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Preface
.

Dear colleagues,

A very warm welcome to the IABEM symposium 2018 in Paris.

This symposium series has a long history and serves as an informal meeting for researchers working in
the wide �eld of boundary integral/element methods. I am quite happy to see in the program that this
meeting also perpetuates a very unique tradition of having participants from both applied mathematics
and engineering. This allows fruitful interdisciplinary discussions and helps initiating interdisciplinary
collaborations.

The IABEM community is an open community without any fees or strict memberships. The main
focus of IABEM is to bring together researchers, stimulate scienti�c interactions, and provide with the
symposium a stage for presenting new ideas for BIE/BEM. The �rst IABEM symposium, initiating
this series, took place in Rome in 1990. The IABEM community has already been in Paris in 1998
and I have a pleasant memory of this symposium. Now, after 20 years we are back in Paris and two
young colleagues, Stéphanie Chaillat and Xavier Claeys, have taken the burden to organise the sym-
posium. Let us thank both for their excellent preparation of this meeting. The community also thanks
their organisations for supporting us: the Institut National de Recherche en Informatique et Automa-
tique (INRIA), Sorbonne Université, Laboratoire Jacques-Louis Lions, and the Agence Nationale de
la Recherche (ANR).

I wish all participants a very informative meeting, good discussions, and a pleasant time in Paris.

. Martin Schanz (President of IABEM)

2



IABEM 2018, Paris

Acknowledgements
.

We would like to thank the following institutions for their �nancial support in the organisation of
IABEM 2018: Institut National de Recherche en Informatique et Automatique (INRIA), Sorbonne
Université and Laboratoire Jacques-Louis Lions (LJLL), and Agence National de la Recherche (ANR).

3



IABEM 2018, Paris

How to access the conference rooms on the campus of Jussieu

The conference will take place in rooms 44-45-106, 44-45-108 and 44-54-109 of the Jussieu campus.
These rooms can be accessed by entering Tower 44 at ground level, taking the stairs or the elevator,
and going to the �rst �oor.

How to go to the conference dinner

The conference dinner will take place at the restaurant �Bistro Parisien� (https://www.bateauxparisiens.
com/en/le-bistro-parisien.html) located at the foot of the Ei�el Tower and alongside the Seine
river:

Bistro Parisien
Port de la Bourdonnais, 75007 Paris

Conference dinner

Metro station

The closest metro station is the stop Bir-Hakeim of line 6. From the Jussieu station, take line 10 bound
for Boulogne, get o� at La Motte-Picquet - Grenelle, then take line 6 bound for Charles de Gaulle
Etoile and get o� at Bir-Hakeim.
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Wi� and internet access

In the conference rooms you can access internet via eduroam. If, for some reason, eduroam connection
fails, you can connect via the eduspot network:

1) connect to the network named "eduspot" (SSID access)
2) open a browser, you should be redirected to an authentication portal
3) on this portal you �rst have to select an institution, choose "UPMC: Congrès et Invités" (see

picture below)
4) you will then be asked for a login and password that you can obtain at the registration desk

With eduspot network, if you encounter di�culties for accessing the authentication portal (step 2
above), try entering http://www.upmc.fr in the url bar of your browser.

After a long connection without any interruption, the eduspot connection might break down. In this
situation, turn o� your connection to the eduspot network for 15 minutes and try to connect anew.
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Tuesday June 26 2018
Morning Sessions

08h30 - 08h50 Welcome of participants
08h50 - 09h00 Opening Session, Room 44-45-106

09h00 - 10h40 Room 44-45-106 - Chairperson: E. Darrigrand
09h00- S.E. Mikhailov: Boundary-Domain Integral Equations for Stokes and Brinkman Systems

with Variable Viscosity in Lp-based spaces on Lipschitz Domains
09h25- A. Ayala: Linear time CUR approximation of BEM matrices
09h50- R. Haqshenas: A fast coupled boundary element formulation for trans-abdominal

high-intensity focused ultrasound therapy
10h15- A. Dansou: Modeling crack propagation in 3D heterogeneous multi-cracked roads

by Fast Multipole Symmetric Galerkin Boundary Element Method

09h00 - 10h40 Room 44-45-108 - Chairperson: M. Karkulik
09h00- R. Hiptmair: First-Kind Galerkin Boundary Element Methods for the Hodge-Laplacian
09h25- M. Bonnet: Asymptotic expansion of the Maxwell integral equation formulation

for the eddy current regime
09h50- G. Of: Some boundary element methods for multiply-connected domains
10h15- P. Musolino: Converging expansions for Lipschitz self-similar perforations of a plane sector

10h45 - 11h15 Co�ee Break

11h15 - 12h55 Room 44-45-106 - Chairperson: C. Jerez-Hanckes
11h15- S. Falletta: Wavelets and convolution quadrature for a time domain

boundary integral formulation of the wave equation
11h40- E.P. Stephan: Time Domain BEM for Fluid-Structure Interaction
12h05- D. Pölz: Collocation Methods for Retarded Potential Boundary Integral Equations

with Space-Time Trial Spaces
12h30- S. Dohr: Parallelized space-time boundary element methods for the heat equation

11h15 - 12h55 Room 44-45-108 - Chairperson: M. Darbas
11h15- E. Demaldent: Multi-trace boundary integral formulations with eddy current models
11h40- S. Adrian: Re�nement-Free Preconditioning Strategies for the Electric Field Integral Equation
12h05- P. Escapil-Inchauspé: Fast Calderón Preconditioning for the EFIE
12h30- R. van Venetië: Optimal preconditioning of operators of negative order

13h00 - 14h10 Lunch
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Tuesday June 26 2018
Afternoon Sessions

14h10 - 15h50 Room 44-45-106 - Chairperson: M. Bonnet
14h10- F. Le Louër: Material derivatives of boundary integral operators in electromagnetism

and applications
14h35- K. Nakamoto: A shape and topology optimisation using the BEM and an explicit

boundary expression with the level set method
15h00- M.L. Rapun: Solving inverse multiple scattering problems in three-dimensional

electromagnetism by topological gradient methods
15h25- H.B. Chen : Toward the optimization of acoustic performance using boundary element method

14h10 - 15h50 Room 44-45-108 - Chairperson: B. Thierry
14h10- C. Erath: Approximation of a parabolic-elliptic interface problem with a non-symmetric

FEM-BEM and backward Euler coupling approach
14h35- R. Schorr: Stable non-symmetric coupling with the boundary element method

for a convection-dominated parabolic-elliptic interface problem
15h00- V. Dominguez: An overlapped BEM-FEM coupling for simulating acoustic wave propagation

in unbounded heterogeneous media
15h25- L. Desiderio: BEM-FEM coupling for estimating anchor losses in MEMS

15h50 - 16h20 Co�ee Break

16h20 - 18h00 Room 44-45-106 - Chairperson: N. Nishimura
16h20- E. Rejwer: On increasing e�ciency of kernel-independent fast multipole method

in 2D and 3D problems
16h45- J. Dölz: Interpolation-based H2-compression of Higher Order Boundary Element Methods

on Parametric Surfaces
17h10- C. Jelich: Inverse Fast Multipole Method Applied to the Galerkin Boundary Element Method
17h35- G. Martinsson: Accelerated Direct Solvers for Boundary Integral Equations

16h20 - 18h00 Room 44-45-108 - Chairperson: N. Heuer
16h20- M. Ganesh: A class of forward and inverse algorithms for a stochastic wave propagation model
16h45- T. Hirai: An isogeometric BEM for a 3D doubly-periodic PEC surface in electromagnetism
17h10- G. Beer: Isogeometric boundary element method for problems with inelastic inclusions
17h35- F. Wolf: Isogeometric Boundary Element Methods for Electromagnetic Problems:

Discretisation and Numerical Examples

18h00 - 19h00 IABEM General Assembly
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Wednesday June 27 2018
Morning Sessions

08h30 - 08h45 Welcome of participants

08h45 - 10h25 Room 44-45-106 - Chairperson: A. Gillman
08h45- P. Zaspel: Scalable parallel BEM solvers on many-core clusters
09h10- Y. Matsumoto: A Fast Direct Solver for the One-Periodic Transmission Problems

Formulated with the Multi-Trace Boundary Integral Equation
09h35- J. Zapletal: Vectorized approach to the evaluation of boundary integral operators
10h00- F. Kpadonou: E�cient parallel implementation of H-matrix based solvers

for 3D Helmholtz and elastodynamic oscillatory kernels

08h45 - 10h25 Room 44-45-108 - Chairperson: S. Chandler-Wilde
08h45- T. Chaumont-Frelet: High frequency behaviour of corner singularities in Helmholtz problems
09h10- E. Spence: The Helmholtz h-BEM: what can be proved about the pollution e�ect

and the behaviour of GMRES?
09h35- S. Baydoun: A Pollution E�ect Induced by Numercial Damping in the Acoustic

Boundary Element Method for Duct Problems
10h00- E. Parolin: A Hybrid Numerical-Asymptotic Collocation BEM for High-Frequency

Scattering by 2D Planar Screens

08h45 - 10h25 Room 44-54-109 - Chairperson: A. Sellier
08h45- J. Ravnik: Boundary element based solution of Navier-Stokes equations

with variable material properties
09h10- J. Tibaut: Acceleration of the boundary-domain integral representation

of the velocity-vorticity form of Navier-Stokes equations
09h35- J. Watson: Boundary elements for surfaces in contact in three dimensions
10h00- L. Gray: Volume Integration for the 3D Stokes Equation

10h30 - 11h00 Co�ee Break
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Wednesday June 27 2018
Morning Sessions

11h00 - 12h40 Room 44-45-106 - Chairperson: F. Andriulli
11h00- M. Darbas: Analytic preconditioners for 3D high-frequency elastic scattering problems
11h25- B. Thierry: Single scattering preconditioner applied to boundary integral equations
11h50- C. Urzua-Torres: Preconditioning for the Electric Field Integral Equation on Screens
12h15- A. Molavi Tabrizi: Modeling multiscale interface phenomena

using nonlinear transmission conditions

11h00 - 12h40 Room 44-45-108 - Chairperson: M. Ganesh
11h00- D. Hewett: Scattering by Fractal Screens and Apertures: I - Functional Analysis
11h25- S. Chandler-Wilde: Scattering by Fractal Screens and Apertures: II - Numerical Computation
11h50- A. Zemlyanova: Singular integral equations method for a fracture problem

with a surface energy in the Steigmann-Ogden form on the boundary
12h15- T. Maruyama: Application of numerical continuation method to BIE

for steady-state wave scattering by a crack with contact acoustic nonlinearity

11h00 - 12h40 Room 44-54-109 - Chairperson: J. Ravnik
11h00- A. Sellier: Fundamental coupled MHD creeping �ow and electric potential

for a conducting liquid bounded by a plane slip wall
11h25- H. Fendoglu: MHD �ow in a rectangular duct with a perturbed boundary
11h50- K. Yang: Radial integration BEM for nonlinear heat conduction problems

with temperature-dependent conductivity
12h15- J. Zhang: How to achieve the goal of 5aCAE based on BIE

12h40 - 14h00 Lunch
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Wednesday June 27 2018
Afternoon Sessions

14h00 - 16h05 Room 44-45-106 - Chairperson: O. Steinbach
14h00- F. Amlani: Anisotropic mesh adaptation for 3D accelerated high-order

boundary element methods in acoustics
14h25- S. Schimanko: Adaptive BEM with inexact PCG solver yields almost

optimal computational costs
14h50- A. Haberl: Adaptive BEM for the Helmholtz equation
15h15- H. Harbrecht: Adaptive Wavelet Boundary Element Methods
15h40- Y. Zhang: An e�cient adaptive solution technique for periodic Stokes �ow

14h00 - 16h05 Room 44-45-108 - Chairperson: S. Rjasanow
14h00- N. Heuer: A non-conforming domain decomposition approximation for the Helmholtz screen

problem with hypersingular operator
14h25- P. Marchand: Two-level preconditioning for BEM with GenEO
14h50- A.S. Bonnet-Ben Dhia: Coupling BEMs in overlapping domains

when a global Green's function is not available
15h15- B. Caudron: An optimized domain decomposition method between interior and exterior domains

for harmonic, penetrable and inhomogeneous electromagnetic scattering problems
15h40- V. Mattesi: A Padé-localized absorbing boundary condition

for 2D time-harmonic elastodynamic scattering problems

14h00 - 16h05 Room 44-54-109 - Chairperson: M. Schanz
14h00- A. Sellier: Particle-particle interactions in axisymmetric MHD creeping �ow
14h25- M. Ancellin: Recent developments of the linear potential �ow solver NEMOH

and its application for the design of wave energy converters
14h50- E. Darrigrand: FastMMLib: a generic library of fast multipole methods
15h15- E. van't Wout: Using boundary element methods to analyse the low-frequency

resonance of �sh schools
15h40- M. Aussal: FEM-BEM coupling using Gypsilab

16h05 - 16h30 Co�ee Break
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Wednesday June 27 2018
Afternoon Sessions

16h30 - 18h10 Room 44-45-106 - Chairperson: D. Hewett
16h30- A. Gibbs: A new toolbox for highly oscillatory and singular integrals
16h55- S. Langdon: Hybrid numerical-asymptotic boundary element methods

for high frequency scattering by penetrable convex polygons
17h20- H. Gimperlein: Higher-order and adaptive boundary elements for the wave equation
17h45- B. Gilvey: Evaluation of highly oscillatory Partition of Unity BEM integrals

arising in 2D wave scattering simulations

16h30 - 18h10 Room 44-45-108 - Chairperson: V. Dominguez
16h30- O. Steinbach: On the coupling of space-time �nite and boundary element methods
16h55- F.J. Sayas: Time Domain Boundary Integral Equations for scattering by obstacles

with locally homogeneous material properties
17h20- J. Tausch: Fast Galerkin BEM for parabolic moving boundary problems
17h45- L. Desiderio: A stable 2D energetic Galerkin BEM approach for linear elastodynamic problems

16h30 - 18h10 Room 44-54-109 - Chairperson: V. Mantic
16h30- K. Kuzmina: The Hierarchy of Numerical Schemes for Boundary Integral Equation Solution

in 2D Vortex Methods at Airfoil Polygonal Approximation
16h55- S. Veerapaneni: Integral equation methods for electro- and

magneto-hydrodynamics of soft particles
17h20- C. Jerez-Hanckes: Boundary Integral Formulation for Helmholtz and Laplace Dirichlet

Problems On Multiple Open Arcs
17h45- M. Scroggs: Weak imposition of boundary conditions using a penalty method

20h00 - 23h00 Conference Dinner at "Bistrot Parisien"
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Thursday June 28 2018
Morning Sessions

