NN-based Hierarchical Choquet Integrals: explainability by design

Michèle Sebag

TAU, CNRS - INRIA - LISN, U. Paris-Saclay

Paris, June 8th, 2022

Joint work: Roman Bresson, Johanne Cohen, Eyke Hüllermeier, Christophe Labreuche

・ロン (雪) (目) (日)

Michele Sebag

NN-based Hierarchical Choquet Integrals: explainability by design

Multi-criteria decision aids

Decision Problems

- Sobrie, 2015
- Selection: choosing the best alternative in a given set;
- Ranking: ordering the alternatives by preference;
- Sorting: assigning to any *alternative* a preference label (e.g. *good*, *bad*...)

Scoring Model

$$\mathcal{F}: X \to \mathbb{R}$$

$$\mathcal{F}(\mathbf{x}) \geq \mathcal{F}(\mathbf{y}) \iff \mathbf{x}$$
 is at least as good as \mathbf{y}

$$\mathcal{F}(\mathbf{x}) > \mathcal{F}(\mathbf{y}) \iff \mathbf{x}$$
 is better than \mathbf{y}

Requirement: Trustability

Jiang et al., 18; Varshney 16

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ = ● ● ●

- intelligibility
- unicity of the interpretation = identifiability of the model

Building models

MCDA constraint-based approches

- formally-valid models
- time-expensive (requires an interaction with an expert)
- can lead to global inconsistencies
- vulnerable to errors

Machine Learning

- learn from data
- statistically valid
- (in general) not interpretable

Summary of the talk

- Present MCDA, Hierarchical Choquet Integrals
- Learn HCIs from data
- PhD: identifiability property

Michele Sebag

NN-based Hierarchical Choquet Integrals: explainability by design

Contexte

Hierarchical Choquet Integrals

Neur-HCI

Experimental validation

Conclusion - Perspectives

NN-based Hierarchical Choquet Integrals: explainability by design

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Formal background

Notations

Variables $x_1, \ldots x_n$; x_i defined on domain X_i

Marginal Utilities

 $u_i: X_i \mapsto \mathbb{R}$

A marginal utility denotes a preference relation on the values of a attribute *i*:

$$u_i(a_i) \ge u_i(b_i) \iff a_i \succeq_i b_i$$

Criterion == attribute *i* and marginal utility u_i

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Marginal utilities

Constraints

- $\max_{x_i \in X_i} (u_i(x_i)) = 1 \text{ (total satisfaction)}$
- $\min_{x_i \in X_i} (u_i(x_i)) = 0$ (total dissatisfaction)
- \blacktriangleright u_i is continuous, piecewise- C^1
- *u_i* is either monotonic or peak-shaped or valley-shaped

э

• (1) • (

Decomposable Models

Krantz et al. 71

Definition \mathcal{F} is decomposable iff

$$\mathcal{F}(\mathbf{x}) = \mathcal{A}(u_1(x_1), \dots, u_n(x_n)) \tag{1}$$

with aggregator \mathcal{A} non-decreasing.

.

イロト 不得 トイヨト イヨト

э

Example

Houses

House	Surface	Garden	Garage	Road	Transp.	Downtown	Price
	m ²	m ²	(yes/no)	km	km	km	€
h_1	50	100	No	0.1	0.	0.	400,000
h_2	110	150	Yes	0.5	3.	4.	500,000
h ₃	150	0	No	1.	0.5	0.5	450,000
h_4	150	30	No	0.1	5.	3.	300,000
h_5	500	1000	Yes	5.	5.	10.	1,500,000

Notations

- 7 features
- Domains $X_1 = X_2 = X_4 = X_5 = X_6 = X_7 = \mathbb{R}_+$
- ▶ Domain $X_3 = {$ Yes, No $}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Aggregators

Grabish & Perny 03

Weighted Sum of utilities

$$\mathcal{A}(u_1,\ldots u_n) = \sum_{i=i}^n w_i a_i \text{ with, } \forall i \in N, \ w_i \ge 0 \text{ and } \sum_{i=i}^n w_i = 1.$$

Fuzzy measure μ on set N

- $\mu: 2^N \to [0,1]$
 - $\mu(N) = 1$

$$\blacktriangleright \ \forall B \subseteq A \subseteq N, \ \mu(B) \leq \mu(A)$$

Representation power Let A, B be two non-empty, disjoint **coalitions** of criteria (subsets of N).

