
Speech Recognition and 

Multispeech

Loria Inria, Nancy, France

1



Information carried by speech

� Linguistic content (words)

� Speech recognition

� Recognition of all uttered words, or just some keywords

� Vocal commands, speech transcription, vocal indexing, etc.

� Speaker (who speaks)

� Speaker recognition

� Speaker identification, or speaker authentication

� Diarization (associating speech segments with speakers), etc.

� Language

� Language recognition

� Identification of the spoken language, or of the dialect, accent, etc.

� Paralinguistic information

� Emotions

� Neutral speech, joy, sadness, anger, etc.

� Speaking style

� Spontaneous vs. read speech, sport commentary, etc. 

2



Automatic speech recognition system

� Input:  audio file

� Output: transcription (text)
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Acoustic models

� Hidden Markov Models (HMM)

� Finite state automaton with N states, composed of three 

components: �, �, Π

�A[aij]: matrix of transitions  (NxN)

�Π π� : 	initial	probabilities	 N

�B[bj ]: observation probabilities	

aijπ�

bj 
(O1) bj 

(O2)
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Why hidden?

� Because we see only observations 

� We don’t know the state sequence that produced the observation 

sequence 
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Speech modeled by HMM

� We assume that the speech is produced by a Markov 

system
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Observation probability

� Two possibilities:

� GMM (Gaussian Mixture Model): Observation probability

is modeled by a mixture of M Gaussians

� DNN (Deep Neural Network): Observation probability is

modeled by a Deep Neural Network
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Deep Neural Network (DNN)

� A DNN is defined by three types of parameters:

� The interconnection pattern between the different layers of

neurons

� The training process for updating the weights wi of the

interconnections

� The activation function f that converts a neuron's weighted

input to its output activation
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Architecture example of DNN for 

acoustic model

� MLP (Multi Layer Perceptron)

� 6 hidden layers

� 2048 neurons for each hidden

layer

� Input: size of the acoustic

parameters (39)

� Output: number of HMM states

(4048 context-dependent phone

states)
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TDNN – Time Delay Neural Network [Peddinti et al. 2015]
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V.  Peddinti, G. Chen, V. Manohar, T.Ko, D. Povey, S. Khudanpur, JHU ASpIRE

system: Robust LVCSR with TDNNs i-vector Adaptation and RNN-LM. Proc. of the 

IEEE ASRU, 2015.



Automatic speech recognition system

� Input:  audio file

� Output: transcription (text)
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Language model

� Compute the probability of a word knowing the

previous words

� Two possibilities:

� N-gram

� Recurrent Neural Networks (RNN)
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N-gram

� An n-gram model gives the probability of a word wi given the

n-1 previous words:

� Advantages

� Easy to compute

� Rare events are taken into account

� Drawbacks

� Only 3-grams or 4-grams can be evaluated (short term

dependency)

� No generalization

�In the training corpus “a blue car” “a red Ferrari”

The probability of “a blue Ferrari“ (never seen) will

be badly estimated
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Recurrent Neural Network 

Language Model (RNNLM)

� Continuous space representation (word embedding)

� Using NN for projecting words in a continuous space

� To take into account the temporal structure of language (word sequences)

� Recurrent Neural Networks [Chen et al., 2015]

� [Chen et al, 2015] Xie Chen, Xunying Liu, Mark JF Gales, and Philip C Woodland,
“Improving the training and evaluation efficiency of recurrent neural network language
models,” in Proc. ICASSP, 2015.
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Some properties of word embeddings

� Vector relations between words
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Long term dependency

� To take into account long term dependencies in a sentence

� Ex: les étudiantes inscrites à la conférence ACL sont arrivées

� Add a memory mechanism 

� Long Short Term Memory (LSTM)

[Kumar et al. 2017] S. Kumar, Michael A. Nirschl, D. HoltmannRice, H. Liao, A. 
Theertha Suresh, and F. Yu, Lattice rescoring strategies for long short term memory 
language models in speech recognition, in ASRU Workshop, 2017.

[Li et al. 2020] K Li, Z Liu, T He, H Huang, F Peng, D Povey, S Khudanpur An Empirical 
Study of Transformer-Based Neural Language Model Adaptation, ICASSP 2020.

Short term dependency: bigram

Long term dependency: 8-gram 
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Language model for speech recognition

� Combination of LMs

� Advantage of N-gram: rare events are taken into account

� Advantage of RNNLM: generalization capacity

P(w|h) =λ Pngram(w|h) + (1-λ) PRNNLM(w|h)

Improvement of WER is about 20% relative [Sundermeyer

&Ney 2015]

[Sundermeyer &Ney 2015] M. Sundermeyer, H. Ney, R. Schlüter (2015). From

Feedforward to Recurrent LSTM Neural Networks for Language Modeling, IEEE

Transactions on Audio, Speech and Language Processing, vol.. 23, no. 3, March 2015.
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Automatic speech recognition system

� Input:  audio file

� Output: transcription (text)
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Phonetic lexicon

� Examples in English (from cmudict)

soften S AA F AH N sorbet  S AO R B EY

soften(2) S AO F AH N sorbet(2) S AO R B EH T

� The lexicon specifies the list of words known by the ASR system [Sheikh 2016] 

� An ASR system cannot recognized words that are not in the lexicon

� It is impossible to have a lexicon covering all possible words (because

of person names, company names, product names, etc.)

