

# eXplainable Artificial Intelligence: A Literature Review

Alessandro Leite & Marc Schoenauer

### What can AI do?



Explanations

reflect an attempt to communicate an understanding<sup>a</sup>

<sup>a</sup>Frank C Keil. "Explanation and understanding". In: *Annu. Rev. Psychol.* 57 (2006), pp. 227–254. <sup>b</sup>Tania Lombrozo. "Explanation and abductive inference". In: (2012).



Alessandro Leite & Marc Schoenauer – eXplainable Artificial Intelligence: A Literature Review

#### Explanations

- reflect an attempt to communicate an understanding<sup>a</sup>
- create trajectories, expanding individuals' understanding in real-time

<sup>a</sup>Frank C Keil. "Explanation and understanding". In: *Annu. Rev. Psychol.* 57 (2006), pp. 227–254. <sup>b</sup>Tania Lombrozo. "Explanation and abductive inference". In: (2012).



#### Explanations

- reflect an attempt to communicate an understanding<sup>a</sup>
- create trajectories, expanding individuals' understanding in real-time
- may highlight incompleteness

<sup>a</sup>Frank C Keil. "Explanation and understanding". In: *Annu. Rev. Psychol.* 57 (2006), pp. 227–254. <sup>b</sup>Tania Lombrozo. "Explanation and abductive inference". In: (2012).



Alessandro Leite & Marc Schoenauer – eXplainable Artificial Intelligence: A Literature Review

#### Explanations

- reflect an attempt to communicate an understanding<sup>a</sup>
- create trajectories, expanding individuals' understanding in real-time
- may highlight incompleteness
- may provide common sense mechanisms

<sup>a</sup>Frank C Keil. "Explanation and understanding". In: *Annu. Rev. Psychol.* 57 (2006), pp. 227–254. <sup>b</sup>Tania Lombrozo. "Explanation and abductive inference". In: (2012).



Alessandro Leite & Marc Schoenauer – eXplainable Artificial Intelligence: A Literature Review

#### Explanations

- reflect an attempt to communicate an understanding<sup>a</sup>
- create trajectories, expanding individuals' understanding in real-time
- may highlight incompleteness
- may provide common sense mechanisms
- relate the event being explained to principles, invoking causal relations<sup>b</sup>

<sup>a</sup>Frank C Keil. "Explanation and understanding". In: *Annu. Rev. Psychol.* 57 (2006), pp. 227–254. <sup>b</sup>Tania Lombrozo. "Explanation and abductive inference". In: (2012).

#### Explanations

- reflect an attempt to communicate an understanding<sup>a</sup>
- > create trajectories, expanding individuals' understanding in real-time
- may highlight incompleteness
- may provide common sense mechanisms
- relate the event being explained to principles, invoking causal relations<sup>b</sup>
- answer a "why question" justifying an event

<sup>a</sup>Frank C Keil. "Explanation and understanding". In: *Annu. Rev. Psychol.* 57 (2006), pp. 227–254. <sup>b</sup>Tania Lombrozo. "Explanation and abductive inference". In: (2012).

#### Prediction is the most common reason for explanation<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>Fritz Heider. The psychology of interpersonal relations. Wiley, 1958.



Interpretability

It describes the internals of a system in a way that is understandable to humans<sup>a</sup>



<sup>&</sup>lt;sup>a</sup>Finale Doshi-Velez and Been Kim. "Towards a rigorous science of interpretable machine learning". In: *arXiv:1702.08608* (2017).

Interpretability

- It describes the internals of a system in a way that is understandable to humans<sup>a</sup>
- It must employ a vocabulary that is meaningful for a human observer

<sup>a</sup>Finale Doshi-Velez and Been Kim. "Towards a rigorous science of interpretable machine learning". In: *arXiv:1702.08608* (2017).

#### Interpretability

- It describes the internals of a system in a way that is understandable to humans<sup>a</sup>
- It must employ a vocabulary that is meaningful for a human observer

<sup>a</sup>Finale Doshi-Velez and Been Kim. "Towards a rigorous science of interpretable machine learning". In: *arXiv:1702.08608* (2017).

Explainability

A characteristic of a model, agnostic w.r.t. the type of model



<sup>&</sup>lt;sup>a</sup>Alejandro Barredo Arrieta et al. "Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI". In: *Information Fusion* 58 (2020), pp. 82–115.

#### Interpretability

- It describes the internals of a system in a way that is understandable to humans<sup>a</sup>
- It must employ a vocabulary that is meaningful for a human observer

<sup>a</sup>Finale Doshi-Velez and Been Kim. "Towards a rigorous science of interpretable machine learning". In: *arXiv:1702.08608* (2017).

#### Explainability

- A characteristic of a model, agnostic w.r.t. the type of model
- Provide the reasons for the behavior of a given machine learning model<sup>a</sup>



<sup>&</sup>lt;sup>a</sup>Alejandro Barredo Arrieta et al. "Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI". In: *Information Fusion* 58 (2020), pp. 82–115.

#### Interpretability

- It describes the internals of a system in a way that is understandable to humans<sup>a</sup>
- It must employ a vocabulary that is meaningful for a human observer

<sup>a</sup>Finale Doshi-Velez and Been Kim. "Towards a rigorous science of interpretable machine learning". In: *arXiv:1702.08608* (2017).

#### Explainability

- A characteristic of a model, agnostic w.r.t. the type of model
- Provide the reasons for the behavior of a given machine learning model<sup>a</sup>
- Any action taken with the intent of providing an explanation of a model to a human observer

<sup>a</sup>Alejandro Barredo Arrieta et al. "Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI". In: *Information Fusion* 58 (2020), pp. 82–115.