- ▶ $\mu(A \cup B) \le \mu(A) + \mu(B)$: redundancy (downtown / public transportation)
- $\mu(A \cup B) = \mu(A) + \mu(B)$: independence (downtown / garden)
- $\mu(A \cup B) \ge \mu(A) + \mu(B)$: synergy (garage / road)

Choquet Integral

Definition

Choquet 54

Given μ , the **Choquet integral** (CI) (a_1, \ldots, a_n) is defined as:

$$C_{\mu}(a) = \sum_{i=1}^{N} \mu(\{\tau(i), \tau(i+1), ..., \tau(n)\})(a_{\tau(i)} - a_{\tau(i-1)})$$
(2)

with τ a permutation in N s.t. $\forall i \in N$, $a_{\tau(i)} \leq a_{\tau(i+1)}$ and $a_{\tau(0)} = 0$.

Properties

Grabisch & Labreuche 08

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ = ● ● ●

- continuous
- non-decreasing w.r.t. arguments
- piecewise linearity
- interpretable
- 1-Lipschitz

Hierarchical Aggregation

Hierarchical CI: a hierarchical model with CI aggregators.

Example

Michele Sebag

NN-based Hierarchical Choquet Integrals: explainability by design

イロト イボト イヨト イヨト

э

Models

Grabisch 16

Utilitaristic Hierarchical Choquet Integral

$$\mathcal{F}: X = (X_1, \dots, X_n) \to [0, 1]$$
$$x \mapsto \mathcal{A}(u_1(x_1), \dots, u_n(x_n))$$

with \mathcal{F} an HCI and, $\forall i \in N$, u_i a marginal utility.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Contexte

Hierarchical Choquet Integrals

Neur-HCI

Experimental validation

Conclusion – Perspectives

NN-based Hierarchical Choquet Integrals: explainability by design

∃ √ Q (~ 13 / 32

ヘロト ヘロト ヘヨト ヘヨト

SoA on Learning MAUT UHCIs

UHCI learning

- U: marginal utilities
- H: hierarchical models
- CI: Choquet integral

U	Н	CI	References		
		\checkmark	Grabisch et al. 08; Alavi et al. 09		
			Fallah Tehrani et al. 12; Hüllermeier & Fallah Tehrani 12;		
			Benabbou et al. 17; Havens & Anderson 18;		
			Bourdache et al. 19		
\checkmark			Bous & Pirlot 13		
\checkmark		\checkmark	Fallah Tehrani et al. 14		
\checkmark	\checkmark		Huang et al. 08; Senge & Hüllermeier 11		
\checkmark	\checkmark	\checkmark	Bresson et al. 20		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Overview

Neur-HCI

- Neural Network framework
- Learns the parameters of a UHCI
 - weights of the CIs
 - marginal utilities
- all UHCI constraints verified by design

Settings

- Regression
- Classification
- Pairwise preferences

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Structure

Tree-Hierarchy given by expert

Learning

- Marginal Utilities
 - Monotonic
 - Peak or valleyed-shape
 - Selector
- Aggregators
 - 2-additive
 - 0 1-based 3-additive
 - general

Representation theorems

For each type of module, in large sample limit.

Monotonic Marginal Utility

Requirement

- \blacktriangleright u_i is non-decreasing on X_i
- $\blacktriangleright \lim_{x_i\to -\infty} u_i(x_i) = 0$
- $\lim_{x_i\to+\infty} u_i(x_i) = 1$

Search space: a convex sum of sigmoids:

$$u_i(x_i) = \sum_{k=0}^{p} \frac{r_i^k}{1 + e^{-(\eta_i^k x_i - \beta_i^k)}},$$

Parameters learned : r_i^k , η_i^k , β_i^k . *p* is a hyperparameter.

