Cut the Black Box

Michèle Sebag CNRS & Université Paris-Saclay

Jne 27th, 2023 Joint work: Nicolas Atienza, Roman Bresson, Cyriaque Rousselot, Philippe Caillou, Johanne Cohen, Christophe Labreuche

THALES

Innin -

(日) (部) (注) (注) (三)

The AI wave faces a shock

Why ? Lack of certification; fairness; accuracy; explanations.

Ex:

Model (Correlation between):

computers/books at home;

children good grades at school

Decision (Public policy): give computers/books to families

The dark side of AI:

C. O'Neill, 2016	Weapons of Math Destruction	
Timnit Gebru, 2020	www.technologyreview.com/2020/12/04/1013294/google-ai-ethics-	
	research-paper-forced-out-timnit-gebru	

Explainable models

Strategies

1. Learning an explainable model from scratch

Rudin 2019

3/22

2. Explaining a black-box model H (post-hoc explanation)

Position of the problem

- Option 1: requires interpretable representation / simple models; Throwing away existing black-box models ? Trade-off Explanation / Accuracy ?
- Option 2 comes in two modes:
 * explaining H(x)
 - * explaining H

Explaining f(x)

Saliency approaches

Class Activation Mapping Gradient-based

Selvaraju et al. 17

Shapley value of attribute *j* wrt model *H*

$$\hat{\phi}_{j} = \frac{1}{T} \sum_{t=1}^{T} \left(H\left(\mathbf{x}_{+j}^{t} \right) - H\left(\mathbf{x}_{-j}^{t} \right) \right)$$

Discussion

Confirmation bias

Fig. 2] Saliency does not explain anything except where the network is looking. We have no idea why this image is labelled as either a dog or a musical instrument when considering only saliency. The explanations look essentially the same for both classes. Credit: Chaofen Chen, Duke University

Gradients only tell where the network is looking.

Desired properties

Alvarez-Meliz et al., 2018

- Explicitness/Intelligibility: Are the explanations immediate and understandable?
- ▶ Faithfulness: Are relevance scores indicative of "true" importance?
- Stability: How consistent are the explanations for similar/neighboring examples?

Concept Activation Vector

Kim et al., 2018; Crabbé & v.d. Schaar 22

Input (CAV)

- ▶ a black-box $H: X \mapsto Y$
- a set of concepts
- positive/negative examples for each concept i

Method

- Learn classifier h_i for concept *i* in latent representation of *H* (noted z(x))
- Assess correlations between:
 - how much x needs be changed to modify $h_i(z(x))$;
 - how much this modification would change the label H(x)

Position of the problem

Overview of Cut the Black Box (CB2)

Experimental validation

Conclusion

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊃ < ?/22

Overview of CBB

Building upon multi-modal NNs

- ϕ_i : image $\mapsto \mathbb{R}^d$
- ϕ_c : concepts $\mapsto \mathbb{R}^d$

Given concept space and its grounding w.r.t. example space X

• Dictionary
$$C = \{c_1, \ldots c_K\}$$

Grounding

$$\Phi: X \times C \mapsto \mathbb{R}$$

e.g. $\Phi(\text{image of zebra, striped}) = 1$.

CBB

Given a teacher H (black-box neural net)

$$H = f_h \circ f_r : X \mapsto Y$$

- Find explainable students, explaining:
 - The latent representation f_r
 - The classifier f_h

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q (や 8/22

Overview of CBB

Phase 1: explaining f_r: inspiration TCAV

Kim et al. 18, Crabbé vd Schaar 22

> Phase 2: explaining f_h with Hierarchical Choquet integral

Bresson et al 19, 20

イロト イヨト イヨト イヨト 二日

Phase 1: Explaining latent representation

Given

Sample x and conceptual representation $c(x) = (\Phi(x, c_i))_i$

▶ Latent representation $f_r : X \mapsto Z$

Find

$$W = rgmin \|f_r - W.c\|_2 + \|W\|_1$$

with matrix W = (#C, #Z)

On-going experiments

- Explaining the full latent representation or each coordinate ?
- Linear student ? Non-negative W ?

