Discriminative Pattern Mining

Alexandre Termier, Lacodam

HyAIAI meeting @ home 07/05/2020

Prelude: a quick pattern mining refresher

	•••	4 .	**	Č
Alice	•	á tr	Ś	
Bob	•	ć,	Ŵ	
Charles	A			Ù
Diana		Č,	Ś	è
Erin	A		Ś	ĕ

Input:

- Transactional dataset D
- Minimum support value (ex: minsup = 2)

Output:

all subsets P of { �, �, �, Ď} s.t. P appears in at least 2 transactions of D

• Frequent itemsets:

- support : 2
 support: 2
 support: 2
 support: 3
 support: 3
 support: 2
- support: 4
- support: 3
- support: 4
- support: 3

Introduction

- Grand goal of pattern mining: find useful/meaningful patterns
 - Totally unsupervised case: this is hard!
- Some data come with hints on interest: multi-class datasets
 - **Dual-class**: Disease / Not disease, Poisonous / Edible, Spam / Not spam
 - Multi-class: Young / Adult / Old, US / UK / FR / JP...
- Discriminative pattern mining:
 - Input: dual-class dataset
 - Find patterns characteristic of a class
 - Also called: *contrast* PM, *emerging* PM

Interest of discriminative pattern mining

- Get better understanding of class
 - Ex: better understand disease (symptoms, affected people, genotype...)
 - Ex: Mushroom data :
 - {odor = none, stalk-surface-below-ring = smooth, ring-number = one} : edible 57%, poisonous 0.2%
- Build (interpretable) classifiers
- Monitoring
 - Increase / decrease of dissimilarity + symptoms
 - Ex: live stream of system measurement versus reference in controlled environment

Applications: spotlight on bioinformatics

- High-order SNP combinations
 - SNP : Single-Nucleotide Polymorphism
 - Correlate groups of SPNs with diseases (or phenotypic traits)
 - Pb: huge number of SNPs (human = 5 millions)
- Differential gene expressions
 - Gene = item, Cell type = transaction
 - Cell can be cancerous or not
 - Value = level of expression of gene for given cell (discretized)
 - Goal : discover groups of genes that are constrained to specific intervals of gene expression
- Regulatory motif combinations
 - Transcriscription factors (TF) -> help cells to respond to various signals
 - Usually response come from groups of TF
 - => find most significant groups of TF for a response

Discriminance measures

Discriminance measures

• Measures to evaluate how much a pattern is characteristic of a class

- Many measures have been proposed in the literature
- Can rely on lots of related work in statistics !

Contingency table

D: complete dataset, 2 classes: 1 and 2 D₁: elements of D of class 1 D₂: elements of D of class 2

	Presence	Absence	Row total
D ₁	t ₁₁	t ₁₂	$ D_1 = t_{11} + t_{12}$
D ₂	t ₂₁	t ₂₂	$ D_2 = t_{21} + t_{22}$
Column total	t ₁	t ₂	$ D = D_1 + D_2 $

Basic measures

Given p a pattern:

- Difference of support $DS(p, D_1, D_2) = | sup(p, D_1) - sup(p, D_2) | = | t_{11}/|D_1| - t_{12}/|D_2| |$
- Growth rate

$$GR(p, D_1, D_2) = \frac{\sup(p, D_1)}{\sup(p, D_2)} = \frac{t_{11}/|D_1|}{t_{12}/|D_2|}$$

Testing the basic measures

	1	0	Σ
D_1	8	2	10
D ₂	2	8	10
Σ	10	10	20

	1	0	Σ
D_1	t ₁₁	t ₁₂	$ D_1 $
D ₂	t ₂₁	t ₂₂	D ₂
Σ	t ₁	t ₂	D

Could be significative

	1	0	Σ
D_1	8	392	400
D ₂	2	398	400
Σ	10	790	800

Real phenomena, or noise?

Stat. based measures

• Odds ratio
$$OR(p, D_1, D_2) = \frac{t_{11}t_{22}}{t_{12}t_{21}}$$

• Chi square
$$\chi^2 = \sum_{i=1}^{i=2} \sum_{j=1}^{j=2} \frac{(t_{ij} - E_{ij})^2}{E_{ij}}, E_{ij} = \frac{\sum_{q=1}^{q=2} t_{iq} \sum_{q=1}^{q=2} t_{qj}}{|D|}$$

- Mutual Information $MI(p, D_1, D_2) = \sum_{i=1}^{i=2} \sum_{j=1}^{j=2} \frac{t_{ij}}{|D|} \log \frac{t_{ij}/|D|}{t_i|D_j|/|D|^2}$
- Information Gain $IG(p, D_1, D_2) = sup(p, D_1)(log \frac{sup(p, D_1)}{sup(p, D)} log \frac{|D_1|}{|D|})$

Testing measures, part 2

	1	0	Σ
D_1	t ₁₁	t ₁₂	$ D_1 $
D ₂	t ₂₁	t ₂₂	D ₂
Σ	t ₁	t ₂	D

	1	0	Σ
D_1	8	2	10
D ₂	2	8	10
Σ	10	10	20

- OR = (8*8) / (2*2) = 16
- X² = 7.2
- MI = 0.19
- IG = 9.305

	1	0	Σ
D_1	8	392	400
D ₂	2	398	400
Σ	10	790	800

- OR = (8*398 / 2*392) = 4.06
- X² = 3.6
- MI = 0.01
- IG = 9.305

Algorithms

Main problems

- Discriminance measures are not anti-monotonic
 - The discriminance of a pattern does not depend on the discriminance of its parents
 - \rightarrow classical pruning schemes cannot be applied...
- Need a new threshold for the discriminance measure
 - Choosing it correctly is hard

Setting: discrimance measure = **growth rate**

Setting: discrimance measure = **growth rate**

Setting: discrimance measure = **growth rate**

min sup D2 = θ min sup D1 = $\delta = \theta/\rho$ GR = $\frac{support_{D1}}{support_{D2}} \ge \rho$

EDG triangle:

- High support both datasets
- -> fewer EPs
- Not the priority to solve
 - Algo in paper

 D_1

 D_2

17

Setting: discrimance measure = **growth rate**

Other discriminative measures

- Previous algorithm: designed for Growth Rate
- Other measures?
- I present SSDPS, an algorithm we made for OR and RR
- Designed for bioinformatics data:
 - Many items
 - Few transactions

Hoang-Son Pham, Gwendal Virlet, Dominique Lavenier, Alexandre Termier: Statistically Significant Discriminative Patterns Searching. DaWaK 2019: 105-115

Classical enumeration strategy

Enumeration on transposed matrix

Some anti-monotonicity returns!

YES

NO

Pruned

For OR, RR: anti-monotonic on a branch of enumeration tree of transposed matrix

Statistical significance

Some statistics

- Previous measures give us some info on how discriminative patterns can be
- But does it have statistical meaning?
- $\bullet \rightarrow$ need to compute statistical significance
 - p-value
 - confidence interval

Definitions

• p-value

- Test to determine if null hypothesis can be rejected or not
 - Here null hypothesis is: *the pattern is not discriminant*
- p-value = Proba(current pattern occurences | null-hypothesis is true)
- If p-value < 0.05, then null hypothesis can be rejected
 - This only means that the pattern is unlikely to come from noise
 - At most 5% False Positives with this value
- Confidence Interval (CI)
 - Determine a confidence interval [LCI, UCI] for a statistic measure (ex: Odds Ratio OR)
 - OR = 1 means that the pattern is not characteristic of a class
 - If 1 in [LCI, UCI] then null hypothesis cannot be rejected
 - Here also threshold (usually 95%)

Multiple hypothesis testing

- If N = 2^{|Items|}-1 patterns, then N p-value tests should be made
 - Hence « multiple hypothesis testing »
- But (at most) 5% false positives with significance level at 0.05
 - N is huge so large number of false positives, and we don't know which ones!
 - FWER (Family Wise Error Rate) = proba of at least one False Positive
- Solution: make corrections to the significance level to guarantee false positive rate

Control of FWER

- Bonferroni correction
 - Parameters: K nb of tests to do, α significance level (0.05)
 - Method: For all tests, reject null hypothesis only if p-value < α / K
 - Pb:
 - K = nb of patterns to test unknown !
 - If setting K = 2^{|items|} -1, becomes ridiculously strict
- LAMP (Terada et al, PNAS 2013)
 - Very infrequent patterns should not be counted as hypothesis to test
 - Non-closed patterns should not be counted as hypothesis to test
 - Allows a better counting of hypothesis -> better calibration of Bonferroni correction

Conclusion

- Discriminative pattern mining = good tool to discover patterns relevant to a class
- Can be used to build (interpretable) classifiers
- Problem of error correction: how far can it be ignored?
- Still output too many patterns in many cases
 - « Dirty » solution (biologists): put (many) statistical filters for post-processing
 - « Clean » solution (data miners):
 - Patterns sets of discriminative patterns...
 - ...with MDL (DiffComp algorithm, group of J. Vreeken)