ヘロト 人間 ト 人 ヨ ト 一

-

Monotonic Marginal Utility

Requirement

- \blacktriangleright u_i is non-decreasing on X_i
- $\lim_{x_i\to-\infty}u_i(x_i)=0$
- $\lim_{x_i\to+\infty} u_i(x_i) = 1$

Search space: a convex sum of sigmoids:

$$u_i(x_i) = \sum_{k=0}^{p} \frac{r_i^k}{1 + e^{-(\eta_i^k x_i - \beta_i^k)}},$$

Parameters learned : r_i^k , η_i^k , β_i^k . *p* is a hyperparameter.

イロト 不得 トイヨト イヨト

Monotonic Marginal Utility Module

Structure

$$u_i(x_i) = \sum_{k=0}^{p} \frac{r_i^k}{1 + e^{-(\eta_i^k x_i - \beta_i^k)}}$$

•
$$\sum_{k=1}^{p} r_i^k = 1$$
 and $\forall k, r_i^k \ge 0$

$$\blacktriangleright \forall k, \ \eta_i^k \ge 0$$

イロト イロト イヨト イヨト

э

Other Marginal Utility Modules

Single-peaked/single-valleyed utilities

- Additional parameter: location of maximum/minimum
- built from monotonic modules

Selectors

- selects automatically the best type of monotonicity
- based on a switching mechanism

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ = ● ● ●

2-additive Choquet integral

Characterization

$$C_{w}(a) = \sum_{i=1}^{n} w_{i}a_{i} + \sum_{i=1}^{n} \sum_{j=i+1}^{n} w_{i,j}^{\wedge}(a_{i} \wedge a_{j}) + \sum_{i=1}^{n} \sum_{j=i+1}^{n} w_{i,j}^{\vee}(a_{i} \vee a_{j})$$
(3)

where \land (resp \lor) denote the min (resp max) operators, with:

► Monotonicity: $\forall i \in N, \forall j \in N, w_i \ge 0, w_{i,j}^{\wedge} \ge 0, w_{i,j}^{\vee} \ge 0$

► Normalization:
$$\sum_{i=1}^{n} w_i + \sum_{1 \le i < j \le n} w_{i,j}^{\wedge} + \sum_{i=1}^{n} \sum_{j=i+1}^{n} w_{i,j}^{\vee} = 1$$

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへぐ

Choquet Modules

2-additive CI

$$C_w(a) = \sum_{i=1}^n \operatorname{pos}(z_i) a_i + \sum_{i=1}^n \sum_{j=i+1}^n \left(\operatorname{pos}(z_{i,j}^{\wedge}) (a_i \wedge a_j) + \operatorname{pos}(z_{i,j}^{\vee}) (a_i \vee a_j) \right)$$

 $z_i, z_{i,j}^{\vee}, z_{i,j}^{\wedge} \in \mathbb{R}$; pos non-negative.

Other Aggregator Models

- A subset of the 3-additive Cls
- General CIs

Michele Sebag

NN-based Hierarchical Choquet Integrals: explainability by design

イロト イボト イヨト イヨト

э

Assembled Network - HCI

Michele Sebag

NN-based Hierarchical Choquet Integrals: explainability by design

Assembled Network - UHCI

Figure 8.5: Example of the combination of the two modules on a tree with three monotonic marginal utility functions and two aggregation nodes.

NN-based Hierarchical Choquet Integrals: explainability by design

23 / 32

Contexte

Hierarchical Choquet Integrals

Neur-HCI

Experimental validation

Conclusion – Perspectives

Michele Sebag

NN-based Hierarchical Choquet Integrals: explainability by design

ヘロト ヘロト ヘヨト ヘヨト

Experimental validation on benchmarks

Settings

- Regression (mean squared error)
- Classification (binary) (Misclassification rate)
- Pairwise Learning (Ranking inversion rate)

Experimental setting

- 1000 random splits of each dataset train/test
- Baselines:
 - same-size MLP
 - linear model
 - Choquistic utilitaristic regression (binary classif.)
- Benchmarks: 9 datasets (CPU, CEV, LEV, MPG, DB, MG, Journal, Boston)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Performance on Real Data