08h30 - 08h45 Welcome of participants

08h45 - 10h25 Room 44-45-106 - Chairperson: G. Of
08h45- V. Mantic: Complex variable BEM for a Gurtin-Murdoch material surface in the form

of a circular arc in an elastic plane under far-�eld loads
09h10- A. Furukawa: A Boundary Element Method for Antiplane Wave Analysis of Frozen

Porous Media
09h35- J.W. Lee: Combination of the CHIEF and the self-regularization technique for solving 2D

exterior Helmholtz equations with �ctitious frequencies in the indirect BEM and MFS
10h00- P. Fedeli: Application of Boundary Integral Equations to MEMS working in near vacuum

08h45 - 10h25 Room 44-45-108 - Chairperson: F.J. Sayas
08h45- M. Schanz: Elastodynamic BE formulation with Runge-Kutta based Generalised

Convolution Quadrature Method
09h10- M. Zank: Space-Time Variational Formulations for the Wave Equation
09h35- C. Jerez-Hanckes: Multiple Traces Formulation and Semi-Implicit Scheme

for Modelling Biological Cells under Electrical Stimulation
10h00- V. Arnautovski-Toseva: Solving Electromagnetics Problems by Using Mixed Potential

Integral Equation

10h30 - 11h00 Co�ee Break

11h00 - 12h40 Room 44-45-106 - Chairperson: E. Spence
11h00- B. Quaife: A Boundary Integral Equation for the Clamped Bi-Laplacian Eigenvalue Problem
11h25- T. Führer: On the coupling of DPG and BEM
11h50- M. Karkulik: The inverse of a �nite element discretization of the fractional Laplacian

can be approximated by H-matrices
12h15- S. Rjasanow: Matrix-valued radial basis functions for the BEM treatment of the Lamé system

11h00 - 12h40 Room 44-45-108 - Chairperson: J. Tausch
11h00- M. Leitner: Uncoupled Thermoelastic Boundary Element Formulation

with Variable Time Step Size
11h25- K. Niino: Computation of layer potentials in the BEM with the space-time method

for the heat equation in 2D
11h50- A. Haider: Data-Sparse Boundary Element Methods for Elastic Waves
12h15- N. Dumont : Conceptually Consistent Formulation of the Boundary Element Method and

Arbitrarily High Accurate Numerical Integrations for the Analysis of 2D Problems
of General Topology and Shape

12h40 - 14h00 Lunch
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Thursday June 28 2018
Afternoon Sessions

14h00 - 15h40 Room 44-45-106 - Chairperson: G. Martinsson
14h00- A. Gillman: A fast direct solver for boundary value problems on evolving geometries
14h25- N. Nishimura: Optimisation of Electromagnetic Metamaterials Using Periodic FMM

and Cylindrical-Hole Topological Derivatives
14h50- M. Oneil: A Fast Boundary Integral Method for Generating High-order Surface Meshes
15h15- G. Oelker Silva: Quanti�cation of the Impact of Small Random Perturbations

in Electromagnetic Scattering from Re�ective Gratings

14h00 - 15h40 Room 44-45-108 - Chairperson: R. Hiptmair
14h00- A. Kleanthous: Electromagnetic scattering by ice crystals and implementation using Bempp
14h25- M. Issa: Boundary Element Method for Conductive Thin Layer in 3D Eddy Current Problems
14h50- Q. Sun:Wavelength stable �eld-only boundary regularised integral solution of electromagnetic

scattering based on the Helmholtz equation
15h15- X.W. Gao: Non-Conventional Boundary Elements and Their Applications in BEM Analysis

of Structurally Multi-Scale Problems

15h40 - 16h15 Co�ee Break

16h15 - 17h55 Room 44-45-106 - Chairperson: F. Le Louer
16h15- O.I. Yaman: Reconstruction of surface impedance functions from the acoustic far �eld pattern
16h40- K. Matsushima: A topology optimisation of elastic wave absorber with the BEM

and H-matrix method
17h05- H. Isakari: A topology optimisation for photonic crystals using a fast boundary element method
17h30- A. Lefebvre-Lepot: The Sparse Cardinal Sine Decomposition (SCSD) and its application

to the simulation of suspensions

16h15 - 17h55 Room 44-45-108 - Chairperson: J. Zhang
16h15- J.R. Poirier: Boundary Integral Equations and Hierarchical Matrices

for a Waveguide Mode Solver
16h40- C. Ju: A binary-tree subdivision method for evaluation of nearly singular

integrals and singular integrals in 3D BEM
17h05- B. Chi: A binary-tree subdivision method for volume integrals in BEM
17h30- H.F. Peng: Radial Integration BEM for solving convection-conduction problems
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Re�nement-Free Preconditioning Strategies for the Electric Field Integral Equation

Simon Adrian1,∗, Francesco P. Andriulli2

1Department of Electrical Engineering and Computer Engineering, Technical University of Munich,
Munich, Germany

2Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
∗Email: simon.adrian@tum.de

Keywords: Calderón preconditioning, EFIE, integral equation

Di�erent preconditioning techniques have been devised in the past for curing the h-re�nement ill-
conditioning of the electric �eld integral equation (EFIE). Among the most popular techniques are
multilevel/pre-wavelet preconditioners, which typically lead to a logarithmic bound on the condition
number for the asymptotic limit h → 0 (see [1] and references therein), and analytic or Calderón-
identity based preconditioners, which lead to a constant bound on the condition number for h→ 0 [2,3].

When Calderón techniques are used in a standard Galerkin scheme, the discretization of two EFIE
operators and the use of dual elements de�ned on the barycentric re�nement [4] is often required. This,
however, increases the computational costs due to the higher number of barycentric degrees of free-
dom. Although fast matrix-vector multiplication algorithms can be used to alleviate this problem, the
necessity of adapting a fast scheme to two di�erent sti�ness matrices is still a source of computational
overburdens.

In this talk we tackle this problem by presenting a strategy which does not require the use of dual
basis functions, and associated barycentric re�nements, and still leads to an optimally preconditioned
EFIE. The approach is based on implicit quasi-Helmholtz decompositions of the EFIE operator which
allow to exploit scalar-instead-of-vector Calderón identities. This allows to link, via spectral equiva-
lences, two primal mesh EFIE matrices with discretizations of the forward and inverse Laplace-Beltrami
operators. The overall scheme results in order zero Helmholtz components without use of barycentric
meshes.

References

[1] S. B. Adrian, F. P. Andriulli and T. F. Eibert, A Hierarchical Preconditioner for the Electric
Field Integral Equation on Unstructured Meshes Based on Primal and Dual Haar Bases, Journal
of Computational Physics 330 (2017), pp. 365�379.

[2] O. Steinbach, W. Wendland, The Construction of Some E�cient Preconditioners in the Boundary
Element Method, Advances in Computational Mathematics 9 (1998), pp. 191�216.

[3] X. Antoine, A. Bendali, and M. Darbas, Analytic Preconditioners for the Electric Field Integral
Equation, Advances in Computational Mathematics 9.61 (2004), pp. 1310�1331.

[4] A. Bu�a and S. Christiansen, A Dual Finite Element Complex on the Barycentric Re�nement,
Mathematics of Computation 76.260 (2007), pp. 1743�1769.
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Anisotropic mesh adaptation for 3D accelerated high-order boundary element methods
in acoustics

Faisal Amlani1,∗, Stéphanie Chaillat1, Adrien Loseille2

1Laboratoire POEMS (UMR 7231 CNRS-INRIA-ENSTA), Palaiseau, France
2Project Team Gamma3, INRIA Paris-Saclay, Palaiseau, France

∗Email: faisal.amlani@ensta.fr

Keywords: accelerated boundary element methods, anisotropic mesh adaptation, high-order methods

There are a number of factors�such as integral representation, numerical implementation and dis-
cretization strategy�that determine the e�ectiveness of boundary element methods (BEMs) for the
solution of wave scattering problems in computational physics. Although BEM formulations exactly
account for radiation conditions at in�nity and advantageously restrict the descritization of a prob-
lem domain to that of the boundary alone, standard implementations lead to dense and (possibly)
nonsymmetric linear systems whose solutions become prohibitively expensive for large-scale problems.
However, several algorithms�such as fast multipole methods [1] and their algebraic counterpart, hier-
archical (H-) matrices [2]�have been developed to enable drastic reductions in computational time and
memory requirements by approximating the system matrix.

Nevertheless, the exactness of a numerical solution as e�ected by mesh discretization still poses
a challenge to the BEM community. Anisotropic features of a solution (e.g. some elastic materials)
as well as discontinuities near geometric singularities (e.g. corners and edges) are di�cult to capture
and diminish the regularity of the boundary solution and subsequent performance of a BEM. This is
particularly true when uniform meshes are employed. To this end, iterative mesh re�nement schemes
have been constructed to transform an initial mesh into an improved one according to error estimates
calculated at each step, with the hope of reducing the number of degrees of freedom required to resolve
a solution within a desired level of accuracy. Fewer studies on these strategies have been made for
BEMs, and most current BEM adaptivity methods, like those relying on Dör�er marking, have been
con�ned to isotropic techniques. In addition, most works are restricted to Galerkin discretizations and
are formulated speci�cally for a system of underlying equations [3].

In this contribution, we will present recent developments of an anisotropic mesh adaptation (AMA)
strategy using a metric-based error estimator whose e�ectiveness was �rst demonstrated for volumet-
ric (�nite element) methods [4] and only recently for BEMs [5]. The methodology is independent of
discretization technique as well as the choice of PDE and integral equation formulation, iteratively
constructing meshes re�ned in size, shape and orientation according to an �optimal� metric relying on
a reconstructed Hessian of the boundary solution. The resulting adaptation is anisotropic in nature
and accommodates geometric complexities that include engineering detail. Realistic examples will be
explored in the context of frequency-space scattering problems in acoustics and elastodynamics, demon-
strating optimal convergence rates using various BEM accelerations, integral equation representations
and �nite-element orders.

References

[1] E. Darve, The fast multipole method: Numerical implementation, J. Comput. Physics 160
(2000), pp. 195-240.

[2] S. Chaillat et al, Theory and implementation of H-matrix based iterative and direct solvers for
Helmholtz and elastodynamic oscillatory kernels. J. Comput. Physics 351 (2017), pp. 165-186.

[3] C. Erath et al, Simple error estimators for the Galerkin BEM for some hypersingular integral
equation in 2D, Applicable Analysis 92 (2013), pp. 1194-1216.

[4] A. Loseille et al, Optimal 3D highly anisotropic mesh adaptation based on the continuous mesh
framework, Proc. in 18th Intl Meshing Roundtable, Salt Lake City, USA, Oct 2009, pp. 575-594

[5] S. Chaillat et al, Metric-based anisotropic mesh adaptation for 3D acoustic boundary element
methods. Submitted.
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Recent developments of the linear potential �ow solver NEMOH and its application for
the design of wave energy converters.

Matthieu Ancellin1,∗, Frederic Dias1

1School of Mathematics and Statistics, University College Dublin, Ireland
∗Email: matthieu.ancellin@ucd.ie

Keywords: potential �ow, di�raction-radiation problems, water waves, renewable energy

The simplest model to describe the interaction of Wave Energy Converters (WECs) with ocean
waves is linear potential �ow theory. Several numerical solvers using the Boundary Element Method
exist. The code NEMOH, developed at École Centrale de Nantes, is the only open source among
them [1]. Since its release in 2014, it has been widely used for the study of WECs [2], although
improvements of the code still need to be made.

In this talk the theory of radiation-di�raction problem for sea keeping studies will be brie�y recalled.
Then the main characteristics of NEMOH will be introduced, along with its limitations.

The presentation will focus in particular on a recent optimization of the code for symmetric bodies.
Unlike the traditional problems of ship-building, the WECs often present symmetric structures: axi-
symmetrical buoy, cylindrical shapes or regular array of �oating bodies. This symmetry can be used
to speed up the resolution, by using the symmetric block Toeplitz structure of the in�uence matrix [3].

References

[1] A. Babarit and G. Delhommeau, Theoretical and numerical aspects of the open source BEM solver
NEMOH, in Proceedings of the 11th European Wave and Tidal Energy Conference (EWTEC2015),
2015.

[2] M. Penalba Retes, T. Kelly and J. Ringwood, Using NEMOH for modelling wave energy converters:
A comparative study with WAMIT, in Proceedings of the 12th European Wave and Tidal Energy
Conference (EWTEC2017), 2017.

[3] M. Karimi, P. Croaker and N. Kessissoglou, Boundary element solution for periodic acoustic
problems, Journal of Sound and Vibration, 360, 2016, pp. 129�139.
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Solving Electromagnetics Problems by Using Mixed Potential Integral Equation

Vesna Arnautovski-Toseva1,∗, Leonid Grcev1

1Faculty of Electrical Engineering and IT, Ss Cyril and Methodius University, Skopje, Macedonia
∗Email: atvesna@feit.ukim.edu.mk

Keywords: electromagnetics, integral equation, frequency domain

Mathematical model

The electromagnetic interactions related to speci�ed boundary value problem leads to mathematical
model that is derived by integral equation. Although the approach is quite general, it has to be re-
derived based on the type of objects geometries and the corresponding medium properties. Integral
equations are �rstly used for solving electromagnetic problems of antennas and scatterers. This, so
called rigorous electromagnetic model is con�rmed as theoretically most accurate, and valid in wide
frequency range. In the paper the authors will give an overview of their experience in solving high
frequency electromagnetic problems of grounding systems in presence of �nitely conducting homoge-
neous or layered soil. One of the pioneer work in this �eld is [1] where the mathematical model of a
grounding conductor is based on the Electric Field Integral Equation (EFIE). In [2] the authors develop
improved mathematical model for high frequency analysis of horizontal grounding systems in layered
soil, that is later applied to vertical grounding rods. Both mathematical models are derived in fre-
quency domain by using integral equation formulation for the electric �eld due to currents and charges
along the wire conductors in terms of magnetic vector and electric scalar potentials, so called Mixed
Potential Integral Equation (MPIE) [3]. The unknowns in the corresponding integral equation are the
currents and charges that are related through the continuity equation. The rigorous treatment of the
speci�c boundary value problem that include the e�ect of the various medium properties is based on
the use of Sommerfeld formulations for the Green's functions of the corresponding Hertz horizontal or
vertical dipole as an elementary source of the �eld [4]. In this work the authors focus on development
of mathematical model of complex grounding structures consisted of horizontal, vertical and arbitrarily
oriented conductors. Also, the authors are interested on derivation of simpli�ed closed form solutions
of Sommerfeld integrals based on quasi-dynamic approximate formulations of the appropriate Green's
functions by using method of images and complex images.

Solving the model

The solution of the mathematical model is developed by using the method of moments (MoM) with
Galerkin triangular basis functions (dipoles) for the current and pulse functions for the charge, and
also triangular testing functions [2]. This leads to a system of linear equations, where the unknown are
the current coe�cients of the basis distribution functions. The matrix equation may be easily solved
by standard numerical procedures.
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Introduction

A large class of problem in multiphysics may be solved numerically using a coupled FEM-BEM formula-
tion. As an example of such, we may consider the electromagnetic scattering when di�erent materials
are involved (PEC and dielectric for instance). However, FEM-BEM coupling still su�ers from the
lack of available softwares and especially high level generic programming languages able to handle such
formulations. One of the possible reasons is that FEM and BEM respectively often need di�erent
numerical and algorithmic tools (sparse matrix software for the FEM, compression techniques for the
BEM) that still require some expertise and are not yet widespread in the respective communities.

Gypsilab

Gypsilab [4] is a recent prototyping environment developed by the authors, designed to solve various
numerical problems including 3D variational formulations coming from �nite element formulations
(FEM) and/or integral equations (BEM). Entirely written in Matlab and available in open-source
(GPL 3.0), it provides the user with a complete environment and is able to solve numerical problems of
reasonable sizes (up to millions of unknowns in FEM and hundreds of thousands unknowns in BEM).
A simple interface allows the user to write high level variational formulations, such as in [1�3], and
solve complex problems without entering inside the architecture of the software, and with a uniform
language that takes bene�t of Matlab strengths.

In order to achieve good performances, every functionality has been vectorized, and a speci�c
hierarchical compression library, including the full algebra, openHmx, has been implemented [5]. A
new type of matrix, the H-Matrix, becomes available completing transparently the classical Matlab

matrix classes (full or sparse).
In this talk, we show how Gypsilab can solve multi-physics problems, for example in acoustics,

vibro-acoustics, electromagnetism, �uid mechanics, etc. Moreover, we will focus on a new approach
o�ered by Gypsilab that permits to mix the sparse and full matrices coming from the FEM and BEM
parts of the problem respectively, into a unique H-matrix, that can be LU-factorized and exactly
inverted. In particular, we will insist on the modularity and the genericity of the approach.
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In this talk we propose a linear cost CUR decomposition for admissible matrices obtained from
the Hierarchical form of Boundary Element matrices. We propose a new approach using the gravity
points of clusters in admissible interaction blocks to select the most signi�cant columns and rows. This
strategy is tailored to Boundary Element Methods (BEM) since it uses directly and explicitly the cluster
tree containing information from the problem geometry. Our algorithm has a precision comparable with
the truncated QR factorization and when compared to the well-known Adaptive Cross Approximation
(ACA) with partial pivoting, we show that our algorithm improves, in general, the convergence error
and overcomes some cases where ACA fails. A theoretical bound on the approximation error is provided
and numerically compared with the bounds from the maximal volume and maximal projective volume
algorithm. The performance of our algorithm is also compared with state of the art algorithms on
traditional BEM problems de�ned over di�erent geometries. Finally, we provide a brief analysis on its
randomized version.
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A brief review of the pollution e�ect in the boundary element method

The pollution e�ect is a widely known phenomenon occurring when using the �nite element method
(FEM) for wave problems [3]. It refers to a numerical error growing with the number of waves in the
computational domain. In case of time-harmonic FEM, pollution is caused by numerical dispersion,
which is introduced by the wavenumber in the discrete setting and results in an accumulated phase
error. For what concerns the acoustic boundary element method (BEM), numerical dispersion is rather
small and negligible [5]. However, the BEM su�ers from a di�erent kind of pollution e�ect, which is
the result of numerical damping [1, 2, 4].

Investigation of the pollution e�ect induced by numerical damping on the example of
acoustic duct problems

In this paper, numerical damping in the collocation BEM is investigated for plane sound waves in
rectangular ducts subjected to rigid and absorbing boundary conditions. Di�erent lengths of the duct
and di�erent meshes of linear and quadratic continuous elements are studied. The extent of numerical
damping is quanti�ed based on a damping model with exponential decay. In the case of rigid boundary
conditions, the full width at half maximum method is applied to the resonance peaks of the sound
pressure amplitude. For traveling waves, numerical damping is determined by relating the amplitude
decay to the analytical solution. It is found that the observed damping increases exponentially with
respect to frequency and that upper bounds can be found for constant element-to-wavelength ratios.
The results show that numerical damping can lead to excessive errors in case of large domains ac-
commodating a large number of waves. Therefore, the in�uence of numerical damping needs to be
considered when evaluating the appropriateness of boundary element meshes, and the common prac-
tice to employ a certain number of elements per wavelength should be applied with care.
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In isogeometric analysis the same basis functions as in Computer Aided Design (CAD) are used
for the analysis. These are Non-Uniform Rational B-Splines or NURBS. The advantage of using these
functions is that geometry information can be taken directly from CAD data with the possibility of
avoiding mesh generation. In addition, the use of these functions for the approximation of the unknowns
o�ers greater �exibility in the re�nement procedures and also result in a reduction of problem size. The
authors have published previously on the subject of isogeometric BEM (IGABEM) and have shown
that isogeometric procedures can also be used for the evaluation of volume integral that arise when
non-linear inclusions are considered [1�4].

The aim of the paper is to show, on a number of practical examples, the advantages of the IGABEM
in terms of:

• Description of smooth geometries with few parameters

• Obtaining good quality solutions with few unknowns

• Easy de�nition of inclusions and areas of material non-linear behaviour

The examples include 2-D and 3-D simulations in geomechanics and in viscous �uid �ow and a
comparison is made with conventional BEM approaches.
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The current advent of mid-frequency testing for complex media (e.g. made of �bres with diverse
conductivities) spurs the development of computational formulations allowing transition from the full
Maxwell equation system to modi�ed versions of eddy current (EC) models, for which the dielectric
permittivity is classically set to zero. For testing simulations based on the boundary element method
(BEM), insight into such model transition is necessary for addressing the scaling disparities between
components of the surface currents (primary unknowns in e.g. BEM formulations of PMCHWT type,
see [1, Chap. 4]) that severely a�ect solution accuracy in the low-frequency, high-conductivity limit.
For instance, splitting currents into zero-divergence (loop) and complementary (star) components [4]
and then applying blockwise solution algorithms to the BEM system [3] allow the Maxwell BEM
problem to perform reliably under EC-type conditions.

Another approach, which is the subject of this communication, consists in deriving asymptotic
expansions of the Maxwell PMCHWT integral problem with respect to a non-dimensional parameter
γ, set here to γ :=

√
ωε0/σ. We have rigorously proved that with this choice the integral problem for

the classical EC model [2] is obtained in the limiting case γ → 0, with our study including estimates in
γ of the expansion remainders. The leading and remainder orders in γ of the surface current densities
depend on the current component. We plan to state the main theoretical results and to demonstrate
them on illustrative numerical examples such as that of Fig. 1, where mathematically established error
estimates in γ are seen to be reproduced by the numerical results. Additionally, an extension of our
asymptotic model to testing con�gurations involving a second medium (taken as non-conducting and
with a high magnetic permeability) will be discussed.

Figure 1: Conducting sphere excited by a coil: test con�guration (left); error on the impedance variation ∆Zγ ,
evaluated using the asymptotic model as a function of γ, against its full-Maxwell counterpart ∆Z (right). The
observed

∣∣∆Zγ − ∆Z
∣∣ = O(γ3) behavior matches its theoretical prediction.
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We consider in this work problems for which the Green's function is not available, so that classical
Boundary Integral equation methods are not applicable. Let us mention for instance the junction of
two di�erent strati�ed media (tapered optical �bers in integrated optics or junction of two topographic
elastic surfaces in geophysics).

To this end, we propose a generalization of the Half-Space Matching method [1, 2]. Initially proposed
for the scalar wave propagation in a locally perturbed 2D homogeneous medium, this approach consists
in coupling several plane-wave representations of the solution in half-spaces surrounding the defect,
with a Finite Element computation of the solution around the defect. Ensuring that all these represen-
tations match, in particular in the in�nite intersections of the half-spaces, leads to a formulation which
couples, via Fourier-integral operators, the solution in a bounded domain including the defect and the
Dirichlet traces of the solution on the edge of the half-planes. In this version of the Half-Space Match-
ing method, the use of a partial Fourier transform restricts the exterior sub-domains to be Half-Spaces.

In this work, by replacing the Fourier representations by integral representations, we are able to use
more general unbounded overlapping sub-domains. We choose the sub-domains in such a way that an
explicit Green's function is available for each subdomain. For instance, for the con�guration described
above (�gure (a)), it su�ces to introduce two in�nite sub domains, each of them containing only one
strati�cation (�gures (c) and (d)) and a bounded domain containing the junction (�gure (b)). The
formulation couples the solution in the bounded domain with the single and double layer potentials on
each boundary of the sub-domains. The main drawback is that these boundaries are in�nite but it is
well-handled with the Half-space Matching Method. The approximation relies on a FE discretisation
of the volume unknown and a truncation and a discretization of the boundary/surface unknowns. The
choice of the discretization parameters will be discussed and numerical results will be shown.
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Introduction

This ongoing work focuses on the numerical resolution of three-dimensional harmonic electromagnetic
scattering problems for which the scatterer is dielectric and inhomogeneous. Denoting by Ω− the
scatterer, Ω+ the exterior domain, Γ the surface of the scatterer, n the outward-pointing unit normal
vector to Ω− and (E±; H±) the electromagnetic �elds within Ω±, such problems read:

rot E± − ik±Z±H± = 0

rot H± + ik±Z
−1
± E± = 0

in Ω± ,
E− ∧ n = E+ ∧ n + Ei ∧ n
H− ∧ n = H+ ∧ n + Hi ∧ n

on Γ. (1)

The interior wave number, k−, and impedance, Z−, could be functions on Ω−, (Ei; Hi) is the incident
wave and the scattered �eld (E+; H+) should satisfy the Silver-Müller radiation condition. A standard
approach to solve (1) consists in combining integral equations for the exterior domain and a variational
formulation for the interior domain resulting in a strong coupling of the �nite (FEM) and boundary
(BEM) element methods. However, there is a drawback to this approach. Implementing the strong
FEM/BEM coupling by combining two pre-existing solvers, a FEM solver for arbitrary interior prob-
lems and a BEM solver for arbitrary exterior problems, will most-likely require serious modi�cation
of the pre-existing solvers' source codes. We introduce a weak FEM/BEM coupling, based on domain
decomposition (DD), allowing to couple the pre-existing solvers with minimal implementation e�ort.

The weak FEM/BEM coupling

The weak FEM/BEM coupling is an equivalent reformulation of the transmission problem (1):

(Id− Sπ)

(
g−
g+

)
=

(
Hi ∧ n + T−(Ei ∧ n)
−Hi ∧ n + T+(Ei ∧ n)

)
,

Sπ =

(
0 S+

S− 0

)
S± = Id± (T+ + T−)R±

, g± = (H± ∧ n)∓T±(E± ∧ n).

The operators T± transfer information between Ω− and Ω+ in a DD-like manner, g± should be
understood in terms of traces on Γ and R± are the continuous analogs of the pre-existing solvers:

R±g = Ẽ± ∧ n ,
rot Ẽ± − ik±Z±H̃± = 0

rot H̃± + ik±Z
−1
± Ẽ± = 0

in Ω± , (H̃± ∧ n)∓T±(Ẽ± ∧ n) = g on Γ.

The weak FEM/BEM coupling should be solved iteratively, typically using the GMRES method.
Choosing T± as proper Padé approximations of approximate Magnetic-to-Electric operators [1]:

1

Z±

(
Id +

∆Γ

k̃2
±

)− 1
2
(

Id− 1

k̃2
±

rotΓrotΓ

)
(· ∧ n) , k̃± = k± + iε±,

the regularizing functions ε± being strictly positive, ensures a good GMRES convergence.
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We consider time-harmonic acoustic scattering in Rn+1, n = 1, 2, by planar screens and apertures.
When the screen/aperture Γ ⊂ Rn is a Lipschitz open set, the associated boundary integral equation
formulations are classical: the boundary integral operator for the Dirichlet screen problem is the single
layer operator S : H̃−1/2(Γ) → H1/2(Γ), and for the Neumann screen problem it is the hypersingular
operator T : H̃1/2(Γ)→ H−1/2(Γ).

However, when Γ is open but non-Lipschitz (e.g. with a fractal boundary, like the Koch snow�ake)
the classical formulations may fail to be well posed. And when Γ is a closed set with empty interior
(e.g. a fractal set such as a Cantor dust or Sierpinski triangle) then it is not obvious how one should
even impose boundary conditions, let alone formulate the integral equations.

It turns out that for an arbitrary Γ ⊂ Rn there are in general an uncountably in�nite number
of possible formulations as boundary integral equations, all producing distinct scattered �elds. The
physically correct choice can be determined by limiting geometry principles, viewing the rough set Γ
as a suitable limit of a sequence of smoother sets Γj .

In this talk, a follow-up to the companion talk given by D.P. Hewett on functional analytic ques-
tions, we will show BEM numerical simulations, illustrating convergence of numerical solutions as the
sequence of smoother sets Γj converges to the rough limiting set Γ. A particular emphasis will be on
cases where the sequence of smoother sets Γj is a sequence of pre-fractals converging to a limit set
Γ that is fractal or has fractal boundary, including examples where the limit set is a fractal with no
interior points and zero surface measure, e.g. Γ is a Cantor dust or Sierpinski triangle.

These numerical simulations, of interest in their own right, will also illustrate theorems in [1, 2]
on convergence as j →∞ of solutions of boundary integral equations on smoother sets Γj to limiting
solutions on a limiting rough set Γ. More particularly, they will illustrate recently proved theorems [3],
using ideas of Mosco convergence, on convergence of the BEM solution computed with a step-size hj
on the smoother set Γj , in the limit as j → ∞ and hj → 0, with the size of hj dependent on j in a
carefully controlled way.
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We study the acoustic Helmholtz equation set in the exterior of a convex polygon K ⊂ R2:
−k2u−∆u = 0, in O = R2 \K,

u = eikd·x, on ∂K,

∇u · x
|x|
− iku = o

(
|x|−1/2

)
, as |x| → ∞.

It is well known that, in general, u exhibits singularities at the vicinity of the corners of K [2].
Speci�cally, if we denote by {xj}Nj=1 the vertices of K, we have

u =
N∑
j=1

cjsj + uR,

where uR ∈ H2
loc(O), sj ∈ H

1+αj
loc (O) with 1/2 < αj < 1 and cj ∈ C. The function sj is k independent,

and represents the singularity associated with xj . It has regularity 1 + αj , where αj depends on the
angle of ∂K at xj . The coe�cients cj depend linearly on the right-hand-side, and implicitly on the
wavenumber.

In the �rst part of the talk, we analyze the behaviour of cj and uR with respect to the wavenumber.
Speci�cally, we show that

‖uR‖2,B ≤ Ck2, |cj | ≤ Ck1/2+αj , (2)

where B is a ball containing K and j = {1, . . . , N}. The key observation is that the singularities
(which are the most complex part to numerically approximate) have a better scaling than the regular
component with respect to the wavenumber.

In the second part of the talk, we examine the impact of (2) on error estimates for numerical
discretizations. We focus on �nite element methods (the Sommerfeld condition being replaced by
a �rst-order absorbing condition), but estimate (2) also permits to obtain sharp error estimates for
boundary element methods. Our key result is the error estimate

|u− uh|1,Ω
|u|1,Ω

≤ C
(
k−1/2kαhα + kh+ k3h2

)
, (3)

for linear Lagrange �nite elements on uniform meshes (without re�nements close to the corners of K).
The term k−1/2kαhα (with α = minj αj) is not present when ∂K is smooth [1], and represents the
impact of the singularities of u. It follows that if the number of discretization points per wavelength
is bounded from below (kh ≤ C), then the additional term tends to zero as k−1/2 for high-frequency
problems.

From (3) and numerical experiments, we conclude that for high-frequency problems the e�ect of
the singularities on numerical discretizations is invisible (at least for low order discretization methods),
unless very high accuracy is required.
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Passive noise and vibration control of structures is of great concern in engineering problems, which
consists in the problem of acoustic optimization [1, 2]. This work aims at improving the acoustic
performance of system using optimization technique, where the boundary element method (BEM) is
employed for acoustic analysis. Our work consists of two main parts. In part I, we conduct porous
material distribution and shape optimization of structures for sound scattering problems. Based on
the solid isotropic material with penalization (SIMP) method, the topology optimization is performed
by setting the arti�cial element densities of porous material and damping material as design [3]. The
shape optimization is performed via isogeometric analysis (IGA) [4], where IGA provides exact geo-
metric representations. Furthermore, re�nements and shape changes for the design model are easily
implemented without mesh regeneration, which signi�cantly reduces subsequent communication with
the original description. In this part, the fast sensitivity analysis approach based on the fast multipole
method (FMM) and analytical method, including direct di�erentiation method and adjoint variable
method, is developed to calculate the sensitivities of objective function with respect to design variables.
The FMM is applied to accelerate the matrix-vector and vector-matrix products to improve overall
computational e�ciency. After the acoustic state and sensitivity information are obtained, the method
of moving asymptotes (MMA) is used for solving the optimization problem to �nd the optimal solution.
We validate the proposed optimization approach through a number of numerical simulations for 2D
shaped noise barrier. In part II, a topology optimization approach is proposed for the optimal design of
bi-material distribution on underwater shell structures. The coupled �nite element method/boundary
element method scheme is used for the system response analysis, where the strong interaction between
the structural domain and acoustic domain is considered. The design variable is the arti�cial density of
design material element in a bi-material model constructed by the SIMP method, and the minimization
of sound power level is chosen to be the design objective. The adjoint variable method is employed to
calculate the sensitivity of the objective function with respect to the design variables. Similarly, the
MMA solver is also adopted here. Numerical examples are provided to illustrate the correctness of
the sensitivity analysis approach and the validity of the proposed optimization procedure. In the fur-
ther work, the e�ciency improvement of the topology optimization of the coupled structural-acoustic
system by the FMM and the reduced �nite element model will be investigated.
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Context and Motivatons

In a context where road networks are aging, glass �ber grids reinforcement is one of the only e�ective
solutions to reinforce highly cracked roads. The development of these solutions is currently hampered,
due to the lack of widely-accepted methods for design. The main objective of this work is to develop
a code to calculate multi-cracked structures in general, and multi-cracked roads taking into account
�berglass grids, in particular. Over recent decades, the Boundary Element Method has become an
important technique in the computational solution of a number of physical problems: electromagnetic,
elastodynamic [3]... The approach adopted in our work is based on the use of Galerkin's (3D) integral
equations accelerated by the Fast Multipole Method (FMM) introduced by Greengard and Rokhlin [2].
The development of the Fast Multipole Symmetric Galerkin BEM (FM-SGBEM) in three-dimensional
elastostatics was �rst introduced by Yoshida [1]. Our work is the continuation of that of Q. Trinh [4].
We use the FM-SGBEM for the calculation of real multi-cracked structures. Thus, we deal with
di�erent problems including multi-zone domain, crack contact, crack propagation, etc.

Main Contributions

In crack propagation, at the end of each cycle of propagation, new elements are created and the
elastostatic calculation is resumed. To avoid wasteful operations, the old parts of the matrix are
kept constant, only the parts related to the newly added elements are computed. This has led to an
important reduction of the duration of the preparation phase.

During the propagation, the solution vector does not change much in theory. So we reused part of
the current vector solution as the initial guess for the next increment. This has led to a reduction of
the number of iterations and thus the duration of the iterative resolution.

Acknowledgments: Part of this work was sponsored by the French National Research Agency (Sol-
DuGri project ANR-14-CE22-0019 and DVDC/Irex project)
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Motivations

The aim of this work is to solve numerically 3D high-frequency elastic scattering problems by a bounded
rigid obstacle, namely the exterior Navier problem with a Dirichlet boundary condition. To deal with
the unbounded characteristic of the computational domain, we choose to apply the integral equation
method. The advantage is to reformulate equivalently, through the potential theory, the exterior
boundary-value problem as an integral equation on the boundary of the scatterer. The dimension
of the problem is thus reduced by one. However, the discretization by BEM of boundary integral
equations leads to the solution of large and fully-populated complex linear systems. The solution of
these systems is handled by the GMRES iterative method. To decrease the overall cost of the solver,
two complementary ways are investigated: fast methods for the computation of matrix-vector products
and preconditioners to speed up the convergence of the solver.

Methodology and results

We combine an approximate DtN map as an analytic preconditioner with a FM-BEM solver. The
approximations of the DtN map are derived using tools proposed in [2]. They are expressed in terms
of surface di�erential operators, square-root operators and their inverse. Complex Padé rational ap-
proximants provide local and uniform representations of the square-root operators. The numerical
e�ciency of the di�erent proposed preconditioned CFIEs is illustrated for several more or less com-
plex geometries. An analytical study for the spherical case underlines an "ideal" eigenvalue clustering
around the point (1, 0) for the preconditioned CFIEs. This is not the case for the standard CFIE
which has small eigenvalues close to zero. The number of GMRES iterations is drastically reduced
when the preconditioned CFIEs are considered. In particular, the number of iterations is shown to be
completely independent of the number of degrees of freedom and of the frequency for convex obstacles
numerically [2].
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The fast multipole method (FMM) was introduced in the 80's [3, 4] and is nowadays widely used
but the application of the method to a new con�guration or new code is always quite challenging.
At the Research Institut of Mathematics of Rennes, we are developing a generic fast method library
named FastMMLib. The library is developed on the basis of a set of generic expressions for the kernel
to be e�ciently evaluated. The interaction with the user is made such that the library deals entirely
and only with the FMM ingredients. This means that the user do not need to know about FMM and,
on the other side the library interacts with the FE framework of the user or whatever dicretization
he uses. The library is written in C++ and contains a speci�c class to ensure the consideration of
the user framework (FE, quadrature rules, ...). FastMMLib includes the regularized FMM [2] which
means that the FMM boxes can overlap and the distributed particles or degrees of freedom can belong
to several boxes.

The library can interact with any code in C/C++ or Fortran. The generic aspect and the squeleton
of FastMMLib are designed in such a way that the library could also contain other kinds of fast methods
like H-matrices [5], the high-order method [1], and even some families of kernel-independent FMM [6].
First validation results and examples of use will be presented.
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Motivations

We are interested in boundary integral formulations adapted to the solution of low frequency inductive
electromagnetics (low frequency, high conductivity, loop source current) [1] in the case where the
geometry is partitioned in (potentially irregular) subdomains. The multi-trace formalism (MTF) [2,
3] provides boundary integral formulations for Maxwell's equations posed at the interfaces between
di�erent media, with the unknowns associated to one medium a priori decoupled from the unknowns
associated to other media. This makes MTF a comfortable paradigm for integral equation based
domain decomposition.

Key results

We �rst explored the practical aspects of using the MTF within the Maxwell integral transmission
problem on simple 3D test cases. In particular the simplicity of its implementation with a noncon-
forming discretization (conform on each side of the boundary but not from one side to the other)
has been con�rmed, here with mixed high-order edge functions. The MTF has then been extended
to an integral formulation of the eddy current problem, leading to a new characteristic constraint
that requires a quasi-Helmholtz decomposition and results to a (targeted) simpli�cation of the integral
vacuum-side block. However extra-diagonal cross identity terms are now predominant and require an
appropriate discretization and, therefore, mixing primal with dual (low order) basis functions [4] in
each subdomain. We conclude discussing the optimization of the eddy current MTF to overcome this
unexpected complexity.
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For many decades, researchers have made considerable e�orts to develop e�cient numerical meth-
ods to solve linear elastodynamic problems, since this demand arises in a variety of real life applications,
like engineering problems, geotechnical evaluations, environmental studies, hydrogeological investiga-
tions, seismic risk assessment, archeology, etc. Recent advances are due to Joly et al. [4], who have
decoupled the pressure and the shear wave inside a homogeneous isotropic media and exploited this
strategy for numerical computation by Finite Element Method (FEM). A displacement �eld approach
is ideally suited to successful applications of Boundary Integral Equation (BIE) techniques and to
discretization by Boundary Element Method (BEM). An excellent review of the application of the
BIE methods and BEM to elastic wave propagation problems can be found in [3]. Frequently claimed
advantages over domain approaches are the dimensionality reduction, the easy implicit enforcement of
radiation conditions at in�nity and the high accuracy achievement. According to the di�erent approx-
imate solution strategies in space-time for treating elastodynamic wave propagation problems, BEM
generally follows two approaches, namely, time-domain [5] and frequency-domain approaches [2]. Since
all numerical inversion formulas from frequency-domain to time-domain depend on a proper choice of
their parameters, a direct evaluation in time-domain seems to be preferable; besides, it is more natural
to work in the actual time-domain and observe the phenomenon as it evolves. In this last approach,
the construction of BIEs via representation formula in terms of single and double layer potentials, uses
the fundamental solution of the hyperbolic partial di�erential equation. Numerical results have shown
that the standard BEM formulation can be unstable in some applications. Starting from a recently
developed energetic space-time weak formulation of the BIEs related to scalar wave propagation prob-
lems [1], we focus on the 2D elastodynamic extension of the above wave propagation analysis, with the
aim of testing the stability and accuracy properties of the so-called energetic Galerkin BEM in this
context. Preliminary numerical simulations will be presented and discussed.
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In a resonating structure the quality factor is de�ned as Q = 2πW/∆W , where ∆W andW are the
energy lost per cycle and the maximum value of energy stored in the resonator, respectively. The Q
factor has a peculiar importance in micro-structures (MEMS) where energy issues become dominant.
Among the sources of damping that a�ect their performance, the most relevant are: thermoelastic
dissipation, air damping, intrinsic material losses, electrical loading due to electrode routing, anchor
losses.

The focus of the present contribution is set on anchor losses which become particularly meaningful
for resonators working at pressure in the order of the microbar [1, 2]. Anchor losses are due to the
scattering of elastic waves from the resonator into the substrate. Since the latter is typically much
larger than the resonator itself, it is assumed that all the elastic energy entering the substrate through
the anchors is eventually dissipated. In this work, the response of a resonating MEMS attached to a
substrate is computed by using a classical Finite Element Method (FEM), while a Boundary Integral
Equation (BIE) approach and its discretization by Boundary Element Method (BEM) is discussed, in
order to simulate dissipation of radiated waves. A similar technique for space-time wave propagation
problem was formulated and implemented in [3,4]. Even if its reduced dimensionality and high accuracy
have made BEM particularity suitable for time-harmonic elastodynamics [5], solving one frequency-
domain equation in 3D domain using classic BEM is computationally very costly. Since addressing
a fully 3D analysis of the proposed approach for the extraction of the quality factor of a resonator
requires in general the solution of a large-scale generalized complex symmetric eigenvalue problem, we
consider an H-matrix based approach to solve the BEM system, whose e�ciency and accuracy have
been recently tested in the context of 3D elastodynamics [6].
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The standard approach in space-time boundary element methods for discretizing variational for-
mulations of boundary integral equations is using space-time tensor product spaces originating from a
separate decomposition of the boundary ∂Ω and the time interval (0, T ). This space-time discretiza-
tion technique allows us to parallelize the computation of the global solution of the whole space-time
system. Instead of using tensor product spaces one can also consider an arbitrary decomposition of
the whole space-time boundary Σ = ∂Ω× (0, T ) into boundary elements. This approach additionally
allows adaptive re�nement in space and time simultaneously. In this talk we consider the heat equation
as a model problem and compare these two discretization methods. Moreover we introduce a parallel
solver for the space-time system. Due to the structure of the matrices one has to design a suitable
scheme for the distribution of the matrix blocks to the computational nodes in order to get an e�cient
method. We present numerical tests to con�rm the theoretical results and evaluate the e�ciency of
the proposed parallelization approach.
The presented parallel solver is based on joint work with G. Of from TU Graz, J. Zapletal and M.
Merta from the Technical University of Ostrava.
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We propose a black-box higher order fast multipole method for solving boundary integral equations
on parametric surfaces in three dimensions. Such piecewise smooth surfaces are the topic of recent
studies in isogeometric analysis. Due to the exact surface representation, the rate of convergence of
higher order methods is not limited by approximation errors of the surface. An element-wise clustering
yields a balanced cluster tree and an e�cient numerical integration scheme for the underlying Galerkin
method. By performing the interpolation for the fast multipole method directly on the reference
domain, we reduce the cost complexity in the polynomial degree by one order. This gain is independent
of the application of either H- or H2-matrices. In fact, we point out several simpli�cations in the
construction of H2-matrices, which are a by-product of the surface representation.
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In this work we develop, analyze, and implement a new algorithm for simulating time-harmonic
acoustic wave propagation in an unbounded medium, with heterogeneity comprising non-homogeneous
bounded obstacles. The method is based on introducing two arti�cial boundaries Σ and Γ that facilitate
in dividing the medium into a bounded heterogenous domain and an exterior unbounded homogeneous
region, and the resulting interior and exterior regions are overlapped. The interior domain with the
polygonal boundary Σ includes all of the heterogeneity in the medium and also the curve/surface Γ,
and the exterior unbounded simply-connected region has the smooth boundary Γ.
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Figure 2: Original domain and auxiliary domains

Using the above framework, we propose a high-order discretization algorithm that is based on
approximating solutions in the bounded heterogenous domain and unbounded homogeneous region,
respectively, by �nite and boundary elements. Thus we combine advantages of both the celebrated
discretizations: the natural treatment of the Helmholtz boundary problem in the exterior of the smooth
boundary Γ by boundary elements and e�cient treatment of heterogeneity by the �nite elements in
the polygonal domain. A full analysis of the algorithm is presented for the two-dimensional case
using standard Pk �nite elements and the Kress Nyström methods as solvers in the corresponding
auxiliary problems. We show that the combined FEM-BEM algorithm is stable, convergent and that,
as consequence of the well-posedness of the continuous equation, the linear system which determines the
components of the solutions can be solved by GMRES with a number of iterations that is independent of
the level of discretization. We conclude this work with some numerical experiments in two dimensions,
substantiating the theoretical results. The computational results include a complex geometry with
smooth and non-smooth regions (such as a "pikachu-shaped" obstacle) and we achieve high-order
(several-digits) accuracy using Pk, elements with k = 2, 3, 4, respectively, for low-, medium-, and
high-frequency wave propagation in R2 with discontinuous heterogeneities.
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The proposed contribution is the sequel and con�uence of two initially independent developments
made in the area of boundary element methods. The �rst one is best described in References [1] and [2].
It is proposed in [2] that, in the evaluation of the single-layer potential matrix of the collocation BEM
for 2D or 3D problems, traction forces (as for elasticity) or normal �uxes (as for potential problems)
must be interpolated as surface attributes, for generally curved boundaries, thus including in the
denominator the Jacobian of the transformation from global to local, parametric variables. Only
recently did the author realize that a general convergence theorem for generally curved boundaries in
the collocation BEM comes out from [2], as presented at a 2017 conference [3]. However, the most
important outcome is the fact that the integrand of the single-layer potential matrix simpli�es to the
extent that its accurate evaluation � for generally 2D problems with curved boundaries � may be
carried out exclusively in terms of Gauss-Legendre quadrature (thus dispensing with a quadrature rule
for logarithmic singularity). The second development referred to above is related to a uni�ed numerical
proposition for the evaluation of regular, improper, quasi-singular, singular and hypersingular integrals
that may occur in the boundary element methods, as proposed in [4] and [5] (References [1] and [5]
come from presentations at the IABEM 1997 workshop in Seville, Spain). The relevant result (for
2D problems, as up to now) is that, in the evaluation of the matrices of the collocation BEM as
well as in retrieving results at internal points, only the Gauss-Legendre quadrature turns out to be
required together with some adequate correction terms that are locally dependent from singularity
type and element shape. Such corrections are computationally simple and involve no approximations �
the evaluation errors come exclusively from the Gauss-Legendre quadrature of the locally regularized
integrals. Several numerical examples illustrate the applicability of the proposed procedure to problems
of complicated topology, or with high stress gradients. It is shown that, for a constant number of
integration points along curved boundary segments, the higher the singularity (as for source points
approaching a given boundary segment), the more accurate the numerical results become.
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In 1987 MacCamy and Suri [2] proposed a time-dependent interface problem for two-dimensional
eddy currents with an unbounded exterior domain. However, the analysis of the model problem and
their semi-discretization with a non-symmetric �nite element method (FEM) and boundary element
method (BEM) coupling need a smooth coupling boundary to apply a compactness argument. To
overcome this restriction [3] considers a symmetric FEM-BEM coupling version in space. Additionally,
they provide an analysis for a full discretization of the model with the usual regularity assumptions on
the model data and solution needed for the time stepping scheme. In our presentation of the work [1], we
consider the same model problem and prove well-posedness also for Lipschitz interfaces. Furthermore,
we apply a classical method of lines to get a fully discrete system. For the semi-discretization with the
non-symmetric FEM-BEM coupling method we establish well-posedness for problems with polygonal
interfaces and prove quasi-optimality for this semi-discretization under minimal regularity assumptions.
A variant of the implicit Euler method for the time stepping scheme allows us to prove well-posedness
and quasi-optimality for the fully discrete scheme again under minimal regularity assumptions. The
analysis does not use duality arguments and corresponding estimates for an elliptic projection which
are not available for the non-symmetric coupling method. Instead, we use estimates in appropriate
energy norms. Error estimates with optimal order follow directly for both, the semi- and the full
discretization. Numerical examples illustrate the predicted (optimal) convergence rates and underline
the potential for practical applications.
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Calderón preconditioning for the Electric Field Integral Equation (EFIE) was successfully intro-
duced at the beginning of the century with immediate applications in Industry and launching a great
deal of research [1�3, 5�7]. Highly praised by supporters due to its solid mathematical background,
critics point out the dramatic increase in dimensions related to its construction over barycentrically
re�ned meshes and consequent inadequacy to deal with high frequencies. In the present work, we intro-
duce a fast implementation of the algorithm that preserves the good properties of the original operator
based on compression through Hierarchical Matrices [4], optimization of accuracy error and compres-
sion rates that signi�cantly improve the standard preconditioning technique with results comparable
to those by high performance algebraic preconditioners such as Near Field-based preconditioners [4].
Numerical experiments are presented to validate our claims and future research lines are presented.
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We consider the Dirichlet problem associated to the wave equation in two dimensions, for the
solution of which we use a BEM approach in the space-time domain. The resulting integral equation
is discretized in time by a convolution quadrature formula based on a BDF method of order 2, and
by a Galerkin method based on wavelet type approximating functions in space. Such an approach
allows to approximate the integral operators that appear in the formulation, with arbitrary precision,
by highly sparse matrices. As a consequence, we obtain a substantial reduction of the computational
spatial complexity of the method, with respect to a standard approach that uses Lagrangian bases.
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The increasingly rapid growth of smart electronics is essentially due to the just as rapid development
of Micro Electro Mechanical Systems (MEMS). These microsystems typically consist of a collections
of �xed parts and vibrating shuttles separated by variable gaps of few microns. One important issue
in the design of these devices is the evaluation of mechanical dissipation. In several applications
like gyroscopes, resonators, frequency-modulated accelerometers, or magnetometers, the devices are
packaged in near vacuum with a getter. The length scale and the working pressure are such that
the collisions between molecules can be neglected. This regime is known as free-molecule �ow [1]. We
address a Boundary Integral Equation (BIE) approach for the analysis of gas dissipation, which provides
the most meaningful contribution in this regime. The deterministic model, proposed in [2,3], is based on
�rst principles of the kinetic theory of rare�ed gases and on the simple di�use model for wall-molecule
interaction, which is realistic for polysilicon surfaces. The proposed approach has been validated with a
dedicated experimental campaign [4] and with results taken from the literature, con�rming the expected
accuracy of the formulation. Recent advancements in the model implementation [5] allow to simulate
almost realistic MEMS structures on standard hardware. In particular, inspired by an analogy with
the radiosity equation in computer graphics, which is a tool for the generation and the manipulation
of images on computer screens [6, 7], we introduce an e�cient way to compute the visible domain of
integration. Indeed, one of the key elements in the integral equation is the presence of the visibility
operator limiting the integration to the visible portion of surfaces. Moreover, when integrating over
visible close portions of the surface, issues associated to the singular nature of integral kernels require
particular care. In this case we develop analytical formulas valid for triangles and piecewise constant
representation of the unknown �eld. Finally, we discuss the application of multiple-expansions to the
kernels of the BIE to further improve the overall performance and present some preliminary numerical
results.
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In this paper, a numerical study is carried for solving the unsteady magnetohydrodynamic (MHD)
�ow of a viscous, incompressible and electrically conducting �uid in a rectangular duct with a perturbed
boundary subjected to an external magnetic �eld applied in y-direction. A small boundary perturba-
tion of magnitude ε is applied on the upper wall of the duct which is encountered in the visualization
of the vein anatomy and blood �ow in constricted arteries. The governing MHD �ow convection-
di�usion type equations are coupled in the velocity and the induced magnetic �eld. No-slip conditions
are assumed on the boundary of the duct in which the vertical walls are insulated and the horizontal
walls are perfectly conducting. The numerical method is based on the use of the domain boundary
element method (DBEM) in spatial discretization and a backward �nite di�erence scheme is employed
in time integration. These MHD equations are decoupled �rst into two transient convection-di�usion
equations, and then into two modi�ed Helmholtz equations by using suitable transformations. Then,
DBEM is used to transform these equations into equivalent integral equations by employing the funda-
mental solution of either steady-state convection-di�usion or modi�ed Helmholtz equations. Thus, the
resulting BEM integral equations contain a domain integral whose kernel involves the multiplication
of the fundamental solution with the �rst order time derivative of the unknown, and it is treated by
numerical integration. The velocity and the induced magnetic �elds are visualized in terms of equi-
velocity and current lines at transient and steady-state levels for several values of Hartmann number
and the boundary perturbation parameter. The validity of the code is ascertained by comparing the
obtained results with the ones given in literature [2]. The results reveal that the well-known character-
istics of MHD �ow are captured, that is, as M increases the velocity decreases and becomes stagnant at
the center of the duct and a boundary layer formation is observed for both the velocity and the induced
magnetic �eld. The perturbation parameter and the shape of the curved boundary signi�cantly a�ect
the behavior of the �ow and cause an increase in the magnitude of induced magnetic �eld. DBEM
with the fundamental solution of convection-di�usion equation gives better results compared to the
ones obtained with the fundamental solution of modi�ed Helmholtz equation in the sense of increasing
M.
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In this talk we present results of our recent works [2,3]: We develop and analyze strategies to couple
the discontinuous Petrov-Galerkin method with optimal test functions to

(i) least-squares boundary elements and

(ii) various variants of standard Galerkin boundary elements.

The procedure (i) is somehow a natural approach, because the DPG method can also be equivalently
written as a least-squares problem. However, the implementation involves, besides the computation
of discrete boundary integral operators, the evaluation of non-local norms, which is not needed for
the methods (ii). The derivation of the procedures (ii) relies on either one or both equations of the
Calderón system and their analysis makes use of various ideas resp. results for the coupling of FEM
and BEM [1,4, 5]. The stability of these methods hinges on an additional parameter, i.e., a scaling of
the trial-to-test operator or the test functions. Nevertheless, numerical experiments indicate that the
stability does not depend on this parameter.

An essential feature of the methods (i)�(ii) is that, despite the use of boundary integral equations,
optimal test functions have to be computed only locally.

We apply our �ndings to a standard transmission problem in full space and present numerical
examples to validate our theory. Moreover, we give some ideas on how to extend the framework to a
more challenging singularly perturbed transmission problem [2].
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Frozen porous media have been proposed by Leclaire et al [1]. This model is known as the extended
model based on the Biot's two phase model [2] and consists of three phases, i.e. solid skeleton, pore �uid,
and ice matrix. The frozen porous media recently attract a great deal of attention from researchers in
the �eld of the geophysical exploration because this model is adequate to describe wave propagation
in seabed layer which involves methane hydrate. Elastic waves can play an important role in the
estimation of the amount of hydrate. Thus not only understanding the wave properties but also
developing a numerical method to analyse the waves in the frozen porous media can contribute to an
accurate estimation. Waves in the frozen porous media propagate with dispersion and dissipation in the
same manner as waves in the Biot's model and, besides that, antiplane shear wave has two propagation
modes, i.e. S1- and S2-modes. These properties have been con�rmed in several papers [3,4]. However,
there are few reports which propose numerical computation methods for wave scattering by an inclusion
which involves highly concentrated hydrate.

Thus, this study presents a boundary element method for wave scattering by the inclusion in the
frozen porous media. The proposed method deals with antiplane shear waves in the frozen porous
media and uses an integral equation in frequency domain. In the presented formulation, the boundary
values are expressed by generalized displacement and traction. The generalized displacement consists
of displacement components of the solid skeleton and the ice matrix and, on the other hand, the
generalized traction is composed of the traction components of the two solid phases. Moreover, the
fundamental solutions describe wave propagation of the antiplane shear waves in the frozen porous
media. Several numerical examples are shown to provide the validity of the proposed method and
scattering properties resulting from the numerical simulation.
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In this work we consider the interaction of time harmonic electromagnetic waves with a homo-
geneous dielectric body D ⊆ R3. The material properties of the body D are characterized by the
permittivity and permeability constants ε− and µ− respectively. In many applications of interest,
the material properties of the body and properties of the incident electromagnetic wave, such as the
position of its source or its frequency, are uncertain and must be modeled stochastically.

In our stochastic model, we let σ ∈ Ω ⊆ Rd, d ≥ 4 denote an outcome in a probability space
(Ω,F , P ) where F is a Borel σ-algebra and the probabilities of the events in F are given by the
probability measure P . Here d denotes the number of uncertain parameters in the Maxwell wave
propagation model. In particular, in our model the electric permeability of D is then ε−(σ) and the
magnetic permeability of D is µ−(σ).

The forward dielectric wave propagation model is concerned with developing an e�cient compu-
tational model to simulate statistical moments of an important wave propagation quantity of interest
(QoI). The QoI in the model is the far-�eld, induced by an incident wave (with uncertain parameters)
impinging on the dielectric body with uncertain material properties. The inverse model is concerned
with identifying a region in high-dimensional uncertain parameter space, with data comprising noisy
measurements of the QoI at a few directions.

The unbounded and uncertainty nature of the model lead to several mathematical and compu-
tational challenges. The main focus of this work is to address these challenges by developing and
implementing e�cient deterministic and stochastic algorithms. A key ingredient to address these
challenges is an all-frequency stable surface integral equation (SIE) reformulation of the determinis-
tic wave propagation model. Such a continuous model reformulation of the Maxwell equations, with
robust mathematical analysis, was developed by the authors in [1].

We use the deterministic SIE reformulation in [1] to develop an e�cient high-order algorithm to
simulate the deterministic dielectric model, and demonstrate our algorithm with a range of low to high
frequencies. Using our algorithm, we develop a spectrally accurate forward stochastic wave propaga-
tion computational model to e�ciently simulate statistical moments of the QoI. Using the Bayesian
framework and our forward stochastic algorithm, we develop an e�cient framework to construct and
sample the posterior distribution to identify regions of the uncertain parameters from a few samples
of the QoI. Numerical experiments demonstrate the e�ciency of our forward and inverse algorithms.
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When solve structurally multi-scale problems with small or slender components using BEM, dif-
ferent sized boundary elements are inevitably required to simulate all kinds of related geometries.
In this paper, a family of non-conventional boundary elements are constructed based on Lagrange
interpolation formulation [1] for solving multi-scale problems, including high order serendipity and
trans-accuracy boundary elements as shown in Fig.3.

Figure 3: 21-node and 17-node serendipity elements and 28-node trans-accuracy element

These elements not only can simulate the whole or a part of surfaces of cylinders accurately using
very few nodes, but also can ful�l the transition between small and large components. A BEM analysis
method for structurally multi-scale problems (MSBEM) is proposed, in which the singular boundary
integrals over the constructed various non-conventional elements are evaluated using the element sub-
division technique [2]. A few numerical examples for media including di�erent numbers of slender
components such as �bers are given to validate the correctness and demonstrate the potential of the
proposed methods.
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When modelling problems of high frequency wave scattering, a common approach is to reformulate
as a boundary integral equation and approximate using a BEM with a basis enriched with oscillatory
functions. For example, in the Hybrid Numerical Asymptotic BEM of [1], it is shown that the size
of such an approximation space does not need to grow with frequency to maintain a given accuracy.
However, a consequence of such an approach is that the discrete system will contain many integrals of
the form ∫

Ω
f(x)eiωg(x) ds(x), Ω ⊂ RN , (4)

for N ∈ {1, 2, 3, 4}, where ω � 0 is proportional to the frequency of the scattered wave, f may be
weakly singular, the support Ω is over many wavelengths and the phase g may contain stationary points
inside of Ω. If a standard quadrature routine (e.g. Gaussian / Clenshaw-Curtis) is used to evaluate
(4), the number of weights and nodes required must grow like O(ωN ) to remain accurate. Therefore
beyond a certain frequency, if a standard numerical integration routine is used, this routine is the most
expensive part of the scattering model.

We present a MATLAB toolbox for evaluating integrals of the form (4) with a computational cost
that does not increase with ω, hence a wave scattering sovler which combines an oscillatory basis (as
in [1]) with this toolbox may have an overall cost which is independent of frequency. The algorithm
uses Generalised Gaussian quadrature (see e.g. [2]) to handle singularities of f , alongside numerical
steepest descent (see e.g. [1, Chapter 2]) to resolve the oscillations. Classically, computation of the
steepest descent path requires knowledge of stationary points of g, alongside g′, g−1 and (g−1)′ (which
may be multi-valued). In contrast, our toolbox requires the user to provide only g and its derivatives,
for coordinates in some complex neighbourhood of Ω. In the �rst step of the algorithm, the argument
principle is used to automatically determine the stationary points. The problem of computing the
components of the connecting path is decomposed into a series of initial value problems, where the
solution of each problem is a truncated steepest descent path, starting at a, b or a stationary point.
This removes the need for explicit representation of g−1 and (g−1)′. Finally, the problem of choosing
the optimal steepest descent path is solved as a shortest path problem, by considering each truncated
steepest descent path as a node on a graph.

Recent theoretical developments will also be presented, in particular error estimates which are
explicit in the number of quadrature points and in ω. Through a handful of examples, we will explore
the type of integrals currently solvable using the toolbox, alongside (if there's time) an example using
the package to solve high frequency scattering problems.
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Fast direct solvers invert a discretized boundary integral equation by exploiting structure in the
matrix with a cost that grows linearly (or nearly linearly) with the number of discretization points.
Since an inverse is computed, additional boundary conditions that arise frequently in design problems
can be processed rapidly.

Since the constant prefactor for constructing fast direct solvers is high, these solution techniques
have not been applied to problems where the geometry changes such as �uid simulations or optimal
design problems. Recently developed solvers [1, 2] are able to handle problems where the changes in
the geometry are localized.

This talk presents a fast direct solver for problems involving globally changing geometries. Roughly
speaking, the idea is to re-use as much information from a direct solver constructed for a model geometry
as possible. The resulting direct solver will be constructed for a fraction of the cost of building a direct
solver from scratch. Numerical results will illustrate the performance of the method.
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The Partition of Unity Boundary Element Method (PU-BEM) [1] is an enriched numerical method
in which the fundamental wave behaviour is included within the element formulation. PU-BEM o�ers
highly accurate results, requiring signi�cantly fewer degrees of freedom than conventional BEM. How-
ever, the enrichment introduces oscillatory behaviour into the integrals that arise which can provide a
challenge for traditional quadrature schemes. Attempts to reduce this expense using numerical steepest
descent in [2] have enjoyed some success but only in the absence of stationary points, thus indicating
the requirement for a more robust method.

The authors propose the use of integration schemes that rely on asymptotic expansions as opposed
to the local Taylor expansions employed when formulating conventional quadrature schemes. In partic-
ular, an extended version of the Filon-type method of Iserles and Norsett [3]. This involves integrating
the highly oscillatory component of the integrals analytically by parts and multiplying the results by
the coe�cients of a Hermite polynomial, �tted to the non-oscillatory component of the integral. This
method o�ers a considerable reduction in computational expense when compared with Gauss-Legendre
quadrature and an increase in accuracy when compared with the traditional Asymptotic method via
repeated integration by parts. Moreover, with the inclusion of an error function of a complex argu-
ment, the method is successfully extended to stationary point cases. This renders it a viable alternative
integration scheme to treat 2D PU-BEM integrals for polygonal scatterers.
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We discuss higher-order and adaptive time domain boundary element methods for the wave equation
in singular geometries, in particular graded meshes, adaptive mesh re�nements and a p-version in space-
time. First, we discuss asymptotic expansions near edge and corner singularities for a Dirichlet problem
for the wave equation. Time independent graded meshes lead to e�cient numerical approximations,
as con�rmed by numerical experiments for wave scattering from screens. A general a posteriori error
estimate is discussed, which leads to adaptive mesh re�nement procedures. The convergence rates
recover those known for boundary element discretizations of time-independent problems. Finally, a
p-version of the time-domain boundary element method is presented.
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Based upon a previously developed elasticity algorithm [1], a regular grid volume integration method
is constructed for the nonhomogeneous 3D Stokes problem

µ∇2u−∇p = −ρF
∇ · u = 0 .

The domain integral to be evaluated is∫
Ω
Ukj(Q,P )Fj(Q) dΩ ,

where U is the well-known Stokeslet (Green's function) [2] and F the given source function. The key
observation is that the Stokeslet can be written as U = ∇2H, with H given by a simple analytic
expression. Using Green's Theorem, the volume integral is transformed into a boundary integral,
together with a `remainder' domain integral. Evaluation of the boundary integral is straightforward,
as the kernel functions H(Q,P ) and its normal derivative do not diverge at Q = P . For the remainder
volume term, the integrand is everywhere zero on the boundary, and thus it can be continuously
extended as zero outside the domain. Numerical evaluation is then carried out by employing linear
interpolation over a regular grid of cuboid cells covering the domain, without any special consideration
for `partial cells' intersecting the boundary. This approach thereby avoids the construction of a `body-
�tted' volume mesh, and there is no approximation of F as in a reciprocity formulation [4]. Following [2,
3], it should therefore be possible to treat incompressible viscous �ow problems by taking the nonlinear
term (involving velocity derivatives [4]) as the source function F [5]. The regular grid algorithm will
require the evaluation of velocity gradients on the boundary, and therefore this calculation will also be
discussed.
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We consider the weakly-singular integral equation Vk φ = f associated with the Helmholtz equation
for arbitrary but �xed wavenumber k > 0. For a standard conforming BEM discretization with
piecewise polynomials, usual duality arguments show that the underlying triangulation has to be
su�ciently �ne to ensure the existence and uniqueness of the Galerkin solution.

Extending the abstract approach of [2], we prove in [3] that adaptive mesh-re�nement is capable
of overcoming this preasymptotic behavior and eventually leads to convergence with optimal algebraic
rates. Unlike previous works, one does not have to deal with the a priori assumption that the initial
mesh is su�ciently �ne.

By generalizing existing inverse-type estimates for the Laplace equation from [4] to arbitrary
wavenumber k > 0, we prove in [1] that ABEM with the weighted-residual error estimator �ts in
the abstract setting of [3]. Thus, we show that ABEM does not only lead to linear convergence, but
also guarantees optimal algebraic convergence behavior of the underlying a posteriori error estimator.
The overall conclusion of our results thus is that adaptivity has stabilizing e�ects and can, in particular,
overcome preasymptotic and possibly pessimistic restrictions on the meshes.
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Propagation of elastic waves is a major concern in a variety of engineering applications. The
governing equations may be treated by the boundary element method in time domain. The associated
boundary integral equations are of convolution type in time. Hence, the discretization in time can
be performed with the convolution quadrature method (CQM) proposed by Lubich [4]. A particular
advantage of the method is that the fundamental solution has to be known solely in Laplace domain,
however the time step size needs to be constant. This limitation does not apply to the generalized
convolution quadrature method (gCQM) developed by Lopez-Fernandez and Sauter [3].

On the downside, these methods lead to dense system matrix, which causes excessive memory
consumption and computing time. We intend to carry out a low-rank approximation to overcome this
drawback. The adaptive cross approximation (ACA), see for instance [1], has already been applied
successfully to problems such as the scalar wave equation. Messner and Schanz published in [5] an
ACA for elastodynamics. In this paper, the problem is decomposed in each direction such that the
matrix is partitioned into nine submatrices and each submatrix is approximated in standard fashion.

The talk comprises an extension of the ACA to handle three-dimensional elastic waves without
reordering of the system matrix. In this context we focus on a suitable pivot strategy motivated
by [2, 6]. To reinforce this strategy some numerical experiments are presented and discussed. They
show that the occuring matrices can indeed be compressed signi�cantly while retaining a good quality
of the solution of the underlying problem.
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High-intensity focused ultrasound (HIFU) is a promising treatment modality for the non-invasive
ablation of pathological tissue in many organs, including the liver. In the case of liver cancer, the �rst
choice of therapy is either surgical resection or transplantation. The risks associated with resection
make it unsuitable for the majority of patients. Thus the ability to non-invasively and precisely ablate
liver tumors will have substantial clinical impact. Optimal treatment planning strategies based on
high-performance computing numerical methods are expected to form a vital component of a successful
clinical outcome in which healthy tissue is preserved and accurate focusing achieved, thus compensating
for soft tissue inhomogeneity and the presence of ribs. The boundary element method (BEM) is an
e�ective approach for this purpose because only the boundaries of the ribs and soft tissue regions
require discretization, as opposed to standard approaches which require the entire volume around the
ribcage to be meshed.

The current state of the art coupled BEM formulations is discussed. Subsequently, a coupled
BEM-BEM formulation in combination with preconditioning and matrix compression techniques im-
plemented in Bempp [3] is presented. This formulation is used to carry out simulations of Helmholtz
transmission problem (HTP) in di�erent scenarios. The simulation results of HTP in spheroids are
used to investigate the speed, convergence and accuracy of the solution. Additionally, numerical exper-
iments are performed to solve HTP in a domain comprising a human ribcage, an abdominal fat layer,
and liver tissue subdomains in the acoustic �eld generated by a focused array transducer. These results
reveal the challenges to overcome in order to develop a viable BEM formulation for trans-abdominal
HIFU treatment planning.
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Many mathematical models concerning for example �eld calculations, �ow simulation, elasticity
or visualization are based on operator equations with nonlocal operators, especially boundary integral
operators. This talk is concerned with developing numerical techniques for the adaptive application
of such operators in wavelet coordinates. This is a core ingredient for a new type of adaptive solvers
that has so far been explored primarily for partial di�erential equations. We shall show how to realize
asymptotically optimal complexity in the present context of nonlocal operators. Asymptotically optimal
means here that the solution is approximated at a desired target accuracy with a computational
expense that stays proportional to the number of degrees of freedom (within the setting determined
by an underlying wavelet basis) that would ideally be necessary for realizing that target accuracy if
full knowledge about the unknown solution were given. The theoretical �ndings are supported and
quanti�ed by numerical experiments.
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We present and analyze a non-conforming domain decomposition approximation for a hypersin-
gular operator (thus giving rise to an integral equation of the �rst kind) governed by the Helmholtz
equation in three dimensions. This operator appears when considering the corresponding Neumann
problem in unbounded domains exterior to open surfaces. Here, for simplicity we consider piecewise
plain orientable Lipschitz surfaces. Wave numbers are assumed to be small and we use low-order ap-
proximations with Nitsche coupling across interfaces. Our results are based on [1,2] which analyze the
case of the Laplacian, with Nitsche and mortar couplings, respectively.

Under appropriate assumptions on mapping properties of the weakly singular and hypersingular
operators with Helmholtz kernel, we prove that our method converges almost quasi-optimally. Specif-
ically, up to a perturbation of the type h−ε with mesh-size h and arbitrary ε > 0, the method has the
same convergence rate as a conforming variant with low-order basis functions. Numerical experiments
con�rm our error estimate.
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We consider time-harmonic acoustic scattering in Rn+1, n = 1, 2, by planar screens and apertures.
When the screen/aperture Γ ⊂ Rn is a Lipschitz open set, the associated boundary integral equation
formulations are classical: the boundary integral operator for the Dirichlet screen problem is the single
layer operator S : H̃−1/2(Γ) → H1/2(Γ), and for the Neumann screen problem it is the hypersingular
operator T : H̃1/2(Γ) → H−1/2(Γ). The resulting variational formulations are known to be coercive
(strongly elliptic), which permits rather explicit error analysis of Galerkin BEM. (See e.g. [4], which
builds on earlier work by T. Ha Duong.)

However, when Γ is open but non-Lipschitz (e.g. with a fractal boundary, like the Koch snow�ake)
the classical formulations may fail to be well posed. And when Γ is a closed set with empty interior
(e.g. a fractal set such as a Cantor dust or Sierpinski triangle) then it is not obvious how one should
even impose boundary conditions, let alone formulate the integral equations.

It turns out that for an arbitrary Γ ⊂ Rn there are in general an uncountably in�nite number
of possible formulations, all producing distinct scattered �elds. The physically correct choice can be
determined by a limiting geometry principle, viewing the rough set Γ as a suitable limit of a sequence
of smoother sets Γj , e.g. prefractal approximation of a fractal set.

In this talk I will describe some of our functional analytic contributions published in [1�3], as well
as more recent results. We consider a number of intriguing and nontrivial questions, including:

• Given an arbitrary screen Γ ⊂ Rn, what is the correct boundary function space setting general-
ising the H̃±1/2(Γ) ↔ H∓1/2(Γ) duality that holds when Γ is open?

• For Γ closed with empty interior, when is H±1/2
Γ = {u ∈ H±1/2(Rn) : suppu ⊂ Γ} non-trivial?

• For Γ open, when is H̃±1/2(Γ) = C∞0 (Γ)
Hs(Rn)

equal to H±1/2

Γ
= {u ∈ H±1/2(Rn) : suppu ⊂ Γ}?

• How do function spaces on a sequence of prefractal approximations Γj relate to function spaces
on the limiting set Γ?

The results we obtain may be surprising to those familiar with Sobolev spaces on smooth domains!
In a companion talk, S. N. Chandler-Wilde will present numerical simulations of (pre-)fractal screen
scattering problems using BEM, as well as discussing some of the challenging issues arising in the
associated numerical analysis.
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Boundary value problems for the Euclidean Hodge-Laplacian in three dimensions,

−∆HL := curl curl−grad div ,

lead to variational formulations set in subspaces of H(curl,Ω) ∩ H(div,Ω), Ω ⊂ R3 a bounded
Lipschitz domain. Via a representation formula and Calderón identities we derive corresponding �rst-
kind boundary integral equations set in traces spaces of H1(Ω), H(curl,Ω), and H(div,Ω). They
give rise to saddle-point variational formulations and feature kernels whose dimensions are linked to
fundamental topological invariants of Ω.

Kernels of the same dimensions also arise for the linear systems generated by low-order conforming
Galerkin boundary element (BE) discretization. On their complements, we can prove stability of the
discretized problems, nevertheless. A particular challenge is that the �discrete� kernels do not have a
simple representation and that the BE linear systems generally fail to possess a consistent right-hand
side. It takes special Krylov subspace iterative solvers to compute meaningful solutions.
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Recently, the role of periodicity is getting important in applied physics, especially photonics and
plasmonics. In this study, we consider a perfectly electrical conducting (PEC) surface that has the
periodicity in two directions and is irradiated by an electromagnetic incident planewave. In order
to analyze and design the doubly-periodic PEC surface, an accurate numerical method to solve the
Maxwell equations is necessary.

Figure 4: Magnitude of the surface current density JS
on a 3 × 3 unit cells of the sinusoidal PEC surface.

To meet this demand, we propose a Galerkin
boundary element method (BEM) incorporat-
ing the concept of the isogeometric analysis
(IGA) [1, 2]. Speci�cally, following the inves-
tigation for the non-periodic case by Simpson
et al [3], we discretize the boundary integral
equation with using the compatible B-spline [4]
and NURBS functions as the interpolation and
shape functions, respectively. To take account
of the quasi-periodicity into the interpolation
and weight functions, we enhance the technique
established for the RWG basis [5] to the un-
derlying compatible B-spline bases. The high-
order discretization thus constructed can bring
a high-accurate solution in comparison with the
conventional low-order discretization based on
the RWG and roof-top bases.

In this talk, we will give the formulation of
our isogeometric BEM and access it through some numerical examples. Figure 4 shows a numerical
result of surface current density JS on the sinusoidal PEC surface when an oblique planewave of
wavenumber 10 is given.
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It is well known that a periodic structure of dielectric materials called photonic crystal (PC)
exhibits extraordinary properties against electromagnetic waves. For example, electromagnetic waves
either propagate through the PC or not, depending on their frequency. The frequency range that
cannot propagate are called bandgaps. Owing to this distinguished property, it is expected that the
PC gives rise to innovative optical devices such as cloaking, low-loss waveguide, broad-area coherent
laser and so forth. To realise such attractive optical devices, we need to design PCs with bandgaps as
large as possible at the desired frequency. To this end, we propose a topology optimisation method for
PCs.

In the proposed method, we resort to the level set method [2, 2] and the topological derivative
which characterises the variation of the objective function (the bandgap size which is a function of
eigenvalues of periodic boundary value problems) to a small topological change in the PC. We �rst
derive the topological derivative and show that it is associated with the relevant eigenpairs. We
then discuss a fast boundary element method combined with an eigensolver which utilises the contour
integral [3] for computation of the bandgap and its topological derivative. Since the boundary element
matrices involved in the proposed solver have a common sub-matrix, we can construct a fast solver
with the help of the Woodbury formula. In the proposed solver, algebraic operations in the Woodbury
formula are further accelerated by H-matrix method.

In this abstract, we show a typical numerical result in Figure 1. In this example, we explored
the shape of a perfectly electric conductor (PEC) in a dielectric matrix which maximises the bandgap
between 2nd and 3rd bands. In the oral presentation, we show some more numerical examples as well
as the detailed formulation of the proposed method.

Figure 5: Unit cell of PC and its band structure for initial (left) and optimal designs (right).
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Conductive thin layers for shielding purpose are considered in a wide range of applications. Mod-
elling such conductive regions requires �ne volume discretisation due to the rapid decay of �elds through
the surface for high frequencies. This leads to the solution of large system of equations that can be
highly time consuming. To avoid this di�culty, we derive an equivalent model for 3D Eddy Current
problem with a conductive thin layer of small thickness ε , where the conductive sheet is replaced by
its mid-surface, and its shielding behavior is satis�ed by an equivalent transmission condition which
connect the electric and magnetic �eld around the surface.

In [1] equivalent transmission conditions for the full time-harmonic Maxwell equations are derived in
3D. Curved thin sheets are considered, where the material constants can take di�erent values inside and
outside the sheet. In this work, we derive equivalent transmission conditions for Eddy-Current problems
in 3D, for curved thin sheets, where the materials inside and outside the sheet are non-conductive.
Note that these transmission conditions are derived asymptotically for vanishing sheet thickness ε,
assuming that we have asymptotically constant ratio between skin depth dskin =

√
2/(ωµ0σ0) and

thickness ε.

As out of the layer we mainly consider a non-conductive linear homogeneous domain and an open
boundary problem, we can easily avoid the volume mesh required in the Finite Element Method (FEM)
by using the Boundary Element Method (BEM) that uses only 2D elements on the surfaces. Moreover,
BEM is adapted to general �eld problems with unbounded structures because no arti�cial boundaries
are needed, this is not the case for FEM.

We validate the results by comparing to the formulation given in [2], and to the main problem
simulated in COMSOL and solved numerically using the Finite Element Method with very �ne mesh.
The results show a good agreement between methods. Complementary tests that study the robustness
with respect to the sheet conductivity and the convergence of the modelling error will be given.
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Fast solution methods for boundary integral equations

Boundary integral equations accurately describe numerous physical e�ects in the �elds of �uid me-
chanics, acoustics and electromagnetics. Often, the boundary element method (BEM) is applied for
discretization in conjunction with a collocation or Galerkin projection. Due to the nature of the involved
integral operators, the obtained system of equations contains dense matrices for which conventional
solution schemes imply a cubic complexity with respect to the number of degrees of freedom. E�-
cient strategies for addressing this issue have been an active area of research in the last few decades.
Today, fast solution methods, such as the fast multipole method or H2-matrix schemes, are avail-
able. Incorporated with preconditioned iterative solvers, quasi-linear or even linear complexity can be
achieved.

E�cient preconditioning

With fast boundary element methods and well-known iterative solution schemes at hand, the solution
process can be further accelerated by choosing an appropriate preconditioner. In this regard, general
and easy-to-implement approaches like block diagonal preconditioners or incomplete LU factorizations
are often used. At the cost of general applicability, more advanced approaches such as analytical
preconditioning techniques or methods based on the sparse approximate inverse are bene�cial for
speci�c problems. In this paper, the recently introduced inverse fast multipole method [2] is applied
as a preconditioner to the Galerkin BEM. Its performance is compared to common alternatives and to
results obtained by other researchers using a collocation discretization. Moreover, a comparison with
an analytical preconditioner based on the pseudo-inverse of the hypersingular operator [1] is conducted.
Most simulations are performed using the Galerkin boundary element library Bem++ [3].
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We present a spectral numerical scheme for solving Helmholtz and Laplace problems with Dirichlet
boundary conditions on a �nite collection of open arcs in R2. An indirect boundary integral method is
employed, giving rise to a �rst kind formulation whose variational form is discretized using weighted
Chebyshev polynomials. Well-posedness of both continuous and discrete problems is established as well
as spectral convergence rates under the existence of analytic maps to describe the arcs. In order to re-
duce computation times, a simple matrix compression technique based on sparse kernel approximations
is developed. Numerical results provided validate our claims.
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We model the electrical behavior of several biological cells under external stimuli by extending and
computationally improving the semi-implicit multiple traces formulation presented in [1]. Therein, the
electric potential and current for a single cell are retrieved through the coupling of boundary integral
operators and non-linear ordinary di�erential systems of equations. Yet, the low-order discretization
scheme presented becomes impractical when accounting for interactions among multiple cells. In this
note, we consider multi-cellular systems and show existence and uniqueness of the resulting non-
linear evolution problem in �nite time. Our main tools are analytic semigroup theory along with
mapping properties of boundary integral operators in Sobolev spaces. Thanks to the smoothness of
cellular shapes, solutions are highly regular at a given time. Hence, spectral spatial discretization
can be employed, thereby largely reducing the number of unknowns. Time-space coupling is achieved
via a semi-implicit time-stepping scheme shown to be stable and convergent. Numerical results in
two dimensions validate our claims and match observed biological behavior for the Hodgkin-Huxley
dynamical model.
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Contact and fracture mechanics are �elds of engineering analysis for which �nite elements perform
poorly and boundary elements show great promise. Surfaces, including crack faces, may be in contact
without sliding, in contact with sliding, or not in contact at a point. Which of these three conditions
exists depends upon a coe�cient of friction, and in the case of surfaces with asperities an angle of
dilation which tends to zero with increasing relative shear displacement.

The work presented here is a continuation of that presented earlier by the author [1]. Crack faces
and other surfaces which are potentially in contact are modelled by pairs of boundary elements which
share common nodes [2]. Geometry is de�ned by conforming quadratic and hybrid quadratic-Hermitian
cubic shape functions. Displacements are interpolated by the same functions, enriched by functions
which exhibit the same singular behaviour at crack roots as the �rst three eigenvalues of the Williams
expansion and its equivalent for antiplane strain [3], whereas tractions are interpolated by quadratic
shape functions only. In the interpolation for displacement, over elements adjacent to a crack root the
singular shape functions are multiplied by stress intensity factors which are taken to vary quadratically
over each element side on the root, and in general the singular functions extend for more than one
element away from the root. At each node of an element pair, the unknowns are average displace-
ments of the elements, and either three tractions (contact, no sliding), one traction and two relative
displacements (contact, sliding), or three relative displacements (no contact).

An augmented system of equations is constructed in which at nodes of element pairs both the traction
and relative displacement vectors are retained as unknowns, in addition to the vector of average dis-
placements [4]. In a �rst stage of solution by Gaussian elimination, all degrees of freedom associated
with nodes at which there is no potential contact between surfaces are eliminated, to form an aug-
mented Schur complement. In a second stage, at each increment of applied load the extent of areas
of contact between surfaces is determined iteratively by computations involving only the augmented
Schur complement (from which successive actual Schur complements are constructed), and the load
vector. The iteration is found to converge reliably and, for typical cases in which at most of the nodes
there is no potential contact, the software execution time is very reasonable. As a demonstration of
the proposed technique, analyses are shown of a uniaxial compression test specimen of rock in which
there are pre-existing buried cracks, the aim of the analyses being to better understand the observed
reduction of strength with increasing specimen size which currently is estimated by empirical formulae.
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Since the pioneering work [2] of Ca�arelli and Silvestre, it is known that the fractional Laplace
operator (−∆)s for s ∈ (0, 1) can be represented as the Dirichlet-to-Neumann map of a degenerate
PDE on an unbounded domain. Indeed, the fractional Laplacian is a non-local operator, and it can be
represented as an integral operator with a singular kernel [1]. Hence, we can expect that techniques
used in boundary element methods can be applied also in this case. For example, it is known that
matrices arising in discretizations of Galerkin boundary element methods can be approximated by
Hierarchical matrices [4]. Even more, the same is true for their inverses [3]. In this talk, we show how
these results and techniques carry over to the case of the fractional Laplace operator.
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In recent years Calderón preconditioning [1] and appropriate use of basis functions [2] have become
a popular strategy to speed up the iterative solution of electromagnetic scattering problems. In this
talk we will discuss recent developments in the solution of dielectric scattering problems, extend the
ideas of Calderón preconditioning in the case of scattering by multiple dielectric objects and discuss
their implementation in the boundary element library Bempp [3].

Of particular interest are cases of light scattering by ice crystals found in cirrus clouds [4, 5]. We
will demonstrate how one can use the above theory and the Bempp library to e�ciently solve examples
of light scattering by single and multiple ice crystals.
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We are concerned in this contribution with the improvement of the e�ciency of Boundary Element
Methods (BEMs) for 3D frequency domain acoustic and elastodynamic problems. The need of e�cient
tools is crucial for the simulation of many real-life problems such as soil-structure interaction, site-
e�ects phenomenon, non-destructive controle of structure (e.g. in nuclear area), and for the modelling
and design of anti-noise walls. On the one hand, BEMs are based on the discretization of Boundary
Integral Equations [4] such that only the domain boundary is meshed. On the other hand, they lead to
a linear system with a fully-populated in�uence matrix, conversely to standard volume methods such
as �nite elements. Hence standard BEM solvers lead to high computational costs both in terms of time
and memory requirements. This drawback prevents to treat large scale three-dimensional problems.
Over the last decades, various solutions have been proposed in order to circumvent the full assembly
and storage of the matrix. The most popular is probably the Fast Multipole Method [5] to compute
the application of the integral operators, i.e the matrix-vector product which is, indeed, the essential
operation for an iterative solver. The other solution is based on the use of hierarchical matrices
(H-matrices) [6]. H-matrices are commonly used, in conjunction with an e�cient rank revealing
method such as the Adaptative Cross Approximation (ACA), to lower the memory requirements and
computational times. The principle of H-matrices is to approximate the global matrix by �nding
sub-blocks which can be compressed. The approach, shown to be very e�cient for asymptotically
smooth kernels, is not optimal for Helmholtz and elastodynamic oscillatory kernels [7]. For a given
sub-block, this yields an increase of the rank as the frequency increases. An alternative is the use of
H2-matrix [4], a multigrid-like specialization of H-matrices, at the cost of important implementation
e�orts. However, encourageous results have been obtained in [5] where the capabilities of H-matrices
for oscillatory kernels are illustrated on numerical examples. These results highlight the existence of
a preasymptotic regime for which the H-matrix based solvers behave well (for some frequency range)
and so they can be seen as a viable alternative to speed-up BEMs.
Following this encouraging work, we are interested in the optimization of the H-matrix based solvers
for oscillatory kernels when the standard admissibility condition of asymptotically smooth kernels is
used. We study the repartition of the blocks with the highest ranks and derive an e�cient set up of
the H-matrix representation. Then, we study the complexity of the di�erent parts of the direct and
iterative solvers, and their parallelization. The e�ciency of the solvers is illustrated on acoustic and
elastodynamic large-scale problems.
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The key questions in implementations of Lagrangian vortex methods [1] for viscous incompressible
�ow simulation, is the choice of numerical approach for no-slip boundary condition satisfaction. The
airfoil in the �ow can be replaced with vortex sheet of unknown intensity.