### XAI and the social sciences

"looking at how humans explain to each other can serve as a useful starting point for explanation in artificial intelligence" – Miller  $(2019)^2$ 



Figure 1: Scope of explainable AI

<sup>&</sup>lt;sup>2</sup>Tim Miller. "Explanation in artificial intelligence: Insights from the social sciences". In: Artificial intelligence 267 (2019), pp. 1–38,



Assumptions

Human observers can query the AI system whenever they want



Alessandro Leite & Marc Schoenauer - eXplainable Artificial Intelligence: A Literature Review

#### Assumptions

- Human observers can query the AI system whenever they want
- The output is the answer of a query

Innía

Alessandro Leite & Marc Schoenauer – eXplainable Artificial Intelligence: A Literature Review

#### Assumptions

- Human observers can query the AI system whenever they want
- The output is the answer of a query
- Output varies by type of task

Innía

#### Assumptions

- Human observers can query the AI system whenever they want
- The output is the answer of a query
- Output varies by type of task
- Human observers have different knowledge and beliefs

#### Assumptions

- Human observers can query the AI system whenever they want
- The output is the answer of a query
- Output varies by type of task
- Human observers have different knowledge and beliefs
- The system knows (by some way) the profile of which human observer

### **Explanation**

Al system provides evidences for each of its outputs

The focus is on the capacity to provide an explanation, not on its:

- validity
- correctness
- intelligibility
- No metric or evaluation
- Unaware of observers' profiles

naín

# Meaningful

Al system provides explanations that are understandable by the recipient

- How to evaluate the meaningfulness of an explanation?
  - the receipt can understand it (can be difficult to assess)
  - (s)he can use it to complete a task (utility, ..., how to know?)
  - feedback loop (e.g., how useful was this explanation?)
  - Psychological differences influence how people interpret and judge how meaningful an explanation is
  - Meaningful changes as people's experiences evolve
- A receipt can represent groups (e.g., data scientists, developers, regulators, judges, ...)
- System must know who is querying ....
- Meaningful is influenced by receipt's knowledge, experiences, and mental process

## **Explanation accuracy**

Al system's explanations correctly reflect system's process for generating the output

It is:

- observer-dependent
- different from decision accuracy
- measured accord to some pre-defined metrics (e.g., few works on this topic)
- without overlap with the meaningful principle
- Explanation accuracy increases when the system can generate multiple types of explanations
- Generator/discriminator approach



### **Knowledge limits**

Al systems are aware of the **cases which they were not designed** or allowed to **operate on**, or on which their **answers** are **unreliable** 

- The system includes in its explanations its confidence level (i.e., silence is not an answer)
- May prevent misleading, dangerous, outputs
- Need to be queried. Therefore, ...
- It may change according to the query
  - Is there a bird in this photo?
  - What is the family of the bird in this photo?

## **Current explainable approaches**



Alessandro Leite & Marc Schoenauer – eXplainable Artificial Intelligence: A Literature Review

## Post-hoc explainability



Ínría

Alessandro Leite & Marc Schoenauer – eXplainable Artificial Intelligence: A Literature Review

### Post-hoc explainability



Ínría

### Post-hoc explainability



Ínría

Alessandro Leite & Marc Schoenauer – eXplainable Artificial Intelligence: A Literature Review

#### Local explanations

**Global explanations** 

Explain individual predictions

nría

Alessandro Leite & Marc Schoenauer - eXplainable Artificial Intelligence: A Literature Review

#### Local explanations

Explain individual predictions

**Global explanations** 

Explain the behavior of a model



Alessandro Leite & Marc Schoenauer – eXplainable Artificial Intelligence: A Literature Review

#### Local explanations

- Explain individual predictions
- Help in unearthing biases in the neighborhood of a given sample

#### **Global explanations**

Explain the behavior of a model



#### Local explanations

- Explain individual predictions
- Help in unearthing biases in the neighborhood of a given sample

#### **Global explanations**

- Explain the behavior of a model
- Highlight biases affecting larger subgroups

naín

#### Local explanations

- Explain individual predictions
- Help in unearthing biases in the neighborhood of a given sample
- Help in checking out if individual predictions are correctly being made

#### **Global explanations**

- Explain the behavior of a model
- Highlight biases affecting larger subgroups

#### Local explanations

- Explain individual predictions
- Help in unearthing biases in the neighborhood of a given sample
- Help in checking out if individual predictions are correctly being made

#### **Global explanations**

- Explain the behavior of a model
- Highlight biases affecting larger subgroups
- Help in determining if the model is in someway ready for deployment

### Post-hoc explainability: feature importance methods





# Local Interpretable Model-Agnostic Explanations (LIME)<sup>3</sup>

Model agnostic explanation method based on feature importance



<sup>&</sup>lt;sup>3</sup> Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ""Why should i trust you?" Explaining the predictions of any classifier". In: 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016, pp. 1135–1144,



# Local Interpretable Model-Agnostic Explanations (LIME)<sup>3</sup>

- Model agnostic explanation method based on feature importance
- Draw a perturbed sample of weighted instances  $\{z \in \mathbb{R}^d\}$ around a point  $x_i$  by exploiting a proximity measure  $\pi_x$



<sup>&</sup>lt;sup>3</sup> Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ""Why should i trust you?" Explaining the predictions of any classifier". In: 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016, pp. 1135–1144,


Model agnostic explanation method based on feature importance

- Draw a perturbed sample of weighted instances {z ∈ ℝ<sup>d</sup>} around a point x<sub>i</sub> by exploiting a proximity measure π<sub>x</sub>
- Fed them to the black-box model b(z) to predict the output for each sample



<sup>&</sup>lt;sup>3</sup> Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ""Why should i trust you?" Explaining the predictions of any classifier". In: 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016, pp. 1135–1144,



- Model agnostic explanation method based on feature importance
- Draw a perturbed sample of weighted instances  $\{z \in \mathbb{R}^d\}$ around a point  $x_i$  by exploiting a proximity measure  $\pi_x$
- Fed them to the black-box model b(z) to predict the output for each sample
- Weights the samples according to the distance to x<sub>i</sub>



<sup>&</sup>lt;sup>3</sup> Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ""Why should i trust you?" Explaining the predictions of any classifier". In: 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016, pp. 1135–1144,



