Discriminative Pattern Mining

Alexandre Termier, Lacodam

HyAIAI meeting @ home
07/05/2020

Prelude: a quick pattern mining refresher

- Frequent itemsets:

Input:

- Transactional dataset D
- Minimum support value (ex: minsup = 2)

Output:

all subsets P of $\{\boldsymbol{\omega}, \boldsymbol{\alpha}, \dot{\omega}\}$ s.t. P appears in at least 2 transactions of D

- $\left\{\infty,{ }^{\infty}, \infty, \infty\right.$ support: 2
- $\{\boldsymbol{\infty}, \dot{\infty}\}$ support: 2
- $\{\infty, \dot{\infty}$,
- $\{\boldsymbol{\infty}, \infty\}$
- $\{\infty, \infty$
- $\{\infty, 0,1$
- \{d $\}$
- $\{4$
- \{ ($\boldsymbol{*}\}$
- \{它\}
support: 2
support: 3
support: 3
support: 2
support: 4
support: 3
support: 4
support: 3

Introduction

- Grand goal of pattern mining: find useful/meaningful patterns
- Totally unsupervised case: this is hard!
- Some data come with hints on interest: multi-class datasets
- Dual-class: Disease / Not disease, Poisonous / Edible, Spam / Not spam
- Multi-class: Young / Adult / Old, US / UK / FR / JP...
- Discriminative pattern mining:
- Input: dual-class dataset
- Find patterns characteristic of a class
- Also called: contrast PM, emerging PM

Interest of discriminative pattern mining

- Get better understanding of class
- Ex: better understand disease (symptoms, affected people, genotype...)
- Ex: Mushroom data :
- $\{$ odor $=$ none, stalk-surface-below-ring $=$ smooth, ring-number $=$ one $\}$: edible 57%, poisonous 0.2%
- Build (interpretable) classifiers
- Monitoring
- Increase / decrease of dissimilarity + symptoms
- Ex: live stream of system measurement versus reference in controlled environment

Applications: spotlight on bioinformatics

- High-order SNP combinations
- SNP : Single-Nucleotide Polymorphism
- Correlate groups of SPNs with diseases (or phenotypic traits)
- Pb: huge number of SNPs (human = 5 millions)
- Differential gene expressions
- Gene = item, Cell type = transaction
- Cell can be cancerous or not
- Value = level of expression of gene for given cell (discretized)
- Goal : discover groups of genes that are constrained to specific intervals of gene expression
- Regulatory motif combinations
- Transcriscription factors (TF) -> help cells to respond to various signals
- Usually response come from groups of TF
- => find most significant groups of TF for a response

Discriminance measures

Discriminance measures

- Measures to evaluate how much a pattern is characteristic of a class
- Many measures have been proposed in the literature
- Can rely on lots of related work in statistics !

Contingency table

D: complete dataset, 2 classes: 1 and 2
D_{1} : elements of D of class 1
D_{2} : elements of D of class 2

	Presence	Absence	Row total
D_{1}	t_{11}	t_{12}	$\left\|D_{1}\right\|=t_{11}+t_{12}$
D_{2}	t_{21}	t_{22}	$\left\|D_{2}\right\|=t_{21}+t_{22}$
Column total	t_{1}	t_{2}	$\|D\|=\left\|D_{1}\right\|+\left\|D_{2}\right\|$

Basic measures

	1	0	Σ
D_{1}	t_{11}	t_{12}	$\left\|D_{1}\right\|$
D_{2}	t_{21}	t_{22}	$\left\|\mathrm{D}_{2}\right\|$
Σ	t_{1}	t_{2}	$\|\mathrm{D}\|$

Given p a pattern:

- Difference of support

$$
\operatorname{DS}\left(p, D_{1}, D_{2}\right)=\left|\sup \left(p, D_{1}\right)-\sup \left(p, D_{2}\right)\right|=\left|t_{11} /\left|D_{1}\right|-t_{12} /\left|D_{2}\right|\right|
$$

- Growth rate

$$
\operatorname{GR}\left(p, D_{1}, D_{2}\right)=\frac{\sup \left(p, D_{1}\right)}{\sup \left(p, D_{2}\right)}=\frac{t_{11} /\left|D_{1}\right|}{t_{12} /\left|D_{2}\right|}
$$

Testing the basic measures

	1	0	Σ
D_{1}	8	2	10
D_{2}	2	8	10
Σ	10	10	20

- DS $=|8 / 10-2 / 10|=0.6$
- $\mathrm{GR}=8 / 2=4$

	1	0	Σ
D_{1}	t_{11}	t_{12}	$\left\|\mathrm{D}_{1}\right\|$
D_{2}	t_{21}	t_{22}	$\left\|\mathrm{D}_{2}\right\|$
Σ	t_{1}	t_{2}	$\|\mathrm{D}\|$

Could be significative

| | 1 | 0 | Σ | | $\bullet D S=\|8 / 400-2 / 400\|$ |
| :---: | :---: | :---: | :---: | :---: | :---: |$=0.015$

Real phenomena, or noise?

Stat. based measures

	1	0	Σ
D_{1}	t_{11}	t_{12}	$\left\|D_{1}\right\|$
D_{2}	t_{21}	t_{22}	$\left\|D_{2}\right\|$
Σ	t_{1}	t_{2}	$\|D\|$

- Odds ratio

$$
O R\left(p, D_{1}, D_{2}\right)=\frac{t_{11} t_{22}}{t_{12} t_{21}}
$$

- Chi square

$$
\chi^{2}=\sum_{i=1}^{i=2} \sum_{j=1}^{j=2} \frac{\left(t_{i j}-E_{i j}\right)^{2}}{E_{i j}}, E_{i j}=\frac{\sum_{q=1}^{q=2} t_{i q} \sum_{q=1}^{q=2} t_{q j}}{|D|}
$$

- Mutual Information

$$
M I\left(p, D_{1}, D_{2}\right)=\sum_{i=1}^{i=2} \sum_{j=1}^{j=2} \frac{t_{i j}}{|D|} \log \frac{t_{i j}| | D \mid}{t_{i}\left|D_{j}\right| /|D|^{2}}
$$

- Information Gain

$$
I G\left(p, D_{1}, D_{2}\right)=\sup \left(p, D_{1}\right)\left(\log \frac{\sup \left(p, D_{1}\right)}{\sup (p, D)}-\log \frac{\left|D_{1}\right|}{|D|}\right)
$$

Testing measures, part 2

	1	0	Σ
D_{1}	t_{11}	t_{12}	$\left\|D_{1}\right\|$
D_{2}	t_{21}	t_{22}	$\left\|D_{2}\right\|$
Σ	t_{1}	t_{2}	$\|D\|$

	1	0	Σ
D_{1}	8	2	10
D_{2}	2	8	10
Σ	10	10	20

- $\mathrm{OR}=\left(8^{*} 8\right) /\left(2^{*} 2\right)=16$
- $X^{2}=7.2$
- MI = 0.19
- IG = 9.305

	1	0	Σ
D_{1}	8	392	400
D_{2}	2	398	400
Σ	10	790	800

- $\mathrm{OR}=(8 * 398 / 2 * 392)=4.06$
- $X^{2}=3.6$
- $\mathrm{MI}=0.01$
- IG = 9.305

Algorithms

Main problems

- Discriminance measures are not anti-monotonic
- The discriminance of a pattern does not depend on the discriminance of its parents
- \rightarrow classical pruning schemes cannot be applied...
- Need a new threshold for the discriminance measure
- Choosing it correctly is hard

Mining EP with borders [Dong et al, KDD 99]

Setting: discrimance measure $=$ growth rate

$$
\begin{aligned}
& \min \sup D 1=\theta \\
& \min \sup D 2=\delta=\theta / \rho \\
& G R=\frac{\text { support }_{D 1}}{\text { support }_{D 2}} \geq \rho
\end{aligned}
$$

All EP live in the ACE triangle

Mining EP with borders [Dong et al, KDD 99]

Setting: discrimance measure = growth rate

$$
\begin{aligned}
& \min \sup \mathrm{D} 2=\theta \\
& \min \sup \mathrm{D} 1=\delta=\theta / \rho \\
& \mathrm{GR}=\frac{\text { support }_{D 1}}{\text { support }_{D 2}} \geq \rho
\end{aligned}
$$

ABG triangle:

- Many Eps
- But low support in both datasets -> hard to compute
- Significance?

Mining EP with borders [Dong et al, KDD 99]

Setting: discrimance measure = growth rate

$$
\begin{aligned}
& \min \sup \mathrm{D} 2=\theta \\
& \min \sup \mathrm{D} 1=\delta=\theta / \rho \\
& \mathrm{GR}=\frac{\text { support }_{D 1}}{\text { support }_{D 2}} \geq \rho
\end{aligned}
$$

EDG triangle:

- High support both datasets
- -> fewer EPs
- Not the priority to solve
- Algo in paper

Mining EP with borders [Dong et al, KDD 99]

Setting: discrimance measure = growth rate

$$
\begin{aligned}
& \min \sup \mathrm{D} 2=\delta \\
& \text { min sup D1 }=\theta \\
& \mathrm{GR}=\frac{\text { support }_{D 1}}{\text { support }_{D 2}} \geq \rho
\end{aligned}
$$

BCDG rectangle:

- High support D_{2} / low support D_{1}
- Many promising EPs
- Not easy to solve -> KDD 99 algo

Other discriminative measures

- Previous algorithm: designed for Growth Rate
- Other measures?
- I present SSDPS, an algorithm we made for OR and RR
- Designed for bioinformatics data:
- Many items
- Few transactions

Hoang-Son Pham, Gwendal Virlet, Dominique Lavenier, Alexandre Termier: Statistically Significant Discriminative Patterns Searching. DaWaK 2019: 105-115

Classical enumeration strategy

Transaction ids	Items									Class	
1	a	b	c			f			i	j	1
2	a	b	c		e		g		i		1
3	a	b	c			f		h		j	1
4		b		d	e		g		i	j	1
5				d		f	g	h	i	j	1
6		b	c		e		g	h		j	0
7	a	b	c			f	g	h			0
8		b	c	d	e			h	i		0
9	a			d	e		g	h		j	0

Pruning strategies ?

Itemset
Frequency
6
6
4
$a b c$
$a b c f$
3

Risk score
$O R=0.5$
$O R=0.5$
$O R=4.5$
$O R=2.0$
NO

Enumeration on transposed matrix

Some anti-monotonicity returns!

For OR, RR: anti-monotonic on a branch of enumeration tree of transposed matrix

Threshold $=1$

-

YES
NO
Pruned

Tidset
12 :-
$12: 8$
12:78
$12: 678$

Itemset
abci
bci
bc
bc

$$
\begin{aligned}
& \text { Risk score } \\
& \mathrm{OR}=+\infty \\
& \mathrm{OR}=2^{*} 3 / 3^{*} 1=2 \\
& \mathrm{OR}=2 * 2 / 3^{*} 2=0.66 \\
& \mathrm{OR}=2^{*} 1 / 3^{*} 3=0.22
\end{aligned}
$$

Statistical significance

Some statistics

- Previous measures give us some info on how discriminative patterns can be
- But does it have statistical meaning?
- \rightarrow need to compute statistical significance
- p-value
- confidence interval

Definitions

- p-value
- Test to determine if null hypothesis can be rejected or not
- Here null hypothesis is: the pattern is not discriminant
- p -value $=$ Proba(current pattern occurences | null-hypothesis is true)
- If p-value <0.05, then null hypothesis can be rejected
- This only means that the pattern is unlikely to come from noise
- At most 5\% False Positives with this value
- Confidence Interval (CI)
- Determine a confidence interval [$\mathrm{LCl}, \mathrm{UCI}]$ for a statistic measure (ex: Odds Ratio - OR)
- $O R=1$ means that the pattern is not characteristic of a class
- If 1 in $[\mathrm{LCl}, \mathrm{UCI}]$ then null hypothesis cannot be rejected
- Here also threshold (usually 95\%)

Multiple hypothesis testing

- If $\mathrm{N}=2^{\text {| } \text { tems }}$ - -1 patterns, then N p-value tests should be made
- Hence « multiple hypothesis testing»
- But (at most) 5% false positives with significance level at 0.05
- N is huge so large number of false positives, and we don't know which ones!
- FWER (Family Wise Error Rate) = proba of at least one False Positive
- Solution: make corrections to the significance level to guarantee false positive rate

Control of FWER

- Bonferroni correction
- Parameters: K nb of tests to do, α significance level (0.05)
- Method: For all tests, reject null hypothesis only if p-value $<\alpha / K$
- Pb :
- $\mathrm{K}=\mathrm{nb}$ of patterns to test - unknown !
- If setting $K=2^{\text {|items| }}-1$, becomes ridiculously strict
- LAMP (Terada et al, PNAS 2013)
- Very infrequent patterns should not be counted as hypothesis to test
- Non-closed patterns should not be counted as hypothesis to test
- Allows a better counting of hypothesis -> better calibration of Bonferroni correction

Conclusion

- Discriminative pattern mining = good tool to discover patterns relevant to a class
- Can be used to build (interpretable) classifiers
- Problem of error correction: how far can it be ignored?
- Still output too many patterns in many cases
- « Dirty » solution (biologists): put (many) statistical filters for post-processing
- «Clean » solution (data miners):
- Patterns sets of discriminative patterns...
- ...with MDL (DiffComp algorithm, group of J. Vreeken)