Dataset	MLP	Logistic Reg.	CUR	NCI	NCI+U	NHCI	NHCI+U
CPU	$\textbf{0.015} \pm \textbf{0.021}$	0.091±0.051	0.024 ± 0.025	0.045±0.039	0.023 ± 0.024	0.030 ± 0.027	0.023 ± 0.026
CEV	$\textbf{0.004} \pm \textbf{0.004}$	0.110 ± 0.023	0.084 ± 0.067	0.059 ± 0.012	0.051 ± 0.023	0.035 ± 0.009	0.019 ± 0.017
LEV	0.135 ± 0.021	0.161 ± 0.022	0.143 ± 0.0213	0.136 ± 0.022	0.135 ± 0.019	N/A	N/A
MPG	0.113 ± 0.036	0.090 ± 0.030	0.112 ± 0.099	0.086 ± 0.027	$\textbf{0.079} \pm \textbf{0.027}$	0.085 ± 0.029	0.082 ± 0.027
DB	0.143 ± 0.069	0.164 ± 0.071	0.235 ± 0.017	0.139 ± 0.067	$0.132 {\pm}~0.068$	0.141 ± 0.068	$\textbf{0.135} \pm \textbf{0.068}$
MG	0.179 ± 0.028	0.196 ± 0.027	$0.166 {\pm}~0.022$	0.195 ± 0.027	$\textbf{0.166} \pm \textbf{0.026}$	0.201 ± 0.030	0.191 ± 0.028
Journal	0.180 ± 0.063	0.250 ± 0.070	0.218 ± 0.086	0.207±0.065	0.197±0.060	0.219 ± 0.065	0.216 ± 0.062
Boston	0.124 ± 0.030	0.145±0.033	0.1360 ± 0.085	0.127±0.031	0.129±0.032	0.121 ± 0.032	0.129 ± 0.031
Titanic	$\textbf{0.182} \pm \textbf{0.025}$	0.202 ± 0.027	0.185 ± 0.041	$0.192{\pm}0.0264$	0.193 ± 0.027	$0.203 {\pm} 0.027$	$0.194{\pm}0.027$

Table 1: NEUR-HCI, Classification setting: Classification error (average and variance over 1,000 runs).

Dataset	MLP	Linear Reg.	NCI	NCI+U	NHCI	NHCI+U
CPU	0.0005 ± 0.0016	0.0022 ± 0.0019	0.0023 ± 0.0032	0.0009 ± 0.0013	0.0026 ± 0.0023	0.0009 ± 0.0011
CEV	0.0094 ± 0.003	0.0434 ± 0.0442	0.0437±0.0037	0.0264±0.0027	0.0197±0.0017	0.0176 ± 0.0017
LEV	0.0312 ± 0.0254	$0.0252 {\pm} 0.0029$	$0.0252 {\pm} 0.0031$	$0.0252 {\pm} 0.0029$	N/A	N/A
MPG	0.0047 ± 0.0008	0.0089 ± 0.0019	0.0084 ± 0.0018	0.0056±0.0013	0.0091 ± 0.0018	0.0057±0.0012
Journal	0.0410 ± 0.010	0.0524 ± 0.0128	0.0631±0.0127	$0.0385 {\pm} 0.0112$	0.0629 ± 0.0127	0.0391 ± 0.0117
Boston	0.0079 ± 0.0030	0.0174 ± 0.0038	0.0157 ±0.0037	0.0072±0.0023	0.0151 ± 0.0033	0.0077 ± 0.0023

Table 2: NEUR-HCI, Regression setting: Mean square error (average and variance over 1,000 runs)