� Diachronic evolution of vocabularies (due to new topics, new persons, etc.)

� The lexicon also specifies the possible pronunciations of the words

� Must include the usual pronunciation variants

� But one should not include too many useless variants as this increases possible

confusions between vocabulary words

[Sheikh 2016] I. Sheikh. Exploiting Semantic and Topic Context to Improve Recognition of Proper

Names in Diachronic Audio Documents. . Université de Lorraine, 2016.
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Speech recognition errors

� Insertion / Deletion / Substitution

�Ref.  :      I want to go to Paris

�Reco. : well I want to go    Lannion

� WER : Word Error Rate

��� =
���� +���� +�� !

�" #$%"��
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Experimental evaluation

� Kaldi-based Transcription System (KATS) [Povey et al., 

2011] 

� Segmentation and diarization

�Splits and classifies the audio signal into homogeneous segments 

� Non-speech segments (music and silence)

� Telephone speech

� Studio speech

� Parametrization [MFCC] 

�13 MFCC + 13 ∆ and 13 ∆ ∆

� 39-dimension observation vector

[Povey et al., 2011] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. 

Hannemann, P. Motlıcek, Y. Qian, P. Schwarz, J. Silovsky, G. Stemmer, K. Vesely (2011). The 

Kaldi Speech Recognition Toolkit, ASRU

[MFCC] https://en.wikipedia.org/wiki/Mel-frequency_cepstrum
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Corpus
� The training and test data from the radio broadcast news 

corpus (ESTER project [Gravier et al., 2004] )

� Training: 250 hours of manually transcribed shows for 

� France Inter

� Radio France International

� TVME Morocco

� Evaluation:

� 4 hours of speech 

[Gravier et al., 2004] Gravier, G. & Bonastre, Jean-François & Geoffrois, E.
& Galliano, Sebastian & Tait, K. & Choukri, Khalid. (2004). The ESTER
Evaluation Campaign for the Rich Transcription of French Broadcast News.
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Results (Word Error Rate)

The confidence interval +/- 0.4 %

� DNN-based system outperforms the GMM-based system

� WER difference is 5.3% absolute, and 24% relative

� Improvement is statistically significant

� DNN-based acoustic models achieves better classification and has better 

generalization ability
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Human vs machine

� Speech corpus : telephone conversations

(2017 – Microsoft)

� The results obtained with a combination of many speech 
recognition systems get similar to those of professional 
transcribers
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Word Error Rates Switchboard Call Home

Professional transcribers 5,9% 11,3%

Automatic speech recognition

(combination of many

NN-based systems, 

trained on large data sets)

5,8% 11,0%



Conclusion

� From 2012, excellent results of DNN in many domains:

� image recognition, speech recognition, language modelling,

parsing, information retrieval, speech synthesis, translation,

autonomous cars, gaming, etc.

� The DNN technology is now mature to be integrated into products.

� Nowadays, main commercial recognition systems (Microsoft

Cortana, Apple Siri, Google Now and Amazon Alexa) are based on

DNNs.
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Conclusion

But performance still degrades in adverse conditions, such as

� High level noise

� Hands free distant microphones (reverberation problems)

� Accents (non-native speech)

Limited vocabulary (even if very large, there is still the problem of 

person names, location names, etc.)

Still far from an universal recognition system, as powerful as a human 

listener in all conditions

But performance continue to improve…

-
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Deep Neural Networks and speech recognition

Advantages

� Stunning performance 

� Revolution of the state of the art results

� Lot of applications

� No hypothesis on the input data

� Scalability with corpus size

� Generalization

� Good performance for unseen data

� End-to-end systems [Hadian et al, 2018]

� No need to define features

� Lot of toolkits easy to use

� With many examples 

Drawbacks

� Black box

� Hyper parameters tuning

� Huge training data needed

� Supervised training 

� Labelled training data needed

� Computationally intensive

� Training requires GPUs or a 

cluster
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H. Hadian, H. Sameti, D. Povey, and S. Khudanpur, “End-to-end 

speech recognition using lattice-free mmi,” in Proc. Interspeech 2018, 

2018, pp. 12–16



Continuous speech recognition

� Efficient algorithms and tools for building and optimizing models 

from data

� Language � text corpora

� Acoustic � speech corpora (with associated transcription)

� But many choices have to be done by the ASR system developer

� Type of acoustic features, size of temporal windows, etc. 

� Acoustic model structure

� Number of states / of densities / of Gaussian components per density

� Or, type of neural network, number of layers, size of layers

� Some trade-off are necessary

� Few parameters � rough modeling but reliable estimation

� Many parameters � detailed modeling, but estimation may be unreliable

� Training from speech data leads to good recognition performance on 

similar speech data (but performance degrade in different/new 

conditions)

-
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LSTM

w(t)

y(t-2)

y(t)

c(t-2)

w(t-1) w(t+1)

y(t+1)y(t-1)

y(t-1)

c(t-1)

y(t)

c(t)

y(t+1)

c(t+1)
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Long Short Term Memory (LSTM)

w(t)

y(t-1) y(t)

Memory

cell  c(t)

input

gate

forget

gate

output

gate

c(t-1) c(t)

y(t)31

Complex structure including: 

« forget gate » which define

how much recurrent information

(from past frame) should be

kept

« input gate » which define the

new contribution (from current

time frame)

« output gate » which define the

output contribution of this cell


