based covariance operator and \mathcal{F}, \mathcal{G} two RKHSs.

Conditional independence a.k.a. hidden confounder

Conditional independence a.k.a. hidden confounder

Conditional dependence a.k.a. V-structure

X and Y are independent; but given Z = true they are not independent (either the machine is complex or the worker is inexperienced...)

Definition of causal relationship

Definition of intervention

do(X = 1) forces variable X to value 1

[Pearl, 2009]

Definition of causal relationship

X is a direct cause of $Y (X \rightarrow Y)$ iff all other variables Z being constant,

$$P_{Y|do(x=1,...,Z=c)} \neq P_{Y|do(x=0,...,Z=c)}$$
 (1)

Definition of causal relationship

Definition of intervention

do(X = 1) forces variable X to value 1

[Pearl, 2009]

Definition of causal relationship

X is a direct cause of $Y (X \rightarrow Y)$ iff all other variables Z being constant,

$$P_{Y|do(X=1,...,Z=c)} \neq P_{Y|do(X=0,...,Z=c)}$$
 (1)

Example *C*: Cancer, *S* : Smoking, *G* : Genetic factors.

$$P(C|do{S=0},G) \neq P(C|do{S=1},G)$$

Markov equivalence class and V-structure

Markov Equivalent Class: $A \perp \!\!\!\perp C \mid B$ and $A \not \!\!\!\perp C$

Markov equivalence class and V-structure

Markov Equivalent Class: $A \perp C \mid B$ and $A \not \perp C$

$$(A) \bullet (B) \bullet (C) \qquad (A) \bullet (B) \bullet (C) \qquad (A) \bullet (B) \bullet (C)$$

V-Structure: $A \not\perp C \mid B$ and $A \perp C$

[Spirtes et al., 2000, Spirtes and Zhang, 2016]

Leveraging Occam's razor principle;

[Janzing, 2019]

 \rightarrow the causal model as the one being the simplest model that fits the data.

Framework: Functional Causal Models (FCMs)

Given $X_1, \ldots X_d$,

$$X_i = f_i(X_{\mathsf{Pa}(i;\mathcal{G})}, E_i), \forall i \in [1, d]$$

with $X_{Pa(i;\mathcal{G})}$ the set of parents of X_i in \mathcal{G} (= causes of X_i),

 E_i a random independent noise variable modeling the unobserved other causes,

 f_i a deterministic function: the causal mechanism

Framework: Functional Causal Models (FCMs)

Given $X_1, \ldots X_d$,

$$X_i = f_i(X_{\mathsf{Pa}(i;\mathcal{G})}, E_i), \forall i \in [1, d]$$

with $X_{Pa(i;\mathcal{G})}$ the set of parents of X_i in \mathcal{G} (= causes of X_i), E_i a random independent noise variable modeling the unobserved other causes, f_i a deterministic function: the causal mechanism

Constraint-based methods, through V-Structures and constraint propagation, output a **CPDAG** (Completed Partially Directed Acyclic Graph).

Ex: Peter-Clark Algorithm (PC)

[Spirtes et al., 2000]

Non-linear extensions (CI tests): PC-HSIC (KCI-test), PC-RCIT

[Zhang et al., 2012, Strobl et al., 2017]

Objective function to optimize such as the Bayesian Information Criterion (BIC):

$$BIC(\mathcal{G}) = -2 \ln L + k * \ln n$$

with L: Likelihood of the model, k: number of parameters, n: Number of samples

Objective function to optimize such as the Bayesian Information Criterion (BIC):

$$BIC(\mathcal{G}) = -2 \ln L + k * \ln n$$

with L: Likelihood of the model, k: number of parameters, n: Number of samples

The graph is optimized with the operators:

- add edge
- remove edge
- revert edge

Ex: Greedy Equivalence Search (GES)

[Chickering, 2002]

Limitations

- Computational cost dependent on the type of test/scoring method used
- Data hungry
- Identifiability issues

Limitations

- Computational cost dependent on the type of test/scoring method used
- Data hungry
- Identifiability issues

Example

$$\begin{array}{l} X_1, E_{X_1}, E_{X_2} \sim \text{Uniform}(0, 1), X_1 \perp \!\!\!\perp E_{X_1}, \ Y \perp \!\!\!\perp E_{X_2} \\ Y \leftarrow 0.5X_1 + E_{X_1}, \\ X_2 \leftarrow Y + E_{X_2}, \end{array}$$

Here $X_1 \perp X_2 | Y$. No V-structure

Diviyan Kalainathan

Assuming linear causal mechanisms, the causal mechanisms can be formulated in terms of linear algebra.

$$\mathbf{X} = B^T \mathbf{X} + E$$

And estimate the *B* matrix, through ICA for LiNGAM

[Shimizu et al., 2006, Hyvärinen and Pajunen, 1999]

 \rightarrow Graphical models

[Pearl, 2009, Friedman et al., 2008]

Ex: Max-Min Hill-Climbing (MMHC) [Tsamardinos et al., 2006] Concave penalized Coordinate Descent (CCDr) [Aragam and Zhou, 2015]

Key approach 4: Exploiting asymmetries in the distribution

 \rightarrow If no v-structure available or causal discovery with 2 variables: leverage assymetries in the distributions.

Additive noise model (ANM):

[Hoyer et al., 2009]

Y = f(X) + E

Ex: Post Non-Linear model (PNL), GPI

[Zhang and Hyvärinen, 2010, Stegle et al., 2010]

Limitations of asymmetry-based approaches

- Restrictive assumptions on the type of causal mechanisms
- Does not take into account conditional independence relations.

[Zhang and Hyvärinen, 2009]

Limitations of asymmetry-based approaches

- Restrictive assumptions on the type of causal mechanisms
- Does not take into account conditional independence relations.

[Zhang and Hyvärinen, 2009]

Example

$$X_1, X_2, E_{X_1} \sim \text{Gaussian}(0, 1), X_1 \perp E_{X_1}, X_2 \perp E_X$$
$$Y \leftarrow 0.5X_1 + X_2 + E_{X_1}$$

 (X_1, Y) and (X_2, Y) are perfect symmetric pairwise distribution (after rescaling) However $X_1 \not\perp X_2 | Y$: A V-structure may be identified

Diviyan Kalainathan

December 17, 2019

22/61

Key approach 5: Supervised learning for causation identification

Reformulate the pairwise cause-effect problem as a pattern recognition problem:

[Guyon, 2013, Guyon, 2014]

Given a pair of variables (X, Y):

Label: $X \to Y$ or $Y \to X$ or $X \leftrightarrow Y$

Example pairs of the cause-effect challenge

State of the art: summary

32 / 75

State of the art: summary

32 / 75
Motivation

State of the art

Formal Background

The cause-effect pair challenge The general setting

Causal Generative Neural Nets

Applications Human Resources Food and Health

Discussion

Causality: What ML can bring ?

Each point: sample of the joint distribution P(A, B). Given variables A, B

34 / 75

E

Causality: What ML can bring, follow'd

Given A, B, consider models

- $\blacktriangleright A = f(B)$
- $\blacktriangleright B = g(A)$

Compare the models

Select the best model: $A \rightarrow B$

Causality: What ML can bring, follow'd

Given A, B, consider models

- $\blacktriangleright A = f(B)$
- $\blacktriangleright B = g(A)$

Compare the models

Select the best model: $A \rightarrow B$

A: Altitude, *B*: Temperature Each point = (altitude, average temperature of a city)

Causality: A machine learning-based approach

Guyon et al, 2014-2015

Pair Cause-Effect Challenges

Gather data: a sample is a pair of variables (A_i, B_i)

lts label ℓ_i is the "true" causal relation (e.g., age "causes" salary)

Input

$\mathcal{E} =$	$\{(A_i,$	B_i, ℓ_i	$), \ell_i$	in -	$\{ \rightarrow,$	$\leftarrow, \bot\!\!\!\bot\}$	}

Example A_i, B_i	Label ℓ_i
A_i causes B_i	\rightarrow
B_i causes A_i	\leftarrow
A_i and B_i are independent	Ш

Output

using supervised Machine Learning

36 / 75

Hypothesis : $(A, B) \mapsto$ Label

Causality: A machine learning-based approach, 2

Guyon et al, 2014-2015

∽ ९ (२ 37 / 75

The Cause-Effect Pair Challenge

Learn a causality classifier (causation estimation)

Like for any supervised ML problem from images

ImageNet 2012

More

Guyon et al., eds, Cause Effect Pairs in Machine Learning, 2019.

Motivation

State of the art

Formal Background

The cause-effect pair challenge The general setting

Causal Generative Neural Nets

Applications Human Resources Food and Health

Discussion

<ロト < 部ト < 差ト < 差ト 差 の Q (~ 39 / 75

Functional Causal Models, a.k.a. Structural Equation Models

Pearl 00-09

(日) (部) (注) (注) (三)

40 / 75

 $X_i = f_i(\operatorname{Pa}(X_i), E_i)$

Tasks

- Finding the structure of the graph (no cycles)
- Finding functions (f_i)

Conducting a causal modelling study

Spirtes et al. 01; Tsamardin	os et al., 06; Hoyer et al. 09					
Daniusis et al., 12; Mooij et al						
Milestones						
 Testing bivariate independence (statistical tests) find edges 	X - Y; Y - Z					
 Conditional independence prune the edges 	$X \perp\!\!\!\perp Z Y$					
 Full causal graph modelling orient the edges 	X o Y o Z					
Challenges						
Computational complexity	tractable approximation					
Conditional independence: data hungry tests						
 Assuming causal sufficiency 	can be relaxed					
	(日) (四) (三) (三) (三) (三) (三) (三) (三) (三) (三) (三	୬୯୯				

X - Y independance

$$P(X,Y) \stackrel{?}{=} P(X).P(Y)$$

Categorical variables

• Others: χ^2 , G-test

Continuous variables

- t-test, z-test
- Hilbert-Schmidt Independence Criterion (HSIC) Gretton et al., 05

$$Cov(f,g) = \mathbb{E}_{x,y}[f(x)g(y)] - \mathbb{E}_x[f(x)]\mathbb{E}_y[g(y)]$$

Find V-structure: $A \perp\!\!\!\perp C$ and $A \not\perp\!\!\!\perp C|B$

Explaining away causes

(日) (部) (注) (注) (三)

Motivation

State of the art

Formal Background

The cause-effect pair challenge The general setting

Causal Generative Neural Nets

Applications Human Resource Food and Health

Discussion

Causal Generative Neural Network

Principle

- Given skeleton
- Given X_i and candidate Pa(i)
- Learn $f_i(\operatorname{Pa}(X_i), E_i)$ as a generative neural net
- Train and compare candidates based on scores

NB

• Can handle confounders $(X_1 \text{ missing} \rightarrow (E_2, E_3 \rightarrow E_{2,3}))$

Goudet et al. 17

given or extracted

Causal Generative Neural Network (2)

Training loss

• Observational data $\mathbf{x} = \{ [x_1, \dots, x_n] \}$ x_i in $\mathbb{R} * *d$

$$\blacktriangleright \quad (\text{Graph}, \hat{f}) \ \hat{\mathbf{x}} = \{ [\hat{x}_1, \dots, \hat{x}_{n'}] \} \qquad \qquad \hat{x}_i \ \text{in } \mathbb{R} * *d$$

Loss: Maximum Mean Discrepancy (x, x̂) (+ parsimony term), with k kernel (Gaussian, multi-bandwidth)

Results on real data: causal protein network

Sachs et al. 05

47 / 75

E

ヘロト 人間 ト 人間 ト 人間 ト

Edge orientation task

method	AUPR	SHD	SID
Constraints			
PC-Gauss	0.19 (0.07)	16.4 (1.3)	91.9 (12.3)
PC-HSIC	0.18 (0.01)	17.1(1.1)	90.8 (2.6)
Pairwise			
ANM	0.34 (0.05)	8.6 (1.3)	85.9 (10.1)
Jarfo	0.33 (0.02)	10.2 (0.8)	92.2 (5.2)
Score-based			
GES	0.26 (0.01)	12.1 (0.3)	92.3 (5.4)
Lingam	0.29 (0.03)	10.5 (0.8)	83.1 (4.8)
CAM	0.37 (0.10)	8.5 (2.2)	78.1 (10.3)
CGNN (\widehat{MMD}_k)	<u>0.74</u> * (0.09)	<u>4.3</u> * (1.6)	46.6* (12.4)

All algorithms start from the skeleton of the graph

AUPR: Area under the Precision Recall Curve SHD: Structural Hamming Distance SID: Structural intervention distance

Goudet et al., 2018

Limitations

- Combinatorial search in the structure space
- Retraining fully the NN for each candidate graph
- MMD Loss is $O(n^2)$
- Limited to DAG

<ロト < 部ト < 言ト < 言ト こ の Q () 49 / 75

Structure Agnostic Modeling

Kalainathan et al. 18

Goal: A generative model

- + Does not require CPDAG as input
- + Avoids combinatorial search for structure
- Less computationally demanding

Structure Agnostic Modeling, 2

The *i*-th neural net

- Learns conditional distribution $P(X_i|X_{i})$ as $\hat{f}_i(X_{i}, E_i)$
- ▶ Filter variables *a*_{*i*,*j*} are used to enforce sparsity (Lasso-like, next slide)
- ▶ 1st non-linear layer builds features $\phi_{i,k}$, 2nd layer builds linear combination of features:

$$f_i(X_{i}, E_i) = \sum \beta_{i,k} \phi_{i,k}(a_{i,1}X_1, \ldots, a_{i,d}X_d, E_i)$$

In the large sample limit, $a_{i,j} = 1$ iff $X_j \in MB(X_j)$ Yu et al. 18

イロト イヨト イヨト イヨト

Structure Agnostic Modeling, 3

Given observational data $\{x_1, \ldots, x_n\} \sim P(X_1, \ldots, X_d)$ x_i in \mathbb{R}^d

Adversarial learning

- Generate $\{\tilde{x}_i^{(j)}\}$ with *j*-th component of $\tilde{x}_i^{(j)}$ set to $\hat{f}_i(x_i, \epsilon)$, $\epsilon \sim \mathcal{N}(0, 1)$
- ▶ Discriminator *D* among observational data $\{x_i\}$ and generated data $\{\tilde{x}_i^{(j)}, i = [[1, n]], j = [[1, d]]\}$
- Learning criterion (adversarial + sparsity)

$$\min \left(\text{Accuracy } (D) + \lambda \sum_{i,j} |a_{i,j}| \right)$$

52 / 75

Structure Agnostic Modeling, 4

Competition between discriminator and sparsity term $\sum \|\mathbf{a}\|_1$

- Avoids combinatorial search for structure
- Cycles are possible
- ▶ DAGness achieved by enforcing constraints on trace of $A = (a_{i,j})$ and A^k

Quantitative benchmark - artificial DAG

Directed acyclic artificial graphs (DAG) of 20 variables

	PC Gauss	PC HSIC	GES	MMHC	DAGL1	LINGAM	CAM	SAM
Linear	0.36	0.29	0.40	0.36	0.30	0.31	0.29	0.49
Sigmoid AM	0.28	0.33	0.18	0.31	0.19	0.19	0.72	0.73
Sigmoid Mix	0.22	0.25	0.21	0.22	0.16	0.12	0.15	<u>0.52</u>
GP AM	0.21	0.35	0.19	0.21	0.15	0.17	0.96	0.74
GP Mix	0.22	0.34	0.18	0.22	0.19	0.14	0.61	0.66
Polynomial	0.27	0.31	0.20	0.11	0.26	0.32	0.47	0.65
NN	0.40	0.38	0.42	0.11	0.43	0.36	0.22	0.60
Execution time	1s	10h	< 1s	< 1s	2s	2s	2.5h	1.2h

Quantitative benchmark - artificial DG (with cycles)

Directed cyclic artificial graphs of 20 variables

	CCD	PC Gauss	GES	MMHC	DAGL1	LINGAM	CAM	SAM
Linear	0.44	0.44	0.20	0.34	0.26	0.19	0.23	0.51
Sigmoid AM	0.31	0.31	0.16	0.32	0.17	0.24	0.37	0.47
Sigmoid Mix	0.31	0.35	0.18	0.34	0.19	0.17	0.22	0.49
GP AM	0.30	0.32	0.17	0.30	0.15	0.23	0.50	0.56
GP Mix	0.24	0.25	0.15	0.24	0.16	0.18	0.26	0.49
Polynomial	0.25	0.33	0.20	0.25	0.17	0.22	0.33	0.42
NN	0.25	0.18	0.18	0.24	0.18	0.16	0.22	0.40
Execution time	1s	1s	< 1s	<1s	2s	2s	2.5h	1.2h

Motivation

State of the art

Formal Background The cause-effect pair challeng The general setting

Causal Generative Neural Nets

Applications Human Resources Food and Health

Discussion

Causal Modeling and Human Resources

Known:

- A Quality of life at work
- B Economic performance
- ... are correlated

employee's perspective firm's perspective

Question: Are there causal relationships ? $A \rightarrow B$; or $B \rightarrow A$; or $\exists C / C \rightarrow A$ and $C \rightarrow B$

Data

- Polls from Ministry of Labor
- Gathered by Group Alpha Secafi (trade union advisor)
- Tax files + social audits for 408 firms

Economic sectors: low tech, medium-low, medium-high and high-tech.

Variables

Economic indicators

- Total number of employees
- Capitalistic intensity, Total payroll, Gini index
- Average salary (of workers, technicians, managers)
- Productivity, Operating profits, Investment rate

People

- Average age, Average seniority, Physical effort,
- Permanent contract rate, Manager rate, Fixed-term contract rate, Temporary job rate, Shift and night work, Turn-over
- Vocational education effort, duration of stints, Average stint rate (for workers, technicians, managers);

イロト イヨト イヨト イヨト 三日

Variables, cont'd

Quality of life at work

- Frequency & Gravity of work injuries, Safety expenses, Safety training expenses
- Absenteism (diseases), Occupational-related diseases
- Resignation rate, Termination rate, Participation rate
- Subsidy to the works council

Men/Women

- Percentage of women (employees, managers)
- Wage gap between women and men (average, for workers, technicians, managers)

General Causal Relations

Access to training \nearrow

- Gravity of work injuries
- \blacktriangleright \searrow Occupational-related diseases

Termination rate 🗡

Absenteism (diseases)

Percentage of managers *∧*

- Access to training
- \blacktriangleright Shift or night working hours

Age 🗡

- ► ∖ Fixed-term contract rate
- Productivity (weak impact)

?

▶ Productivity $\nearrow \rightarrow$ Participation rate \nearrow

Global relations between QLW and performance ?

Failure

Nothing conclusive

Interpretation

- ▶ Exist confounders (controlling QLW and performance) $C \rightarrow A$ and $C \rightarrow B$
- One such confounder is the activity sector
- In different activity sectors, causal relations are different (hampering their identification)
- $\blacktriangleright \Rightarrow$ Condition on confounders

Low-tech sector

- Average salary /, Productivity / very significant
- Occupational-related diseases , Productivity
- Temporary job rate , Gravity of work injuries
- Duration training stints , Termination rate ,

Outcomes & Limitations

Causal modeling and exploratory analysis

- Efficient filtering of plausible relations (several orders of magnitude);
- Complementary w.r.t. visual inspection (experts can be fooled and make sense of correlations & hazards);

63 / 75

Multi-factorial relations ? yes; but even harder to interpret.

Not a ready-made analysis

- Causal relations must be
 - interpreted
 - confirmed by field experiments; polls; interviews.

Motivation

State of the art

Formal Background The cause-effect pair challeng The general setting

Causal Generative Neural Nets

Applications Human Resources Food and Health

Discussion

<ロト < 団ト < 巨ト < 巨ト < 巨ト 差 の Q (や 64/75

A data-driven approach to individual dietary recommendations

Context

- Long-term goal: Personalized dietary recommendations
- Requirement: identify risk index associated to food products
- At a coarse-grained level (lipid, protein, glucid), nothing to see
- At a fine-grained level: 300+ types of pizzas, ranging from ok to very bad.

The wealth of Kantar data

- \blacktriangleright ~22,000 households imes 10 years
- 19M total purchases/year (180,000 products)
- Socio-demographic attributes, varying size

(this study: 2014)

Beware: data rarely collected as should be...

Raw description can hardly be used for meaningful analysis

- 170,000 products for 22,000 households
- Data gathered with (among others) marketing goals where bought, which conditioning
- Most products are sold by 1 vendor
- Most families are going to one vendor

Manual pre-processing

- Consider 10 categories of interest, e.g. bio/non-bio; alcohol yes/no; fresh/frozen
- Merge products with same categories
- ▶ 170,000 \rightarrow ≈ 4,000 products

Example: for beer, we only selected as features of interest: colour (blonde, black, etc.); has-alcohol (yes, no); organic (yes, no)

Methodology

Dimensionality reduction

- 1. Borrowing Natural Language Processing tools, with vector of purchase \approx document food product \approx word
- 2. Using Latent Dirichlet Association to extract "dietary topics"

```
Blei et al. 03
```

Some topics can be directly interpreted The darker the region, the more present the topic (NB: regions are not used to build topics)

Topic 2 "Brittany"

Focus: impact of topics on BMI

Left: Bio/organic topic Top row: Women

Bio food

Right: Frozen food topic Bottom row: Men

Frozen food

High weight of Bio topic is correlated with lower BMI (p < 5%) (particularly so for women).

Does A (eat bio) cause B (better BMI) ?

Three cases

- A does cause B (bio food is better)
- Confounder: exists C that causes A and B (rich/young/educated people tend to consume bio products and have lower BMI);
- Backdoor effects: exists C correlated with A which causes B (people eating bio also tend to eat more greens, which causes lower BMI);

Goal: Find out which case holds

Causal models

Ideally based on randomized controlled trials

Imbens Rubins 15

69/75

Proposed Methodology

Target population: "Bio" peopleTaking inspiration from Abadie Imbens 06= top quantile coordinate on bio topic.

RCT would require a control population

Building a control population

finding matches

- For each bio person, take her consumption z (basket of products)
- Create a falsified consumption z' (replacing each bio product with same, but non-bio, product)
- Find true consumption z " nearest to z' (in LDA space)
- Let the true person with consumption z " be called "falsified bio"

Compare bio and "falsified bio" populations wrt BMI

Bio vs Falsified Bio populations

Left

- Projection on the Bio topic (in log scale)
- ► (Falsified bio population not 0: the bio topic contains e.g. sheep yogurt).

Right

- BMI Histograms of both bio and falsified bio populations
- Statistically significant difference

Next

Chasing confounders

- \blacktriangleright Discriminating bio from "falsified bio" populations w.r.t. socio-professional features: accuracy $\approx 60\%$
- Candidate confounder: mother education level (on-going study)

Next steps

- Confirm conjectures using longitudinal data (2015-2016)
- Interact with nutritionists / sociologists
- Extend the study to consider the impact of, e.g.
 - Price of the food
 - Amount of trans fats
 - Amount of added sugar

Motivation

State of the art

Formal Background

The cause-effect pair challenge The general setting

Causal Generative Neural Nets

Applications Human Resources Food and Health

Discussion

Perspectives: Causality analysis and Big Data

Finding the needle in the haystack

- ▶ Redundant variables (e.g. in economics) → un-interesting relations
- Variable selection
- Feature construction

dimensionality reduction

Beyond causal sufficiency

- Confounders are all over the place (and many are plausible, e.g. age and size of firm; company ownership and shareholdings)
- When prior knowledge available, condition on counfounders
- Use causal relationships on latent variables
 Wang and Blei, 19 to filter causal relationships on initial variables

Thanks!

Isabelle Guyon, Diviyan Kalainathan, Olivier Goudet, David Lopez-Paz, Philippe Caillou, Paola Tubaro, Ksenia Gasnikova