Dataset	MLP	Linear Reg.	NCI	NCI+U	NHCI	NHCI+U
CPU	0.0005 ± 0.002	0.0006 ± 0.003	0.0007 ± 0.003	0.0006 ± 0.003	0.0009 ± 0.003	0.0010 ± 0.004
CEV	0.0174 ± 0.012	0.0642 ± 0.011	0.0243 ± 0.005	0.0099 ± 0.002	0.0165 ± 0.004	0.0088 ± 0.003
LEV	0.0178 ± 0.025	0.0179±0.023	0.0178 ± 0.024	0.0177±0.023	N/A	N/A
MPG	$\textbf{0.0613} \pm \textbf{0.012}$	0.0642 ± 0.011	0.0610 ± 0.011	$0.0612 {\pm} 0.011$	0.0633 ± 0.012	0.0621 ± 0.011
DB	0.1355 ± 0.0796	0.1257±0.079	0.1216 ± 0.081	0.0942±0.069	0.1231 ± 0.092	$\textbf{0.0962} \pm \textbf{0.081}$
MG	0.2601 ± 0.046	0.2661±0.047	0.2668 ± 0.045	0.2381±0.037	0.2701 ± 0.052	0.2446 ± 0.036
Journal	0.1801 ± 0.064	0.1802 ± 0.065	0.1761 ± 0.063	0.1838 ± 0.066	0.1711±0.063	0.1889 ± 0.065
Boston	0.0659 ± 0.016	0.0790±0.014	0.0790 ± 0.015	$0.0669 {\pm} 0.012$	0.0752 ± 0.014	0.0681 ± 0.014
Titanic	0.1521 ± 0.027	0.1651 ± 0.029	0.1632 ± 0.028	0.1533 ± 0.028	0.166 ± 0.028	0.1542 ± 0.029
Arguments 1	0.0157 ± 0.015	0.0195±0.016	0.0145 ± 0.012	0.0141 ± 0.012	0.0141 ± 0.012	0.0140 ± 0.012
Arguments 2	0.0588 ± 0.028	0.0653±0.031	0.0644 ± 0.028	0.0581 ± 0.027	0.0572±0.027	0.0572 ± 0.028
Arguments 3	0.0740 ± 0.039	0.0941±0.042	0.0783 ± 0.040	0.0784 ± 0.040	0.0761±0.039	0.0771±0.041

Table 3: NEUR-HCI, Ranking setting: percentage of mis-ordered pairs (average and variance over 1,000 runs)

<□> <同> <同> < 目> < 目> < 目> < 目> < 目> □ ○ ○ ○

On artificial data (large sample limit

Distribution of the weights of 50 Cls trained on 50 different datasets of 10,000 examples generated by a ground-truth model (red stars).

Michele Sebag

NN-based Hierarchical Choquet Integrals: explainability by design

4 E N 4 E N

Artificial Data, followed

Figure: Marginal utilities of 50 UHCI models trained on 50 different datasets of 10,000 examples generated by a ground-truth model (red stars).

イロト 不得 トイヨト イヨト

э

Sensitivity to Noise

Noise	Tree	Flat
0.	$7.1 imes 10^{-7} \pm 4.4 imes 10^{-6}$	$2.5 imes 10^{-6} \pm 7.2 imes 10^{-7}$
0.05	$1.1 imes 10^{-4} \pm 4.6 imes 10^{-5}$	$1.7 imes 10^{-4} \pm 4.8 imes 10^{-5}$
0.1	$4.4 \times 10^{-4} \pm 1.6 \times 10^{-4}$	$6.3 imes 10^{-4} \pm 1.8 imes 10^{-4}$
0.2	$1.6 imes 10^{-3} \pm 7.6 imes 10^{-4}$	$1.7 imes 10^{-3} \pm 6.1 imes 10^{-4}$

Table: Mean Squared Error in regression setting, 50 models training on 50 different datasets of 300 noisy examples. Tested on noiseless examples, the error is lower than the noise.

Real Data - MPG Dataset

Figure: Distribution of weights, 50 models trained on different splits of the MPG dataset.

Real Data - MPG Dataset

Figure: Marginal utilities, 50 models trained on different splits of the MPG dataset.

Michele Sebag

NN-based Hierarchical Choquet Integrals: explainability by design

イロト イヨト イヨト イヨト

э

Conclusion

This was made possible as HCI constraints can be included in NN architecture by design

Next

Revise a NN with Hierarchical Choquet head.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで