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Multi-criteria decision aids

Decision Problems Sobrie, 2015

▶ Selection: choosing the best alternative in a given set;

▶ Ranking: ordering the alternatives by preference;

▶ Sorting: assigning to any alternative a preference label (e.g. good, bad...)

Scoring Model

F : X → R

F(x) ≥ F(y) ⇐⇒ x is at least as good as y

F(x) > F(y) ⇐⇒ x is better than y

Requirement: Trustability Jiang et al., 18; Varshney 16

▶ intelligibility

▶ unicity of the interpretation = identifiability of the model
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Building models

MCDA constraint-based approches

▶ formally-valid models

▶ time-expensive (requires an interaction with an expert)

▶ can lead to global inconsistencies

▶ vulnerable to errors

Machine Learning

▶ learn from data

▶ statistically valid

▶ (in general) not interpretable

Summary of the talk

▶ Present MCDA, Hierarchical Choquet Integrals

▶ Learn HCIs from data

▶ PhD: identifiability property
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Formal background

Notations
Variablesx1, . . . xn; xi defined on domainXi

Marginal Utilities
ui : Xi 7→ R

A marginal utility denotes a preference relation on the values of a attribute i :

ui (ai ) ≥ ui (bi ) ⇐⇒ ai ⪰i bi

Criterion == attribute i and marginal utility ui
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Marginal utilities

Constraints

▶ max
xi∈Xi

(ui (xi )) = 1 (total satisfaction)

▶ min
xi∈Xi

(ui (xi )) = 0 (total dissatisfaction)

▶ ui is continuous, piecewise-C
1

▶ ui is either monotonic or peak-shaped or valley-shaped

Four types of monotonicities
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Decomposable Models

Krantz et al. 71

Definition F is decomposable iff

F(x) = A(u1(x1), ..., un(xn)) (1)

with aggregator A non-decreasing.

Decomposable model with dimension 4
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Example

Houses

House Surface Garden Garage Road Transp. Downtown Price
m2 m2 (yes/no) km km km €

h1 50 100 No 0.1 0. 0. 400,000
h2 110 150 Yes 0.5 3. 4. 500,000
h3 150 0 No 1. 0.5 0.5 450,000
h4 150 30 No 0.1 5. 3. 300,000
h5 500 1000 Yes 5. 5. 10. 1,500,000

Notations

▶ 7 features

▶ Domains X1 = X2 = X4 = X5 = X6 = X7 = R+

▶ Domain X3 = {Yes, No}
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Aggregators

Grabish & Perny 03

Weighted Sum of utilities

A(u1, . . . un) =
n∑
i=i

wiai with, ∀i ∈ N, wi ≥ 0 and
n∑
i=i

wi = 1.

Fuzzy measure µ on set N
µ : 2N → [0, 1]

▶ µ(N) = 1

▶ µ(∅) = 0

▶ ∀B ⊆ A ⊆ N, µ(B) ≤ µ(A)

Representation power Let A,B be two non-empty, disjoint coalitions of
criteria (subsets of N).

▶ µ(A ∪ B) ≤ µ(A) + µ(B): redundancy (downtown / public transportation)

▶ µ(A ∪ B) = µ(A) + µ(B): independence (downtown / garden)

▶ µ(A ∪ B) ≥ µ(A) + µ(B): synergy (garage / road)
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Choquet Integral

Definition Choquet 54

Given µ, the Choquet integral (CI)(a1, . . . , an) is defined as:

Cµ(a) =
N∑
i=1

µ({τ(i), τ(i + 1), ..., τ(n)})(aτ(i) − aτ(i−1)) (2)

with τ a permutation in N s.t. ∀i ∈ N, aτ(i) ≤ aτ(i+1) and aτ(0) = 0.

Properties Grabisch & Labreuche 08

▶ continuous

▶ non-decreasing w.r.t. arguments

▶ piecewise linearity

▶ interpretable

▶ 1-Lipschitz
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Hierarchical Aggregation

Hierarchical CI: a hierarchical model with CI aggregators.

Example

Surface Area

Garden Garage

Dist. Large Road

Dist. Transportation

Dist. Downtown

Price

Commodities

Comfort Accessibility

Global Score

▶ SGlobal = AGlobal(SComfort ,SAccessibility ,SPrice)

▶ SComfort = AComfort(SArea, SCommodities)

▶ ...
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Models

Grabisch 16

Utilitaristic Hierarchical Choquet Integral

F : X = (X1, . . . ,Xn) → [0, 1]

x 7→ A(u1(x1), ..., un(xn))

with F an HCI and, ∀i ∈ N, ui a marginal utility.
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SoA on Learning MAUT UHCIs

UHCI learning

▶ U: marginal utilities

▶ H: hierarchical models

▶ CI: Choquet integral

U H CI References
✓ Grabisch et al. 08; Alavi et al. 09

Fallah Tehrani et al. 12; Hüllermeier & Fallah Tehrani 12;
Benabbou et al. 17; Havens & Anderson 18;

Bourdache et al. 19
✓ Bous & Pirlot 13
✓ ✓ Fallah Tehrani et al. 14
✓ ✓ Huang et al. 08; Senge & Hüllermeier 11
✓ ✓ ✓ Bresson et al. 20
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Overview

Neur-HCI

▶ Neural Network framework
▶ Learns the parameters of a UHCI

▶ weights of the CIs
▶ marginal utilities

▶ all UHCI constraints verified by design

Settings

▶ Regression

▶ Classification

▶ Pairwise preferences
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Structure

Tree-Hierarchy given by expert

Learning
▶ Marginal Utilities

▶ Monotonic
▶ Peak or valleyed-shape
▶ Selector

▶ Aggregators
▶ 2-additive
▶ 0− 1-based 3-additive
▶ general

Representation theorems

▶ For each type of module, in large sample limit.
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Monotonic Marginal Utility

Requirement

▶ ui is non-decreasing on Xi

▶ lim
xi→−∞

ui (xi ) = 0

▶ lim
xi→+∞

ui (xi ) = 1

Search space: a convex sum of
sigmoids:

ui (xi ) =

p∑
k=0

r ki

1 + e−(η
k
i xi−βk

i )
,

Parameters learned : r ki , η
k
i , β

k
i .

p is a hyperparameter.

With:

▶
p∑

k=1

r ki = 1 and ∀k, r ki ≥ 0

▶ ∀k, ηk
i ≥ 0
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Monotonic Marginal Utility Module

Structure

ui (xi ) =

p∑
k=0

r ki

1 + e−(η
k
i xi−βk

i )

▶
p∑

k=1

r ki = 1 and ∀k, r ki ≥ 0

▶ ∀k, ηk
i ≥ 0
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Other Marginal Utility Modules

Single-peaked/single-valleyed utilities

▶ Additional parameter: location of maximum/minimum

▶ built from monotonic modules

Selectors

▶ selects automatically the best type of monotonicity

▶ based on a switching mechanism
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2-additive Choquet integral

Characterization

Cw (a) =
n∑

i=1

wiai +
n∑

i=1

n∑
j=i+1

w∧
i,j(ai ∧ aj) +

n∑
i=1

n∑
j=i+1

w∨
i,j(ai ∨ aj) (3)

where ∧ (resp ∨) denote the min (resp max) operators, with:

▶ Monotonicity: ∀i ∈ N, ∀j ∈ N,wi ≥ 0,w∧
i,j ≥ 0,w∨

i,j ≥ 0

▶ Normalization:
n∑

i=1

wi +
∑

1≤i<j≤n

w∧
i,j +

n∑
i=1

n∑
j=i+1

w∨
i,j = 1
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Choquet Modules
2-additive CI

Cw (a) =
n∑

i=1

pos(zi )ai +
n∑

i=1

n∑
j=i+1

(
pos(z∧i,j)(ai ∧ aj) + pos(z∨i,j)(ai ∨ aj)

)
zi , z

∨
i,j , z

∧
i,j ∈ R; pos non-negative.

x1

x2

Id

Id

∧

∨

Output

Hidden
layer

Utility
layer

Output
layer

pos(z1)

pos(z2)

pos(z∧1,2)

pos(z∨1,2)

Other Aggregator Models

▶ A subset of the 3-additive CIs

▶ General CIs
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Assembled Network - HCI

Surface Area

Garden Garage Road Transportation Downtown

Price

Commodities

Comfort Accessibility

Global Score
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Assembled Network - UHCI
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Experimental validation on benchmarks

Settings

▶ Regression (mean squared error)

▶ Classification (binary) (Misclassification rate)

▶ Pairwise Learning (Ranking inversion rate)

Experimental setting

▶ 1000 random splits of each dataset train/test
▶ Baselines:

▶ same-size MLP
▶ linear model
▶ Choquistic utilitaristic regression (binary classif.)

▶ Benchmarks: 9 datasets (CPU, CEV, LEV, MPG, DB, MG, Journal,
Boston)
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Performance on Real Data
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On artificial data (large sample limit

Distribution of the weights of 50 CIs
trained on 50 different datasets of 10, 000 examples
generated by a ground-truth model (red stars).
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Artificial Data, followed

Figure: Marginal utilities of 50 UHCI models trained on 50 different datasets of
10, 000 examples generated by a ground-truth model (red stars).
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Sensitivity to Noise

Noise Tree Flat

0. 7.1× 10−7 ± 4.4× 10−6 2.5× 10−6 ± 7.2× 10−7

0.05 1.1× 10−4 ± 4.6× 10−5 1.7× 10−4 ± 4.8× 10−5

0.1 4.4× 10−4 ± 1.6× 10−4 6.3× 10−4 ± 1.8× 10−4

0.2 1.6× 10−3 ± 7.6× 10−4 1.7× 10−3 ± 6.1× 10−4

Table: Mean Squared Error in regression setting, 50 models training on 50 different
datasets of 300 noisy examples. Tested on noiseless examples, the error is lower than
the noise.
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Real Data - MPG Dataset

Figure: Distribution of weights, 50 models trained on different splits of the MPG
dataset.
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Real Data - MPG Dataset

Figure: Marginal utilities, 50 models trained on different splits of the MPG dataset.
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Conclusion

▶ This was made possible as HCI constraints can be included in NN
architecture by design

Next

▶ Revise a NN with Hierarchical Choquet head.
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