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Artificial Intelligence / Machine Learning / Data Science

A Case of Irrational Scientific Exuberance

I Underspecified goals Big Data cures everything

I Underspecified limitations Big Data can do anything (if big enough)

I Underspecified caveats Big Data and Big Brother

Wanted: An AI with common decency

I Fair no biases

I Accountable models can be explained

I Transparent decisions can be explained

I Robust w.r.t. malicious examples
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ML & AI, 2

In practice

I Data are ridden with biases

I Learned models are biased (prejudices are transmissible to AI agents)

I Issues with robustness

I Models are used out of their scope

More

I C. O’Neill, Weapons of Math Destruction, 2016

I Zeynep Tufekci, We’re building a dystopia just to make people click on
ads, Ted Talks, Oct 2017.
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Machine Learning: discriminative or generative modelling
Given a training set iid samples ∼ P(X ,Y )

E = {(xi , yi ), xi ∈ IRd , i ∈ [[1, n]]}

Find

I Supervised learning: ĥ : X 7→ Y or P̂(Y |X )

I Generative model P̂(X ,Y )

Predictive modelling might be based on correlations
If umbrellas in the street, Then it rains
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The implicit big data promise:

If you can predict what will happen,
then how to make it happen what you want ?

Knowledge → Prediction → Control

ML models will be expected to support interventions:

I health and nutrition

I education

I economics/management

I climate
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The implicit big data promise, 2

Intervention Pearl 2009

Intervention do(X = a) forces variable X to value a

Direct cause X → Y

PY |do(X=a,Z=c) 6= PY |do(X=b,Z=c)

Example C: Cancer, S : Smoking, G : Genetic factors
P(C |do{S = 0,G = 0}) 6= P(C |do{S = 1,G = 0})
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Correlations do not support interventions

Causal models are needed to support interventions

Consumption of chocolate enables to predict # of Nobel prizes

but eating more chocolates does not increase # of Nobel prizes
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Predictive model 6→ Causal model

Consider

X ,EY ,EZ ∼ Uniform(0, 1),

Y ← 0.5X + EY ,

Z ← Y + EZ ,

with EY ,EZ ∼ N (0, 1) (noise)

Predicting Y
Ŷ = 0.25X + 0.5Z

If interpreted as a causal model, suggests that Y depends on Z .

Issue
Causes can often be predicted from their effects
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Confounders: When correlations do not imply causality

Tentative explanation

I Both effects of a same cause, C 6⊥⊥ N.

I But C and N are conditionally independent given W

C ⊥⊥ N|W
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Causality and paradoxes

Facts

I If mother smokes, child weight tends to be low

I If child weight is low, more health problems

I However, low child weight AND mother smokes > low child weight

Interpretation mother smoking beneficial to child’s health ?

Explaining away
Many possible causes for low child weight
Many of these severely affect child’s health (genetic diseases)
Compared to these, mother smoking is rather a good news...
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An AI with common decency

Desired properties

I Fair no biases

I Accountable models can be explained

I Transparent decisions can be explained

I Robust w.r.t. malicious examples

Relevance of Causal Modeling

I Decreased sensitivity wrt data distribution

I Support interventions clamping variable value

I Hopes of explanations / bias detection
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1.State of the art
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Causal Modelling

The Causal Discovery Setting

Assume random variables

X1, . . . Xd : random variables

and a sample of their joint distribution

D = {xi , i = 1 . . . n}

to be given.

Formal background: Overview

1. Key concepts

2. Framework

3. Approaches
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Key concepts: 1. Dependence among pairs of variables

Independent variables X and Y (X ⊥⊥ Y )

X ⊥⊥ Y iff P(X , Y) = P(X).P(Y)

Dependency tests

• Correlation limited to linear dependencies

Y = X 2 + E

Correlation(X , Y) ≈ 0
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Key concepts: 1. Dependence among pairs of variables

Independent variables X and Y (X ⊥⊥ Y )

X ⊥⊥ Y iff P(X , Y) = P(X).P(Y)

Dependency tests

• Correlation limited to linear dependencies

• HSIC, Hilbert-Schmitt Independence Criterion [Gretton et al., 2005]

HSIC(Pr
XY
,F ,G) := ||CXY ||2

where || · || denotes the Hilbert-Schmidt norm, and CXY a kernel based

covariance operator andF ,G two RKHSs.
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Key concepts: 2. Conditional Dependence/Independence