Phase 2: Explaining latent classifier

Hierarchical Choquet Integral, recap

- Variable x_i in domain X_i
- ► Utility functions u_i : X_i → ℝ (continuous; monotonic, peak-shaped or valley-shape)
- Aggregation: Choquet integral

$$C_{\mu}(a) = \sum_{i=1}^{N} \mu(\{\tau(i), \tau(i+1), ..., \tau(n)\})(a_{\tau(i)} - a_{\tau(i-1)})$$
(1)

with τ a permutation in N s.t. $\forall i \in N$, $a_{\tau(i)} \leq a_{\tau(i+1)}$ and $a_{\tau(0)} = 0$.

Bresson et al. 20, 21

Neural- HCI

Properties UHCIs

Grabisch & Labreuche 08

- continuous
- non-decreasing w.r.t. arguments
- piecewise linearity
- interpretable
- 1-Lipschitz

Past Results

Bresson et al. 2020, 2021

- Neur-HCI can learn HCI (HCI constraints satisfied by design)
- Identifiability in the large sample limit (with given hierarchy)
- On-going: learning the hierarchy

Phase 2: Explaining latent classifier, 2

Explain $f_c: Z \mapsto Y$

- remind: f_c: linear + softmax
- ▶ HCI: Find $h^* = \arg \min_{h \text{ in } HCI}$ Distillation loss $\mathcal{L}(h, f_c)$
- ▶ MLP: Find $h^* = \arg \min_{h \text{ in } MLP}$ Distillation loss $\mathcal{L}(h, f_c)$

$$\mathcal{L}(u, v) = \text{ Cross Entropy } (\sigma(u/T), \sigma(v/T))$$

 σ : softmax, T a temperature parameter

The HCI case

HCI Hierarchy = hierarchical clustering of concepts in dictionary C based on latent representation of samples Position of the problem

Overview of Cut the Black Box (CB2)

Experimental validation

Conclusion

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ / ○ Q (~ 14/22

Experimental setting

Benchmark: CIFAR-10 Teachers

- CIFAR-10
- resnet20 and resnet32 (ResNet).
- mobilenetv2_x0.5 (MobileNet)
- repvgg_a0, vgg16_bn (VGG).

Dictionary and grounding

use multi-modal embedding CLIP

Radford et al. 2021

- $\Phi(\text{image } x, \text{ concept } c) = \operatorname{cosine}(\phi_x(x), \phi_c(c))$
- concepts: 2096 most common English terms (filtering out class synonyms to avoid tautological explanations)

Performance indicators of students

- Accuracy wrt ground truth labels
- Faithfulness wrt teachers
- Inspecting students

Accuracy (on validation set)

No loss of accuracy wrt Teachers

On-going

Sensitivity wrt size of Student training set.

Accuracy and Faithfulness wrt Teachers

Acc.	MLP Head	Linear head
truth	91.84 ± 0.05	90.9 ± 0.02
	$\textbf{90.89} \pm \textbf{0.01}$	$\textbf{89.66} \pm \textbf{0.09}$
teacher	82.54 ± 0.05	82.02 ± 0.02
	78.90 ± 0.05	78.58 ± 0.04

(plain, training set; italic, test set)

Computing time: \sim 50 minutes, for 30 epochs, 8 Tesla V100 16GB GPUs

Impact of sparsity on accuracy: lesion study

Removing concepts with |weight | < x coordinate \rightarrow loss of accuracy y coordinate

◆□ ▶ < ⑦ ▶ < ≧ ▶ < ≧ ▶ ≧ シ Q (~ 18/22

Case study

Relative sensitivity of class c_i wrt concept t_j Zhou et al. 2018 where $z \sim W_g t$ and $f_h \sim W_h z$

Define
$$S[i, j] := (W_h^T W_g^T))[i, j]$$

Relative sensitivity $= \frac{exp(S[i, j])}{\sum_k exp(S[i, k])}$

Sensitivity of 'airplane' w.r.t. 'grass'

Sensitivity of 'ship' w.r.t. 'sea'

◆ □ → < ≥ → < ≥ → ≥ < つ < ○ 19/22 Position of the problem

Overview of Cut the Black Box (CB2)

Experimental validation

Conclusion

< □ > < ⑦ > < 注 > < 注 > 注 の Q (~ 20 / 22

Conclusion

Pros and Cons

- Students suffer no loss of accuracy
- Are they really interpretable ? (tells what's in z and how to pass from z to y)
- Using Shapley value to infer biases from background ('sea' for 'ship')

21/22

Compared to learning from c(x) ?

frugality

Perspectives

- Distill several hidden layers ?
- Impact on adversarial examples
- Automatically detect spurious inference (external sources to assess causality ?)
- Adapt/extend to opinion mining