- Model agnostic explanation method based on feature importance
- Draw a perturbed sample of weighted instances {z ∈ ℝ<sup>d</sup>} around a point x<sub>i</sub> by exploiting a proximity measure π<sub>x</sub>
- Fed them to the black-box model b(z) to predict the output for each sample
- Weights the samples according to the distance to x<sub>i</sub>
- Train an explanation model g(·): sparse linear model on the weighted samples



<sup>&</sup>lt;sup>3</sup> Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ""Why should i trust you?" Explaining the predictions of any classifier". In: 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016, pp. 1135–1144,



- Model agnostic explanation method based on feature importance
- Draw a perturbed sample of weighted instances {z ∈ ℝ<sup>d</sup>} around a point x<sub>i</sub> by exploiting a proximity measure π<sub>x</sub>
- Fed them to the black-box model b(z) to predict the output for each sample
- Weights the samples according to the distance to x<sub>i</sub>
- Train an explanation model g(·): sparse linear model on the weighted samples





<sup>&</sup>lt;sup>3</sup> Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ""Why should i trust you?" Explaining the predictions of any classifier". In: 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016, pp. 1135–1144,



- Model agnostic explanation method based on feature importance
- Draw a perturbed sample of weighted instances {z ∈ ℝ<sup>d</sup>} around a point x<sub>i</sub> by exploiting a proximity measure π<sub>x</sub>
- Fed them to the black-box model b(z) to predict the output for each sample
- Weights the samples according to the distance to x<sub>i</sub>
- Train an explanation model g(·): sparse linear model on the weighted samples
- Use  $q(\cdot)$  to explain
- The explanation are the weights of the linear model



<sup>&</sup>lt;sup>3</sup> Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ""Why should i trust you?" Explaining the predictions of any classifier". In: 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016, pp. 1135–1144,



- Model agnostic explanation method based on feature importance
- Draw a perturbed sample of weighted instances {z ∈ ℝ<sup>d</sup>} around a point x<sub>i</sub> by exploiting a proximity measure π<sub>x</sub>
- Fed them to the black-box model b(z) to predict the output for each sample
- Weights the samples according to the distance to x<sub>i</sub>
- Train an explanation model g(·): sparse linear model on the weighted samples
- Use g(·) to explain
- The explanation are the weights of the linear model
- There are various to overcome LIME's limitations: KL-LIME, DLIME, ILIME, ALIME



<sup>&</sup>lt;sup>3</sup> Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ""Why should i trust you?" Explaining the predictions of any classifier". In: 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016, pp. 1135–1144,



Local and global model-agnostic explanation method

<sup>4</sup>Scott M Lundberg and Su-In Lee. "A Unified Approach to Interpreting Model Predictions". In: Advances in Neural Information Processing Systems. Vol. 30. 2017, 4765–4774.



Alessandro Leite & Marc Schoenauer – eXplainable Artificial Intelligence: A Literature Review

- Local and global model-agnostic explanation method
- Can be employed as a local or global explainer

<sup>4</sup>Scott M Lundberg and Su-In Lee. "A Unified Approach to Interpreting Model Predictions". In: Advances in Neural Information Processing Systems. Vol. 30. 2017, 4765–4774.



- Local and global model-agnostic explanation method
- Can be employed as a local or global explainer
- Can produce various additive feature attribution methods

$$g(z') = \phi_0 + \sum_i^M \phi_i z'_i$$

<sup>&</sup>lt;sup>4</sup>Scott M Lundberg and Su-In Lee. "A Unified Approach to Interpreting Model Predictions". In: Advances in Neural Information Processing Systems. Vol. 30. 2017, 4765–4774.



- Local and global model-agnostic explanation method
- Can be employed as a local or global explainer
- Can produce various additive feature attribution methods

$$g(z') = \phi_0 + \sum_i^M \phi_i z'_i$$

Main properties

<sup>4</sup>Scott M Lundberg and Su-In Lee. "A Unified Approach to Interpreting Model Predictions". In: Advances in Neural Information Processing Systems. Vol. 30. 2017, 4765–4774.



- Local and global model-agnostic explanation method
- Can be employed as a local or global explainer
- Can produce various additive feature attribution methods

$$g(z') = \phi_0 + \sum_i^M \phi_i z'_i$$

- local accuracy: g(x) = b(x)

<sup>&</sup>lt;sup>4</sup>Scott M Lundberg and Su-In Lee. "A Unified Approach to Interpreting Model Predictions". In: Advances in Neural Information Processing Systems. Vol. 30. 2017, 4765–4774.



- Local and global model-agnostic explanation method
- Can be employed as a local or global explainer
- Can produce various additive feature attribution methods

$$g(z') = \phi_0 + \sum_i^M \phi_i z'_i$$

#### Main properties

- local accuracy: g(x) = b(x)
- missingness: no effect on SHAP values

<sup>&</sup>lt;sup>4</sup>Scott M Lundberg and Su-In Lee. "A Unified Approach to Interpreting Model Predictions". In: Advances in Neural Information Processing Systems. Vol. 30. 2017, 4765–4774.



- Local and global model-agnostic explanation method
- Can be employed as a local or global explainer
- Can produce various additive feature attribution methods

$$g(z') = \phi_0 + \sum_i^M \phi_i z'_i$$

#### Main properties

- local accuracy: g(x) = b(x)
- missingness: no effect on SHAP values
- consistency: model changing lead to both different marginal feature values and SHAP values

<sup>4</sup>Scott M Lundberg and Su-In Lee. "A Unified Approach to Interpreting Model Predictions". In: Advances in Neural Information Processing Systems. Vol. 30. 2017, 4765–4774.



- Local and global model-agnostic explanation method
- Can be employed as a local or global explainer
- Can produce various additive feature attribution methods

$$g(z') = \phi_0 + \sum_i^M \phi_i z'_i$$

#### Main properties

- local accuracy: g(x) = b(x)
- missingness: no effect on SHAP values
- consistency: model changing lead to both different marginal feature values and SHAP values
- Different strategies: Kernel, Linear, Tree, Gradient, and Deep explainer

<sup>&</sup>lt;sup>4</sup>Scott M Lundberg and Su-In Lee. "A Unified Approach to Interpreting Model Predictions". In: Advances in Neural Information Processing Systems. Vol. 30. 2017, 4765–4774.





Local and global model-agnostic explanation method

<sup>&</sup>lt;sup>5</sup>Przemyslaw Biecek and Tomasz Burzykowski. *Explanatory Model Analysis.* Chapman and Hall/CRC, New York, 2021.



Alessandro Leite & Marc Schoenauer – eXplainable Artificial Intelligence: A Literature Review



- Local and global model-agnostic explanation method
- Local explanations

<sup>&</sup>lt;sup>5</sup>Przemyslaw Biecek and Tomasz Burzykowski. *Explanatory Model Analysis.* Chapman and Hall/CRC, New York, 2021.





- Local and global model-agnostic explanation method
- Local explanations
  - Employ variable attribution decomposition to quantify the contribution of each feature

<sup>&</sup>lt;sup>5</sup>Przemyslaw Biecek and Tomasz Burzykowski. *Explanatory Model Analysis.* Chapman and Hall/CRC, New York, 2021.





- Local and global model-agnostic explanation method
- Local explanations
  - Employ variable attribution decomposition to quantify the contribution of each feature
  - What-if analysis through its ceteris-paribus profile (no causality involved)

<sup>&</sup>lt;sup>5</sup>Przemyslaw Biecek and Tomasz Burzykowski. *Explanatory Model Analysis.* Chapman and Hall/CRC, New York, 2021.





- Local and global model-agnostic explanation method
- Local explanations
  - Employ variable attribution decomposition to quantify the contribution of each feature
  - What-if analysis through its ceteris-paribus profile (no causality involved)
- Global explanations:

<sup>&</sup>lt;sup>5</sup>Przemyslaw Biecek and Tomasz Burzykowski. *Explanatory Model Analysis.* Chapman and Hall/CRC, New York, 2021.





- Local and global model-agnostic explanation method
- Local explanations
  - Employ variable attribution decomposition to quantify the contribution of each feature
  - What-if analysis through its ceteris-paribus profile (no causality involved)
- Global explanations:
  - model performance measures

<sup>&</sup>lt;sup>5</sup>Przemyslaw Biecek and Tomasz Burzykowski. *Explanatory Model Analysis.* Chapman and Hall/CRC, New York, 2021.





- Local and global model-agnostic explanation method
- Local explanations
  - Employ variable attribution decomposition to quantify the contribution of each feature
  - What-if analysis through its ceteris-paribus profile (no causality involved)
- Global explanations:
  - model performance measures
  - variable importance

<sup>&</sup>lt;sup>5</sup>Przemyslaw Biecek and Tomasz Burzykowski. *Explanatory Model Analysis.* Chapman and Hall/CRC, New York, 2021.





- Local and global model-agnostic explanation method
- Local explanations
  - Employ variable attribution decomposition to quantify the contribution of each feature
  - What-if analysis through its ceteris-paribus profile (no causality involved)
- Global explanations:
  - model performance measures
  - variable importance
  - residual diagnoses

<sup>&</sup>lt;sup>5</sup>Przemyslaw Biecek and Tomasz Burzykowski. *Explanatory Model Analysis.* Chapman and Hall/CRC, New York, 2021.





- Local and global model-agnostic explanation method
- Local explanations
  - Employ variable attribution decomposition to quantify the contribution of each feature
  - What-if analysis through its ceteris-paribus profile (no causality involved)
- Global explanations:
  - model performance measures
  - variable importance
  - residual diagnoses
  - partial dependence plot

<sup>&</sup>lt;sup>5</sup>Przemyslaw Biecek and Tomasz Burzykowski. *Explanatory Model Analysis.* Chapman and Hall/CRC, New York, 2021.



### Post-hoc explainability: rule-based methods



Use decision rules to explain the reasons that lead to a specific prediction

Innía

Alessandro Leite & Marc Schoenauer – eXplainable Artificial Intelligence: A Literature Review

Model agnostic rule-based explanation method



- Model agnostic rule-based explanation method
- Output rules are named anchors



- Model agnostic rule-based explanation method
- Output rules are named anchors
- Given a sample  $x_i$ , r is an anchor if  $r(x_i) = b(x)$



- Model agnostic rule-based explanation method
- Output rules are named anchors
- Given a sample  $x_i$ , r is an anchor if  $r(x_i) = b(x)$
- Build a perturbed sample from  $x_i$



- Model agnostic rule-based explanation method
- Output rules are named anchors
- Given a sample  $x_i$ , r is an anchor if  $r(x_i) = b(x)$
- Build a perturbed sample from  $x_i$
- Extract all anchors with precision greater than a defined threshold



- Model agnostic rule-based explanation method
- Output rules are named anchors
- Given a sample  $x_i$ , r is an anchor if  $r(x_i) = b(x)$
- Build a perturbed sample from  $x_i$
- Extract all anchors with precision greater than a defined threshold
- Employs a multi-armed bandit algorithm



- Model agnostic rule-based explanation method
- Output rules are named anchors
- Given a sample  $x_i$ , r is an anchor if  $r(x_i) = b(x)$
- Build a perturbed sample from  $x_i$
- Extract all anchors with precision greater than a defined threshold
- Employs a multi-armed bandit algorithm
- Uses a bottom-up and beam search to explore the anchors



Local model-agnostic method

<sup>7</sup>Guidotti et al., "Local rule-based explanations of black box decision systems".



- Local model-agnostic method
- Provides explanations in the form of counterfactuals rules

<sup>&</sup>lt;sup>7</sup>Guidotti et al., "Local rule-based explanations of black box decision systems".



- Local model-agnostic method
- Provides explanations in the form of counterfactuals rules
- Only works with tabular data

<sup>&</sup>lt;sup>7</sup>Guidotti et al., "Local rule-based explanations of black box decision systems".



- Local model-agnostic method
- Provides explanations in the form of counterfactuals rules
- Only works with tabular data
- Uses a genetic algorithm to generate a synthetic set Z of neighbors of a sample  $x_i$

<sup>7</sup>Guidotti et al., "Local rule-based explanations of black box decision systems".



- Local model-agnostic method
- Provides explanations in the form of counterfactuals rules
- Only works with tabular data
- Uses a genetic algorithm to generate a synthetic set Z of neighbors of a sample  $x_i$ 
  - Use the black-box model on Z to obtain the labels

<sup>7</sup>Guidotti et al., "Local rule-based explanations of black box decision systems".


- Local model-agnostic method
- Provides explanations in the form of counterfactuals rules
- Only works with tabular data
- Uses a genetic algorithm to generate a synthetic set Z of neighbors of a sample  $x_i$ 
  - Use the black-box model on Z to obtain the labels
  - Train a decision tree classifier  $g(\cdot)$

<sup>7</sup>Guidotti et al., "Local rule-based explanations of black box decision systems".



- Local model-agnostic method
- Provides explanations in the form of counterfactuals rules
- Only works with tabular data
- Uses a genetic algorithm to generate a synthetic set Z of neighbors of a sample  $x_i$ 
  - Use the black-box model on Z to obtain the labels
  - Train a decision tree classifier  $g(\cdot)$
  - Optimize the output of  $g(\cdot)$  w.r.t. the black-box

<sup>7</sup>Guidotti et al., "Local rule-based explanations of black box decision systems".



- Local model-agnostic method
- Provides explanations in the form of counterfactuals rules
- Only works with tabular data
- Uses a genetic algorithm to generate a synthetic set Z of neighbors of a sample  $x_i$ 
  - Use the black-box model on Z to obtain the labels
  - Train a decision tree classifier  $g(\cdot)$
  - Optimize the output of  $g(\cdot)$  w.r.t. the black-box
- From *g* retrieves the explanations:

<sup>&</sup>lt;sup>7</sup>Guidotti et al., "Local rule-based explanations of black box decision systems".



- Local model-agnostic method
- Provides explanations in the form of counterfactuals rules
- Only works with tabular data
- Uses a genetic algorithm to generate a synthetic set Z of neighbors of a sample  $x_i$ 
  - Use the black-box model on Z to obtain the labels
  - Train a decision tree classifier  $g(\cdot)$
  - Optimize the output of  $g(\cdot)$  w.r.t. the black-box
- From *g* retrieves the explanations:
  - factual decision rules: path on the decision tree

<sup>&</sup>lt;sup>7</sup>Guidotti et al., "Local rule-based explanations of black box decision systems".



- Local model-agnostic method
- Provides explanations in the form of counterfactuals rules
- Only works with tabular data
- Uses a genetic algorithm to generate a synthetic set Z of neighbors of a sample  $x_i$ 
  - Use the black-box model on Z to obtain the labels
  - Train a decision tree classifier  $g(\cdot)$
  - Optimize the output of  $g(\cdot)$  w.r.t. the black-box
- From *g* retrieves the explanations:
  - factual decision rules: path on the decision tree
  - counterfactual rules: which values of x<sub>i</sub> lead to different outputs

<sup>&</sup>lt;sup>7</sup>Guidotti et al., "Local rule-based explanations of black box decision systems".



# Post-hoc explainability: prototypes methods



Explain a model using a synthetic or natural example:

- from the training set close to the a sample x<sub>i</sub>
- a centroid of a cluster for which x<sub>i</sub> belongs to
- generated by some ad-hoc process
- Humans observers usually understand a model's reasoning by looking at similar cases



### **Prototypes**

Influence functions<sup>8</sup>: identify instances in the training set that are responsible for the prediction of a given test instance

<sup>&</sup>lt;sup>9</sup>Anh Nguyen, Jason Yosinski, and Jeff Clune. "Understanding neural networks via feature visualization: A survey". In: Explainable AI: interpreting, explaining and visualizing deep learning. 2019, pp. 55–76.



<sup>&</sup>lt;sup>8</sup>Pang Wei Koh and Percy Liang. "Understanding black-box predictions via influence functions". In: International Conference on Machine Learning. 2017, pp. 1885–1894.

## **Prototypes**

- Influence functions<sup>8</sup>: identify instances in the training set that are responsible for the prediction of a given test instance
- activation maximization<sup>9</sup>: Identify examples that strongly activate a function of interest

<sup>&</sup>lt;sup>9</sup>Anh Nguyen, Jason Yosinski, and Jeff Clune. "Understanding neural networks via feature visualization: A survey". In: Explainable AI: interpreting, explaining and visualizing deep learning. 2019, pp. 55–76.



<sup>&</sup>lt;sup>8</sup>Pang Wei Koh and Percy Liang. "Understanding black-box predictions via influence functions". In: International Conference on Machine Learning. 2017, pp. 1885–1894.

### Post-hoc explainability: counterfactuals methods



Prototypes' opposite

- Counterfactual explainers:
  - exogeneous: synthetically
  - endogeneous: from reference sample
  - · instance-based: exploits a distance function to detected the decision boundary



Alessandro Leite & Marc Schoenauer – eXplainable Artificial Intelligence: A Literature Review

Contrastive explanation method (CEM)<sup>10</sup>

- Local explanation method for neural network

<sup>&</sup>lt;sup>11</sup>Emanuele Albini et al. "Relation-based counterfactual explanations for Bayesian network classifiers". In: *Twenty-Ninth International Joint Conference on Artificial Intelligence*. 2020.



<sup>&</sup>lt;sup>10</sup>Amit Dhurandhar et al. "Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives". In: Advances in Neural Information Processing Systems. Vol. 31. 2018, pp. 1–12.

Contrastive explanation method (CEM)<sup>10</sup>

- Local explanation method for neural network
- Given x to explain, CEM considers  $x_1 = x + \delta$

<sup>&</sup>lt;sup>11</sup>Emanuele Albini et al. "Relation-based counterfactual explanations for Bayesian network classifiers". In: *Twenty-Ninth International Joint Conference on Artificial Intelligence*. 2020.



<sup>&</sup>lt;sup>10</sup>Amit Dhurandhar et al. "Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives". In: Advances in Neural Information Processing Systems. Vol. 31. 2018, pp. 1–12.

Contrastive explanation method (CEM)<sup>10</sup>

- Local explanation method for neural network
- Given x to explain, CEM considers  $x_1 = x + \delta$
- Separate positive ( $\delta^p$ ) and negative ( $\delta^n$ ) perturbations w.r.t. label

<sup>&</sup>lt;sup>11</sup>Emanuele Albini et al. "Relation-based counterfactual explanations for Bayesian network classifiers". In: *Twenty-Ninth International Joint Conference on Artificial Intelligence*. 2020.



<sup>&</sup>lt;sup>10</sup>Amit Dhurandhar et al. "Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives". In: *Advances in Neural Information Processing Systems*. Vol. 31. 2018, pp. 1–12.

Contrastive explanation method (CEM)<sup>10</sup>

- Local explanation method for neural network
- Given x to explain, CEM considers  $x_1 = x + \delta$
- Separate positive ( $\delta^p$ ) and negative ( $\delta^n$ ) perturbations w.r.t. label
- Use an autoencoder to explore the boundary between both regions

<sup>&</sup>lt;sup>11</sup>Emanuele Albini et al. "Relation-based counterfactual explanations for Bayesian network classifiers". In: *Twenty-Ninth International Joint Conference on Artificial Intelligence*. 2020.



<sup>&</sup>lt;sup>10</sup>Amit Dhurandhar et al. "Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives". In: Advances in Neural Information Processing Systems. Vol. 31. 2018, pp. 1–12.

Contrastive explanation method (CEM)<sup>10</sup>

- Local explanation method for neural network
- Given x to explain, CEM considers  $x_1 = x + \delta$
- Separate positive ( $\delta^p$ ) and negative ( $\delta^n$ ) perturbations w.r.t. label
- Use an autoencoder to explore the boundary between both regions
- CFX<sup>11</sup>
  - Local explanation method for Bayesian network classifiers
  - Explanations are built from relations of influence between variables, indicating the reasons for the classification

<sup>11</sup>Emanuele Albini et al. "Relation-based counterfactual explanations for Bayesian network classifiers". In: *Twenty-Ninth International Joint Conference on Artificial Intelligence*. 2020.

<sup>&</sup>lt;sup>10</sup>Amit Dhurandhar et al. "Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives". In: Advances in Neural Information Processing Systems. Vol. 31. 2018, pp. 1–12.

# Explainable Reinforcement Learning (XAI RL)<sup>12</sup>



<sup>12</sup>Erika Puiutta and Eric MSP Veith. "Explainable reinforcement learning: A survey". In: International Cross-Domain Conference for Machine Learning and Knowledge Extraction. 2020, pp. 77–95; Alexandre Heuillet, Fabien Couthouis, and Natalia Díaz-Rodríguez. "Explainability in deep reinforcement learning". In: Knowledge-Based Systems 214 (2021), pp. 1–13.

nnía

| building of reviewed liter                                                                 | arare on explainable las (viae) and                                                   | r deep ne (bne). |                                          |                                                  |                               |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------|------------------------------------------|--------------------------------------------------|-------------------------------|
| Reference                                                                                  | Task/Environment                                                                      | Decision process | Algorithm(s)                             | Explanation type<br>(Level)                      | Target                        |
| Relational Deep<br>RL [21]                                                                 | Planning + strategy<br>games (Box-World/<br>Starcraft II)                             | POMDP            | IMPALA                                   | Images (Local)                                   | Experts                       |
| Symbolic RL with<br>Common<br>Sense [22]                                                   | Game (object retrieval)                                                               | POMDP            | SRL+CS, DQL                              | Images (Global)                                  | Experts                       |
| Decoupling feature<br>extraction from<br>policy<br>learning [23]                           | Robotics (grasping), and<br>navigation                                                | MDP              | PPO                                      | Diagram (state<br>plot & image<br>slider (Local) | Experts                       |
| Explainable RL via<br>Reward Decompo-<br>sition [24]                                       | Game (grid and landing)                                                               | MDP              | HRA, SARSA,<br>Q-learning                | Diagrams (Local)                                 | Experts, Users,<br>Executives |
| Explainable RL<br>Through a Causal<br>Lens [25]                                            | Games (OpenAl<br>benchmark and Starcraft<br>II)                                       | Both             | PG, DQN, DDPG,<br>A2C, SARSA             | Diagrams, Text<br>(Local)                        | Experts, Users,<br>Executives |
| Shapley Q-value:<br>A Local Reward<br>Approach to Solve<br>Global Reward<br>Games [26]     | Multiagents (Cooperative<br>Navigation,<br>Prey-and-Predator and<br>Traffic Junction) | POMDP            | DDPG                                     | Diagrams (Local)                                 | Experts                       |
| Dot-to-Dot:<br>Explainable HRL<br>For Robotic<br>Manipulation [27]                         | Robotics (grasping)                                                                   | MDP              | DDPG, HER, HRL                           | Diagrams (Global)                                | Experts,<br>Developers        |
| Self-Educated<br>Language Agent<br>With HER For<br>Instruction<br>Following [28]           | Instruction Following<br>(MiniGrid)                                                   | MDP              | Textual HER                              | Text (Local)                                     | Experts, Users,<br>Developers |
| Commonsense and<br>Semantic-guided<br>Navigation [29]                                      | Room navigation                                                                       | POMDP            | -                                        | Text (Global)                                    | Experts                       |
| Boolean Task<br>Algebra [30]                                                               | Game (grid)                                                                           | MDP              | DQN                                      | Diagrams                                         | Experts                       |
| Visualizing and<br>Understanding<br>Atari [31]                                             | Games (Pong, Breakout,<br>Space Invaders)                                             | MDP              | A3C                                      | Images (Global)                                  | Experts, Users,<br>Developers |
| Interestingness<br>Elements for XRL<br>through<br>Introspection [32,<br>33]                | Arcade game (Frogger)                                                                 | POMDP            | Q-Learning                               | Images (Local)                                   | Users                         |
| Composable DRL<br>for Robotic<br>Manipulation [34]                                         | Robotics (pushing and<br>reaching)                                                    | MDP              | Soft Q-learning                          | Diagrams (Local)                                 | Experts                       |
| Symbolic-Based<br>Recognition of<br>Contact States for<br>Learning Assembly<br>Skills [35] | Robotic grasping                                                                      | POMDP            | HMM, PAA,<br>K-means                     | Diagrams (Local)                                 | Experts                       |
| Safe<br>Reinforcement<br>Learning with<br>Model Uncertainty<br>Estimates [36]              | Collision avoidance                                                                   | POMDP            | Monte Carlo<br>Dropout,<br>bootstrapping | Diagrams (Local)                                 | Experts                       |

Summary of reviewed literature on explainable RL (XRL) and deep RL (DRL).

#### Figure 2: Summary of explainable RL and deep RL<sup>13</sup>

<sup>&</sup>lt;sup>13</sup>Alexandre Heuillet, Fabien Couthouis, and Natalia Díaz-Rodríguez. "Explainability in deep reinforcement learning". In: *Knowledge-Based Systems* 214 (2021), pp. 1–13.

Fidelity: how good is  $f(\cdot)$  at mimicking the  $b(\cdot)$ ?

Innía

- Fidelity: how good is  $f(\cdot)$  at mimicking the  $b(\cdot)$ ?
- Stability: how consistent are the explanations for similar samples?

nría

- Fidelity: how good is  $f(\cdot)$  at mimicking the  $b(\cdot)$ ?
- Stability: how consistent are the explanations for similar samples?
- Faithfulness: how are the relevance scores indicating the true importance features?

naín

- Fidelity: how good is  $f(\cdot)$  at mimicking the  $b(\cdot)$ ?
- Stability: how consistent are the explanations for similar samples?
- Faithfulness: how are the relevance scores indicating the true importance features?
- Monoticity: how is the accuracy of be improved when new a new important feature is added?

# Fidelity and faithfulness metrics

Table 1: Comparison of fidelity and faithfulness metrics of four explanation methods<sup>14</sup>

| Dataset | Black-Box | Fidelity |       |        | Faithfulness |                    |                    |
|---------|-----------|----------|-------|--------|--------------|--------------------|--------------------|
| Dataset |           | LIME     | SHAP  | ANCHOR | LORE         | LIME               | SHAP               |
| adult   | LG        | 0.979    | 0.613 | 0.989  | 0.984        | 0.099(0.30)        | <b>0.38</b> (0.37) |
|         | XGB       | 0.977    | 0.877 | 0.978  | 0.982        | 0.030(0.32)        | <b>0.36</b> (0.49) |
|         | CAT       | 0.96     | 0.777 | 0.988  | 0.989        | 0.077(0.32)        | <b>0.44</b> (0.37) |
| german  | LG        | 0.984    | 0.910 | 0.730  | 0.983        | <b>0.23</b> (0.60) | 0.19(0.63)         |
|         | XGB       | 0.999    | 0.821 | 0.802  | 0.982        | 0.16(0.26)         | <b>0.44</b> (0.21) |
|         | CAT       | 0.979    | 0.670 | 0.620  | 0.981        | 0.34(0.33)         | <b>0.43</b> (0.32) |

Higher is better. Logistic Regression (LG), XGBoot (XGB), and CatBoost (CAT) Adult census income data set German credit data set

<sup>14</sup>Francesco Bodria et al. "Benchmarking and survey of explanation methods for black box models". In: arXiv:2102.13076 (2021).



## **Stability metric**

#### Table 2: Comparison of the stability metric of four explanation methods<sup>15</sup>

| Dataset | Black-Box | LIME         | SHAP         | ANCHOR         | LORE            |
|---------|-----------|--------------|--------------|----------------|-----------------|
| adult   | LG        | 24.37(2.74)  | 1.52(4.49)   | 22.36(8.37)    | 21.76(11.80)    |
|         | XGB       | 10.16 (6.48) | 2.17(2.18)   | 26.53(13.08)   | 30.01(20.52)    |
|         | CAT       | 0.35(0.43)   | 0.03 (0.01)  | 6.51(4.40)     | 27.80(70.05)    |
| german  | LG        | 18.87(0.73)  | 19.01(23.44) | 101.07 (62.75) | 622.12(256.70)  |
|         | XGB       | 26.08(14.50) | 38.43(30.66) | 121.40(98.43)  | 725.81 (337.26) |
|         | CAT       | 2.49(9.91)   | 15.92(10.71) | 123.79(76.86)  | 756.70 (348.21) |

Lower is better

<sup>&</sup>lt;sup>15</sup>Francesco Bodria et al. "Benchmarking and survey of explanation methods for black box models". In: *arXiv:2102.13076* (2021).



# Fragility: post-hoc explanations can be manipulated



Figure 3: Explanation map of a cat is used as the target of a perturbed dog image<sup>16</sup>

<sup>16</sup>Ann-Kathrin Dombrowski et al. "Explanations can be manipulated and geometry is to blame". In: *Advances in Neural Information Processing Systems*. Vol. 32. 2019.



# **Explainability toolboxes**



#### <sup>18</sup>PyTorch limited

<sup>19</sup>Harsha Nori et al. "InterpretML: a unified framework for machine learning interpretability". In: *arXiv:1909.09223* (2019).

<sup>&</sup>lt;sup>17</sup>Vijay Arya et al. "One explanation does not fit all: A toolkit and taxonomy of ai explainability techniques". In: *arXiv:1909.03012* (2019).

"Understanding a phenomena is not simply a matter of reducing the "fundamental incomprehensibilities", but of seeing connections, common patterns, in what initially appeared to be different situations" – Kitcher (1989)<sup>a</sup>

<sup>a</sup>Philip Kitcher. "Explanatory unification and the causal structure of the world". In: *Scientific Explanation*. Ed. by P. Kitcher and W.C. Salmon. University of Minnesota Press, 1989, pp. 410–505.

Various explainable AI methods have be developed over the last years

"Understanding a phenomena is not simply a matter of reducing the "fundamental incomprehensibilities", but of seeing connections, common patterns, in what initially appeared to be different situations" – Kitcher (1989)<sup>a</sup>

<sup>a</sup>Philip Kitcher. "Explanatory unification and the causal structure of the world". In: *Scientific Explanation*. Ed. by P. Kitcher and W.C. Salmon. University of Minnesota Press, 1989, pp. 410–505.

- Various explainable AI methods have be developed over the last years
- Feature importance is the most widely adopted strategy

"Understanding a phenomena is not simply a matter of reducing the "fundamental incomprehensibilities", but of seeing connections, common patterns, in what initially appeared to be different situations" – Kitcher (1989)<sup>a</sup>

<sup>a</sup>Philip Kitcher. "Explanatory unification and the causal structure of the world". In: *Scientific Explanation*. Ed. by P. Kitcher and W.C. Salmon. University of Minnesota Press, 1989, pp. 410–505.

- Various explainable AI methods have be developed over the last years
- Feature importance is the most widely adopted strategy
- Rule-based explanations are gaining attention due to the logical formalization strategy

"Understanding a phenomena is not simply a matter of reducing the "fundamental incomprehensibilities", but of seeing connections, common patterns, in what initially appeared to be different situations" – Kitcher (1989)<sup>a</sup>

<sup>a</sup>Philip Kitcher. "Explanatory unification and the causal structure of the world". In: *Scientific Explanation*. Ed. by P. Kitcher and W.C. Salmon. University of Minnesota Press, 1989, pp. 410–505.

- Various explainable AI methods have be developed over the last years
- Feature importance is the most widely adopted strategy
- Rule-based explanations are gaining attention due to the logical formalization strategy
- There are still space to make explainable AI stable, as well as understandable by different human observers

"Understanding a phenomena is not simply a matter of reducing the "fundamental incomprehensibilities", but of seeing connections, common patterns, in what initially appeared to be different situations" – Kitcher (1989)<sup>a</sup>

<sup>a</sup>Philip Kitcher. "Explanatory unification and the causal structure of the world". In: *Scientific Explanation*. Ed. by P. Kitcher and W.C. Salmon. University of Minnesota Press, 1989, pp. 410–505.

- Various explainable AI methods have be developed over the last years
- Feature importance is the most widely adopted strategy
- Rule-based explanations are gaining attention due to the logical formalization strategy
- There are still space to make explainable AI stable, as well as understandable by different human observers

"Explaining black boxes, rather than replace them with interpretable models, can make the problem worse by providing misleading or false characterizations to the black box. – Rudin (2019)<sup>a</sup>"

<sup>a</sup>Cynthia Rudin. "Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead". In: *Nature Machine Intelligence* 1.5 (2019), pp. 206–215.

# **Building a TRUSTED AI system**



## **Research objectives**

Advance existing program synthesis algorithms

- GP-GOMEA (CWI)
- MSGP (Inria)

Agnostic to the way it is used toward explainability

- Goal: tackle the explainability vs accuracy trade-off
  - Incorporate mechanisms for tunable explainability
  - Enable easy dialogue in view of multi-objective optimization
- Design and test the dialog platform for the different algorithms together with WP2 (Exploration of Human-Machine Interaction)
- Incorporate additional variables (e.g., latent confounders) as proposed by WP3 (Cognition Models for Human-Centric XAI) following experimental validation

# **Use cases**

|                          | Use Case 1                                  | Use Case 2                                                   | Use Case 3                                                            |
|--------------------------|---------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------|
| Problem /<br>Application | Cancer<br>Treatment<br>(Healthcare)         | Time Slot<br>Selection (Retail)                              | Demand Forecast<br>(Energy)                                           |
| Al Task                  | Regression<br>(Predictive)                  | Selection<br>(Prescriptive)                                  | Regression<br>(Predictive)                                            |
| Key Features             | Risk, Learning<br>from Small Data           | Fairness (to<br>multiple<br>stakeholders),<br>Multi-criteria | Distributed<br>Sources of Data,<br>Incremental and<br>Active Learning |
| Partner                  | L U Leiden University<br>M C Medical Center |                                                              | PINTECH                                                               |

(nría\_

Alessandro Leite & Marc Schoenauer – eXplainable Artificial Intelligence: A Literature Review

# **Project consortium**

| Research Organizations         |                                                                                                     | Small or Medium-Size Enterprises                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Industrial Partners                                                                                    |
|--------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
|                                | Engineering systems institute,<br>with experts in operations<br>management                          | Image: Constraint of the second se | L U Leiden University<br>M C Medical Center<br>Department of radiation<br>oncology, with previous work |
| Corrier Particular             | Computer science institute,<br>with experts in machine<br>learning and evolutionary<br>optimization | insurance, banking and retail<br>sectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | on mathematics and AI applied<br>to radiotherapy, brachytherapy<br>and image-guidance systems          |
| A DATU BLIKOOD . DATU          | Computational neuroscience<br>lab, with experts in cognitive<br>artificial intelligence             | Analytics-based consultancy<br>for retail, manufacturing and<br>telecommunications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Large food retailer, with<br>extensive use of analytics<br>(optimization, simulation and               |
| CWI<br>Centrum Weisunde & Info | Mathematics and computer<br>science institute, with experts                                         | Sensors and IoT solutions,<br>where big data and machine<br>learning methods are built on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AI) in their supply chain<br>operations, both physical and<br>online                                   |



# Internships

- Counterfactuals-based explanations (Alex Westbrook)
- XRL explanations (Mathurin Videau)
- MILP (Li Wenhao)

Innía