Conditional independence a.k.a. hidden confounder

Conditional dependence a.k.a. V-structure

X = Complex machine Y = Inexperienced Worker

Z = Accident

X and Y are independent; but given Z = true they are not independent (either the

machine is complex or the worker is inexperienced...)
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Definition of causal relationship

Definition of intervention

do(X = 1) forces variable X to value 1

[Pearl, 2009]

Definition of causal relationship

X is a direct cause of Y (X → Y ) iff

all other variables Z being constant,

PY |do(X=1,...,Z=c) 6= PY |do(X=0,...,Z=c) (1)

Example C: Cancer, S : Smoking, G : Genetic factors.

P(C|do{S = 0},G}) 6= P(C|do{S = 1},G})

CS

Intervention

G
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Markov equivalence class and V-structure

Markov Equivalent Class: A⊥⊥ C|B and A⊥6⊥ C

A B C A B C A B C

B

A C

V-Structure: A⊥6⊥ C|B and A⊥⊥ C

[Spirtes et al., 2000, Spirtes and Zhang, 2016]
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Key concepts: 3. Causality with distributional asymmetry

Leveraging Occam’s razor principle; [Janzing, 2019]

→ the causal model as the one being the simplest model that fits the data.
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Framework: Functional Causal Models (FCMs)

Given X1, ..Xd ,

Xi = fi(XPa(i;G), Ei),∀i ∈ [1, d]

with XPa(i;G) the set of parents of Xi in G (= causes of Xi ),

Ei a random independent noise variable modeling the unobserved other causes,

fi a deterministic function: the causal mechanism

E1

f1

X1 E3E2 E4

f4

X4E5

f2 f3

X3

f5

X5

X2



X1 = f1(E1)

X2 = f2(X1, E2)

X3 = f3(X1, E3)

X4 = f4(E4)

X5 = f5(X3, X4, E5)
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Key approach 1: Constraint-based methods

Constraint-based methods, through V-Structures and constraint propagation, output

a CPDAG (Completed Partially Directed Acyclic Graph).

X1

X2 X3

X5

X4

X6

(a) The exact DAG of G.

X1

X2 X3

X5

X4

X6

(b) The CPDAG of G.

Ex: Peter-Clark Algorithm (PC) [Spirtes et al., 2000]

Non-linear extensions (CI tests): PC-HSIC (KCI-test), PC-RCIT

[Zhang et al., 2012, Strobl et al., 2017]
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Key approach 2: Score-based methods

Objective function to optimize such as the Bayesian Information Criterion (BIC):

BIC(G) = −2 ln L + k ∗ ln n

with L: Likelihood of the model, k : number of parameters, n: Number of samples

The graph is optimized with the operators:

• add edge

• remove edge

• revert edge

Ex: Greedy Equivalence Search (GES) [Chickering, 2002]
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Limitations

• Computational cost dependent on the type of test/scoring method used

• Data hungry

• Identifiability issues

Example

X1, EX1 , EX2 ∼ Uniform(0, 1), X1 ⊥⊥ EX1 , Y ⊥⊥ EX2

Y ← 0.5X1 + EX1 ,

X2 ← Y + EX2 ,

X2 Y X1

Here X1 ⊥⊥ X2|Y . No V-structure
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Key approach 3: Global optimization

Assuming linear causal mechanisms, the causal mechanisms can be formulated in

terms of linear algebra.

X = BT X + E

And estimate the B matrix, through ICA for LiNGAM

[Shimizu et al., 2006, Hyvärinen and Pajunen, 1999]

→ Graphical models [Pearl, 2009, Friedman et al., 2008]

Ex: Max-Min Hill-Climbing (MMHC) [Tsamardinos et al., 2006]

Concave penalized Coordinate Descent (CCDr) [Aragam and Zhou, 2015]
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Key approach 4: Exploiting asymmetries in the distribution

→ If no v-structure available or causal discovery with 2 variables: leverage

assymetries in the distributions.

Additive noise model (ANM): [Hoyer et al., 2009]

Y = f(X) + E

Ex: Post Non-Linear model (PNL), GPI

[Zhang and Hyvärinen, 2010, Stegle et al., 2010]
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Limitations of asymmetry-based approaches

• Restrictive assumptions on the type of causal mechanisms

• Does not take into account conditional independence relations.

[Zhang and Hyvärinen, 2009]

Example

X1, X2, EX1 ∼ Gaussian(0, 1), X1 ⊥⊥ EX1 , X2 ⊥⊥ EX1

Y ← 0.5X1 + X2 + EX1

Y

X1 X2

(X1, Y) and (X2, Y) are perfect symmetric pairwise distribution (after rescaling)

However X1 ⊥6⊥ X2|Y : A V-structure may be identified
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Key approach 5: Supervised learning for causation identification

Reformulate the pairwise cause-effect problem as a pattern recognition problem:

[Guyon, 2013, Guyon, 2014]

Given a pair of variables (X , Y):

Label: X → Y or Y → X or X ↔ Y

Example pairs of the cause-effect challenge

Ex: Jarfo [Fonollosa, 2016]
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Causality: What ML can bring ?

Each point: sample of the joint distribution P(A,B).
Given variables A, B

A
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Causality: What ML can bring, follow’d

Given A, B, consider models

I A = f (B)

I B = g(A)

Compare the models

Select the best model: A→ B
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Causality: What ML can bring, follow’d

Given A, B, consider models

I A = f (B)

I B = g(A)

Compare the models

Select the best model: A→ B

A: Altitude, B: Temperature
Each point = (altitude, average temperature of a city)
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Causality: A machine learning-based approach

Guyon et al, 2014-2015

Pair Cause-Effect Challenges

I Gather data: a sample is a pair of variables (Ai ,Bi )

I Its label `i is the “true” causal relation (e.g., age “causes” salary)

Input
E = {(Ai ,Bi , `i ), `i in {→,←,⊥⊥}}

Example Ai ,Bi Label `i
Ai causes Bi →
Bi causes Ai ←
Ai and Bi are independent ⊥⊥

Output using supervised Machine Learning

Hypothesis : (A,B) 7→ Label
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Causality: A machine learning-based approach, 2
Guyon et al, 2014-2015
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The Cause-Effect Pair Challenge

Learn a causality classifier (causation estimation)

I Like for any supervised ML problem from images ImageNet 2012

More

I Guyon et al., eds, Cause Effect Pairs in Machine Learning, 2019.
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Functional Causal Models, a.k.a. Structural Equation Models
Pearl 00-09

Xi = fi (Pa(Xi ),Ei )

Pa(Xi ): Direct causes for Xi Ei : noise variables, all unobserved influences



X1 = f1(E1)

X2 = f2(X1,E2)

X3 = f3(X1,E3)

X4 = f4(E4)

X5 = f5(X3,X4,E5)

Tasks
I Finding the structure of the graph (no cycles)
I Finding functions (fi )
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Conducting a causal modelling study

Spirtes et al. 01; Tsamardinos et al., 06; Hoyer et al. 09

Daniusis et al., 12; Mooij et al. 16

Milestones

I Testing bivariate independence (statistical tests)
find edges X − Y ;Y − Z

I Conditional independence
prune the edges X ⊥⊥ Z |Y

I Full causal graph modelling
orient the edges X → Y → Z

Challenges

I Computational complexity tractable approximation

I Conditional independence: data hungry tests

I Assuming causal sufficiency can be relaxed
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X − Y independance

P(X ,Y )
?
= P(X ).P(Y )

Categorical variables

I Entropy H(X ) = −
∑

x p(x)log(p(x))
x : value taken by X , p(x) its frequency

I Mutual information M(X ,Y ) = H(X ) + H(Y )− H(X ,Y )

I Others: χ2, G-test

Continuous variables

I t-test, z-test

I Hilbert-Schmidt Independence Criterion (HSIC) Gretton et al., 05

Cov(f , g) = IEx,y [f (x)g(y)]− IEx [f (x)]IEy [g(y)]

I Given f : X 7→ IR and g : Y 7→ IR
I Cov(f , g) = 0 for all f , g iff X and Y are independent
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Find V-structure: A ⊥⊥ C and A 6⊥⊥ C |B

Explaining away causes
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Causal Generative Neural Network

Goudet et al. 17

Principle

I Given skeleton given or extracted

I Given Xi and candidate Pa(i)

I Learn fi (Pa(Xi ),Ei ) as a generative neural net

I Train and compare candidates based on scores

NB

I Can handle confounders (X1 missing → (E2,E3 → E2,3))
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Causal Generative Neural Network (2)

Training loss

I Observational data x = {[x1, . . . , xn]} xi in IR ∗ ∗d
I (Graph, f̂ ) x̂ = {[x̂1, . . . , x̂n′ ]} x̂i in IR ∗ ∗d
I Loss: Maximum Mean Discrepancy (x, x̂) (+ parsimony term),

with k kernel (Gaussian, multi-bandwidth)

MMDk(x, x̂) =
1

n2

n∑
i,j

k(xi , xj) +
1

n′2

n′∑
i,j

k(x̂i , x̂j)−
2

n × n′

n∑
i=1

n′∑
j=1

k(xi , x̂j)

I For n, n′ →∞ Gretton 07

MMDk(x, x̂) = 0 ⇒ D(x) = D(x̂)
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Results on real data: causal protein network

Sachs et al. 05
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Edge orientation task

All algorithms start from the skeleton of the graph

method AUPR SHD SID
Constraints
PC-Gauss 0.19 (0.07) 16.4 (1.3) 91.9 (12.3)
PC-HSIC 0.18 (0.01) 17.1 (1.1) 90.8 (2.6)
Pairwise
ANM 0.34 (0.05) 8.6 (1.3) 85.9 (10.1)
Jarfo 0.33 (0.02) 10.2 (0.8) 92.2 (5.2)
Score-based
GES 0.26 (0.01) 12.1 (0.3) 92.3 (5.4)
LiNGAM 0.29 (0.03) 10.5 (0.8) 83.1 (4.8)
CAM 0.37 (0.10) 8.5 (2.2) 78.1 (10.3)

CGNN (M̂MDk ) 0.74* (0.09) 4.3* (1.6) 46.6* (12.4)

AUPR: Area under the Precision Recall Curve
SHD: Structural Hamming Distance
SID: Structural intervention distance
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CGNN

Goudet et al., 2018

Limitations

I Combinatorial search in the structure space

I Retraining fully the NN for each candidate graph

I MMD Loss is O(n2)

I Limited to DAG
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Structure Agnostic Modeling

Kalainathan et al. 18

Goal: A generative model

+ Does not require CPDAG as input

+ Avoids combinatorial search for structure

− Less computationally demanding

Real

Fake

Real Data 

DiscriminatorGenerated 

 Variables
GeneratorsFilters
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^

^

^

X2 X4

X1 X3

a12
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a
i(i-1)

a
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a41
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a43

1

X1 X4

n data 
points

X\1

X\i

X\4

1

1
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Structure Agnostic Modeling, 2

The i-th neural net

I Learns conditional distribution P(Xi |X\i ) as f̂i (X\i ,Ei )

I Filter variables ai,j are used to enforce sparsity (Lasso-like, next slide)

I 1st non-linear layer builds features φi,k , 2nd layer builds linear combination
of features:

fi (X\i ,Ei ) =
∑

βi,kφi,k(ai,1X1, . . . , ai,dXd ,Ei )

In the large sample limit, ai,j = 1 iff Xj ∈ MB(Xj) Yu et al. 18
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Structure Agnostic Modeling, 3

Real

Fake

Real Data 

DiscriminatorGenerated 

 Variables
GeneratorsFilters
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1

Given observational data {x1, . . . , xn} ∼ P(X1, . . . ,Xd) xi in IRd

Adversarial learning
I Generate {x̃ (j)

i } with j-th component of x̃
(j)
i set to f̂i (xi , ε), ε ∼ N (0, 1)

I Discriminator D among observational data {xi} and generated data

{x̃ (j)
i , i = [[1, n]], j = [[1, d ]]}

I Learning criterion (adversarial + sparsity)

min

(
Accuracy (D) + λ

∑
i,j

|ai,j |

)
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Structure Agnostic Modeling, 4

Real

Fake

Real Data 

DiscriminatorGenerated 
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Learning criterion min
(

Accuracy (D) + λ
∑

i,j |ai,j |
)

Competition between discriminator and sparsity term
∑
‖a‖1

I Avoids combinatorial search for structure

I Cycles are possible

I DAGness achieved by enforcing constraints on trace of A = (ai,j) and Ak
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Quantitative benchmark - artificial DAG

Directed acyclic artificial graphs (DAG) of 20 variables

PC Gauss PC HSIC GES MMHC DAGL1 LINGAM CAM SAM
Linear 0.36 0.29 0.40 0.36 0.30 0.31 0.29 0.49
Sigmoid AM 0.28 0.33 0.18 0.31 0.19 0.19 0.72 0.73
Sigmoid Mix 0.22 0.25 0.21 0.22 0.16 0.12 0.15 0.52
GP AM 0.21 0.35 0.19 0.21 0.15 0.17 0.96 0.74
GP Mix 0.22 0.34 0.18 0.22 0.19 0.14 0.61 0.66
Polynomial 0.27 0.31 0.20 0.11 0.26 0.32 0.47 0.65
NN 0.40 0.38 0.42 0.11 0.43 0.36 0.22 0.60
Execution time 1s 10h <1s <1s 2s 2s 2.5h 1.2h
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Quantitative benchmark - artificial DG (with cycles)

Directed cyclic artificial graphs of 20 variables

CCD PC Gauss GES MMHC DAGL1 LINGAM CAM SAM

Linear 0.44 0.44 0.20 0.34 0.26 0.19 0.23 0.51
Sigmoid AM 0.31 0.31 0.16 0.32 0.17 0.24 0.37 0.47
Sigmoid Mix 0.31 0.35 0.18 0.34 0.19 0.17 0.22 0.49
GP AM 0.30 0.32 0.17 0.30 0.15 0.23 0.50 0.56
GP Mix 0.24 0.25 0.15 0.24 0.16 0.18 0.26 0.49
Polynomial 0.25 0.33 0.20 0.25 0.17 0.22 0.33 0.42
NN 0.25 0.18 0.18 0.24 0.18 0.16 0.22 0.40
Execution time 1s 1s <1s <1s 2s 2s 2.5h 1.2h
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Causal Modeling and Human Resources

Known:

A Quality of life at work employee’s perspective

B Economic performance firm’s perspective

I ... are correlated

Question: Are there causal relationships ?
A→ B ; or B → A; or ∃C / C → A and C → B

Data

I Polls from Ministry of Labor

I Gathered by Group Alpha Secafi (trade union advisor)

I Tax files + social audits for 408 firms

Economic sectors: low tech, medium-low, medium-high and high-tech.
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Variables

Economic indicators

I Total number of employees

I Capitalistic intensity, Total payroll, Gini index

I Average salary (of workers, technicians, managers)

I Productivity, Operating profits, Investment rate

People

I Average age, Average seniority, Physical effort,

I Permanent contract rate, Manager rate, Fixed-term contract rate,
Temporary job rate, Shift and night work, Turn-over

I Vocational education effort, duration of stints, Average stint rate (for
workers, technicians, managers);
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Variables, cont’d

Quality of life at work

I Frequency & Gravity of work injuries, Safety expenses, Safety training
expenses

I Absenteism (diseases), Occupational-related diseases

I Resignation rate, Termination rate, Participation rate

I Subsidy to the works council

Men/Women

I Percentage of women (employees, managers)

I Wage gap between women and men (average, for workers, technicians,
managers)
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General Causal Relations

Access to training ↗
I ↘ Gravity of work injuries

I ↘ Occupational-related diseases

Termination rate ↗
I ↗ Absenteism (diseases)

Percentage of managers ↗
I ↗ Access to training

I ↘ Shift or night working hours

Age ↗
I ↘ Fixed-term contract rate

I ↘ Productivity (weak impact)

?

I Productivity ↗ → Participation rate ↗
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Global relations between QLW and performance ?

Failure

I Nothing conclusive

Interpretation

I Exist confounders (controlling QLW and performance) C → A and C → B

I One such confounder is the activity sector

I In different activity sectors, causal relations are different
(hampering their identification)

I ⇒ Condition on confounders
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Low-tech sector

I Resignation rate ↗, Productivity ↘

I Average salary ↗, Productivity ↗ very significant

I Occupational-related diseases ↗, Productivity ↘

I Temporary job rate↗, Gravity of work injuries ↗

I Permanent contract rate ↗, Safety training ↘

I Duration training stints ↗, Termination rate ↘
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Outcomes & Limitations

Causal modeling and exploratory analysis

I Efficient filtering of plausible relations (several orders of magnitude);

I Complementary w.r.t. visual inspection (experts can be fooled and make
sense of correlations & hazards);

I Multi-factorial relations ? yes; but even harder to interpret.

Not a ready-made analysis
I Causal relations must be

I interpreted
I confirmed by field experiments; polls; interviews.
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A data-driven approach to individual dietary recommendations

Context

I Long-term goal: Personalized dietary recommendations

I Requirement: identify risk index associated to food products

I At a coarse-grained level (lipid, protein, glucid), nothing to see

I At a fine-grained level: 300+ types of pizzas, ranging from ok to very bad.

The wealth of Kantar data

I ∼22,000 households × 10 years (this study: 2014)

I 19M total purchases/year (180,000 products)

I Socio-demographic attributes, varying size
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Beware: data rarely collected as should be...

Raw description can hardly be used for meaningful analysis

I 170,000 products for 22,000 households

I Data gathered with (among others) marketing goals
where bought, which conditioning

I Most products are sold by 1 vendor

I Most families are going to one vendor

Manual pre-processing

I Consider 10 categories of interest, e.g. bio/non-bio; alcohol yes/no;
fresh/frozen

I Merge products with same categories

I 170,000 →≈ 4,000 products

Example: for beer, we only selected as features of interest: colour (blonde,
black, etc.); has-alcohol (yes, no); organic (yes, no)
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Methodology
Dimensionality reduction

1. Borrowing Natural Language Processing tools, with
vector of purchase ≈ document
food product ≈ word

2. Using Latent Dirichlet Association to extract “dietary topics”
Blei et al. 03

Some topics can be directly interpreted The darker the region, the more
present the topic (NB: regions are not used to build topics)

Topic 2 Topic 16
”Brittany” ”Sausages++”
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Focus: impact of topics on BMI

Left: Bio/organic topic Right: Frozen food topic
Top row: Women Bottom row: Men

High weight of Bio topic is correlated with lower BMI (p < 5%)
(particularly so for women).
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Does A (eat bio) cause B (better BMI) ?

Three cases

I A does cause B (bio food is better)

I Confounder: exists C that causes A and B (rich/young/educated people
tend to consume bio products and have lower BMI);

I Backdoor effects: exists C correlated with A which causes B (people
eating bio also tend to eat more greens, which causes lower BMI);

Goal: Find out which case holds

Causal models

I Ideally based on randomized controlled trials Imbens Rubins 15
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Proposed Methodology

Taking inspiration from Abadie Imbens 06

Target population: “Bio” people = top quantile coordinate on bio topic.

RCT would require a control population

Building a control population finding matches

I For each bio person, take her consumption z (basket of products)

I Create a falsified consumption z ′ (replacing each bio product with same,
but non-bio, product)

I Find true consumption z“ nearest to z ′ (in LDA space)

I Let the true person with consumption z“ be called ”falsified bio“

Compare bio and ”falsified bio“ populations wrt BMI
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Bio vs Falsified Bio populations

Left

I Projection on the Bio topic (in log scale)

I (Falsified bio population not 0: the bio topic contains e.g. sheep yogurt).

Right

I BMI Histograms of both bio and falsified bio populations

I Statistically significant difference
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Next

Chasing confounders

I Discriminating bio from “falsified bio” populations w.r.t. socio-professional
features: accuracy ≈ 60%

I Candidate confounder: mother education level (on-going study)

Next steps

I Confirm conjectures using longitudinal data (2015-2016)

I Interact with nutritionists / sociologists

I Extend the study to consider the impact of, e.g.
I Price of the food
I Amount of trans fats
I Amount of added sugar
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Perspectives: Causality analysis and Big Data

Finding the needle in the haystack

I Redundant variables (e.g. in economics) → un-interesting relations

I Variable selection

I Feature construction dimensionality reduction

Beyond causal sufficiency

I Confounders are all over the place (and many are plausible, e.g. age and
size of firm; company ownership and shareholdings)

I When prior knowledge available, condition on counfounders

I Use causal relationships on latent variables Wang and Blei, 19

to filter causal relationships on initial variables
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Thanks!

Isabelle Guyon, Diviyan Kalainathan, Olivier Goudet, David Lopez-Paz,
Philippe Caillou, Paola Tubaro,

Ksenia Gasnikova
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