There are two ways to no-slip boundary condition satisfaction in the framework of vortex methods.
The �rst one, which follows from the Neumann problem in the potential theory, leads to singular
integral equation with Hilbert-type kernel. There are special requirements for the airfoil surface line
discretization for its numerical solution; speci�c quadrature formulae should be used for the principal
value extraction. The alternative approach leads to the 2-nd kind [2] boundary integral equation of
the Fredholm-type and it is free from the mentioned restrictions.

For numerical solution of the boundary integral equation with respect to unknown vortex sheet
intensity, the airfoil is approximated by polygon consists of rectilinear segments. The ideas of the
Galerkin method are implemented and the hierarchy of numerical schemes is developed. Vortex sheet
intensity distribution is assumed to be linear combination of basis functions, and the unknown coe�-
cients can be found from the orthogonality condition of the residual to projection functions.

Dirac Delta-functions, constant and linear functions can be used as basis and projection functions
(in di�erent combinations), the resulting numerical schemes have di�erent accuracy and computa-
tional complexity [4]. The piecewise-linear solution can be continuous or discontinuous, or continuous
everywhere except some speci�ed points correspond to sharp edges and angle points of the airfoil.

The developed numerical schemes provide the 1-st and the 2-nd order of accuracy with respect
to average value of vortex sheet intensity over the panels and in L1 norm. Expressions for the linear
system (which approximates the integral equation) coe�cients are obtained. For the corresponding
integrals, some of which are improper (but not singular), the exact analytical formulae are derived
by authors [3]. Exact analytical expressions are obtained also for the quadratures in the Rhs of the
equation (for vortex wake in�uence), which are consistent with Lhs approximation.

All the developed schemes are generalized for the FSI problems with movable airfoils: attached
vortex and source sheets are introduced, their intensities are approximated similarly to free vortex
sheet � with delta-functions, piecewise-constant or piecewise-linear distributions. Note, that it does
not require signi�cant algorithm modi�cations. Moreover, it is easy to implement strong coupling in
FSI problems and construct fully implicit numerical scheme which is stable at arbitrary time step.

The research is supported by Russian Foundation for Basic Research (proj. 18-31-00245).
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Linear wave scattering problems (e.g. for acoustic, electromagnetic and elastic waves) are ubiq-
uitous in science and engineering applications. However, conventional numerical methods for such
problems (e.g. FEM or BEM with piecewise polynomial basis functions) are prohibitively expensive
when the wavelength of the scattered wave is small compared to typical lengthscales of the scatterer
(the so-called �high frequency� regime). This is because the solution possesses rapid oscillations which
are expensive to capture using conventional approximation spaces.

Recently, there has been much interest in the development of �hybrid numerical-asymptotic� meth-
ods. These methods use approximation spaces containing oscillatory basis functions, carefully chosen
to capture the high frequency asymptotic behaviour, leading to a signi�cant reduction in computa-
tional cost. These ideas have been applied to a wide range of scattering problems (see, e.g., [1]), but
progress to date has largely been con�ned to problems of scattering by impenetrable obstacles.

In this talk, we describe what we believe to be the �rst hybrid numerical-asymptotic method for any
problem involving a penetrable scatterer. We consider the problem of scattering by penetrable convex
polygons. We reformulate the associated transmission boundary value problem as a direct boundary
integral equation for the unknown Cauchy data, which is then represented as a sum of the classical
geometrical optics approximation, computed by a beam tracing algorithm, plus a contribution due to
di�raction computed by a Galerkin boundary element method using oscillatory basis functions chosen
according to the principles of the Geometrical Theory of Di�raction.

Our boundary element method, described in detail in [2], can achieve a �xed accuracy of approxi-
mation using only a relatively small, frequency-independent number of degrees of freedom. Moreover,
the inclusion of the di�raction term provides an order of magnitude improvement in accuracy over the
geometrical optics approximation alone.
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Regarding the treatment for the �ctitious frequency as well as spurious resonance in using the
indirect boundary element method (BEM) and the method of fundamental solutions (MFS), we propose
an alternative approach in this talk. The present approach is di�erent from the mixed potential
approach in the indirect method as well as the Burton and Miller approach in the direct BEM. In
the proposed approach, we add some fundamental solutions with unknown source strength in the
representation of the �eld to complete the base of solution space. From the viewpoint of adding point,
the present idea is similar to the combined Helmholtz interior integral equation formulation (CHIEF)
method in the direct BEM. The di�erence between the added source points and the CHIEF points is
their role. The added source points supply the de�cient base due to the �ctitious frequency while the
CHIEF points provide the extra constraint equations. Therefore, we examine the CHIEF constraint
by employing the self-regularization technique for the in�uence matrix in the direct BEM. Based on
this idea, the constraint equation in the present approach may be found by adding the right unitary
vectors of zero singular value. Then, a square bordered matrix is obtained. The bordered matrix is
invertible for the �ctitious frequency if the extra source points do not locate at the failure positions.
This is the reason why the property is analogous to the idea of the CHIEF method in the direct BEM.
Therefore, the proposed approach can �ll in the gap that there is no CHIEF method in the indirect
BEM and MFS. Since the proposed approach only need using the single-layer potential, it has an
advantage over the existing formulations. To demonstrate the validity of the present idea, the problem
of an in�nite plane containing a circular radiator or scatter is considered. In the real implementation,
all �ctitious frequencies in the certain range of the wavenumber are found �rst by the direct searching
algorithm. Both the Dirichlet and Neumman boundary conditions are also considered. Finally, we also
analytically derive the locations of possible failure points by using the degenerate kernel.
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For many applications (settling, transport...), it is necessary to compute the �ow of either dilute
or concentrated unbounded suspensions made of solid particles immersed in a Newtonian liquid. For
small enough particles, the �ow Reynolds number vanishes and the task fortunately reduces to the
treatment of the linear Stokes equations [1]. This can be e�ciently achieved by solving boundary-
integral equations [2].

However, as usual in such formulations, the discretization of the problem leads to dense and non-
symmetric linear systems whose size grows as the square of the number of particles. Acceleration
techniques are therefore usually employed. Most of them are based on the compression of the underlying
matrix in order to obtain e�cient matrix vector products (see e.g. Fast Multipole Method, H-matrices,
etc.). In this direction, the new Sparse Cardinal Sine Decomposition method (SCSD) was recently
developed for the scalar kernel encountered in acoustics [3]. The main idea consists in expanding the
kernel in the Fourier space as a �nite sum of Cardinal Sine functions. The method has been further
extended to the vectorial Stokes kernel in [4] where it has actually been implemented and tested for a
single solid particle.

After presenting the SCSD solver for the Stokes kernel, this work investigates its ability to e�ciently
cope with N -particle clusters immersed in a Newtonian liquid. Cases of large N will be investigated.
Both distant or close (packed) particles will be considered.
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To model the deformation of hot forming tools a thermoelastic model is necessary. However, only
the e�ect of the temperature on the mechanical behavior is essential and not vice versa. Hence, a
one sided coupled approach is su�cient. Further, the mechanical inertia e�ects are neglected, which
results in the so-called uncoupled quasistatic thermoelasticity. The governing equations consist of the
parabolic heat equation and the elastostatic equations with a thermal load due to the coupling with
the heat equation.

Here, a boundary element formulation for this one sided coupled problem is proposed. In the
heat equation and as well in the right hand side of the mechanical equation convolution integrals in
time have to be solved. Several approaches exist to discretize these time integrals (e.g. [1]). Here, the
convolution quadrature method (CQM) is applied. The original CQM has been developed by Lubich [1]
and was restricted to constant time step sizes. However, in the quasistatic thermoelasticity very often
processes are modelled, which develop fast in the beginning and tend to a steady state after some
time. For such processes a constant time step size is sub-optimal and a variable step size is preferable.
The generalization of the CQM to variable step sizes has been developed by Lopez-Fernandez and
Sauter [3, 4]. This methodology is applied here. Applications and performance are presented via
numerical results.
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This talk deals with the Fréchet di�erentiability analysis with respect to the boundary parametri-
sations of the boundary integral operators arising in the potential theory of time-harmonic electromag-
netic waves [1]. The material derivatives of integral operators were investigated in the framework of
Hölder continuous and di�erentiable function spaces in the pioneer works of R. Potthast [6] and more
recently in the framework of Sobolev spaces by M. Costabel and F. Le Louër [2]. We present novel re-
sults [5] using the Piola transform of the boundary parametrisation to transport the integral operators
on a �xed reference boundary. This approach spare us the use of technical tools such as the Hodge
decomposition of H−

1
2 (Γ,div) [2]. The transported integral operators are in�nitely di�erentiable with

respect to the parametrisations and simpli�ed expressions of the material derivatives are obtained.
Moreover, the Piola transform allows us to state the di�erentiability properties of the electromagnetic
hypersingular operator without involving a regularization procedure. The material derivative formulas
are found explicitly in the form of linear boundary integral operators and are suited for numerical
implementations.

Using these results, we extend a nonlinear integral equations approach developed for solving acoustic
inverse obstacle scattering problems [4] to electromagnetism [5]. The algorithm has the interesting
feature that it avoids the numerous numerical solution of boundary value problems at each Gauss-
Newton iteration step [3], that are replaced by single matrix vector products. The e�ectiveness of the
method is highlighted by numerical experiments.
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Recently, several theoretical models have been developed to include surface e�ects, such as surface
elasticity and surface stresses. These e�ects are relevant to the design and analysis of micro- and
nano-structures, e.g. micro- and nanomechanical devices, micro- and nano-electromechanical systems
(MEMS and NEMS), etc. One most popular model is the Gurtin-Murdoch model of elastic material
surfaces [1�3]. In this model, in addition to a standard elastic model for the bulk material, the Boundary
Value Problem also includes special and somewhat intricated boundary conditions in terms of jumps
in displacements and/or tractions expressed via a new set of surface variables.

Elastic potentials introduced by Kupradze [4] provide a suitable mathematical tool to represent
these jumps. In the present work, a single layer potential is applied to solve the problem of a Gurtin-
Murdoch material surface in the form of a circular arc in an elastic plane under biaxial far-�eld loads.
The density of this single layer potential has a physical meaning of the traction jump. This traction
jump is expressed in terms of the surface tension (a kind of prestress in the material surface) and the �rst
and second order tangential derivatives of displacements. Then, a Boundary Integral Equation (BIE)
for the Gurtin-Murdoch circular arc is deduced in terms of the tangential derivatives of displacements.

To numerically solve this BIE, a suitable complex variable representation for displacements along
the circular arc is developed by introducing special complex-variable quadratic circular boundary el-
ements [5]. Additionally, suitable boundary conditions are imposed at the end-points of the circular
arc. The BIE discretized in this way leads to a system of linear algebraic equations. Several problems
for di�erent circular arc angles, values of the surface tension and far-�eld loads are solved, and the
results for surface stress tensor, surface strain tensor, traction jumps and displacement along the cir-
cular are presented. Convergence behaviour of the numerical solutions obtained for an h-re�nement of
boundary meshes is studied. A special attention is paid to the analysis of the asymptotic behaviour of
the solution near end-points of the circular arc.
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Domain Decomposition Methods (DDM), such as Additive Schwarz (AS), can be used to precondi-
tion linear systems arising from Boundary Integral Equations (BIE). Introduced in [1], this approach
was widely studied since then and extended in various directions, see e.g. [2, 3]. The basic idea is
to adapt the classical FEM-based AS (such as presented in [4]) to the BIE context: this includes a
two-level preconditioner relying on a coarse space, which leads to theoretical bounds on the condition
number.

Regarding the choice of relevant coarse spaces, important progress has been achieved in recent
years for the FEM context. For the construction of coarse spaces, the Generalized Eigenproblems in the
Overlaps (GenEO) has emerged as one of the most promising approach for symmetric positive de�nite
problems, see [5]. Instead of solving a coarse problem on a coarse mesh, GenEO takes eigenvectors
of well chosen local eigenproblems as a basis for the coarse space. As one of its interesting features,
GenEO is only based on the knowledge of the sti�ness matrix elements and discretization agnostic,
left apart a few reasonable assumptions.

In this talk, we will present recent theoretical and numerical results in 2D and 3D aiming at
adapting GenEO to the BIE context for symmetric positive de�nite problems on closed and open
surface. Examples of applications are Laplace problems on screens or dissipative Helmholtz problems.

Acknowledgement This work is supported by the project NonlocalDD, research grant ANR-15-
CE23-0017-01 from the French National Research Agency and the numerical results are obtained using
HPC resources from GENCI- CINES (Grant 2017-A0020607330).
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The development of linear complexity solvers for the dense linear equations that arise upon the
discretization of a boundary integral equation (BIE) has remained an area of active research for sev-
eral decades. A well established paradigm is to discretize the BIE using a method such as BEM or
Nyström, and then to solve the resulting system using an iterative method, where each matrix-vector
multiplication is accelerated by the Fast Multipole Method, or some similar fast summation technique.
In many environments, the iteration converges rapidly, and the state-of-the-art is very satisfactory.

However, there remain areas where iterative methods are not ideal. One important environment
concerns BIEs associated with the Helmholtz equation or the time-harmonic Maxwell equations where
the solutions are oscillatory, and the underlying physics of the problem is often highly ill-conditioned.
In the presence of multiple re�ections, cavities, resonances, etc., iterative solvers often struggle to
converge, and �nding e�ective pre-conditioners remains challenging.

Interestingly, it has over the last several years been demonstrated that it is often possible to
directly compute an approximate inverse to the coe�cient matrix in linear (or close to linear) time.
The underlying idea is exploit the fact that interactions between di�erent subdomains tend to have
low numerical rank, and to use this observation to store all large matrices involved in so called �data-
sparse� formats. The talk will describe some recent work in this �eld, and will argue that the resulting
direct solvers allow us to completely sidestep the di�culties of slow convergence of iterative solvers.
Moreover, the direct solvers being proposed have low communication requirements, and appear to be
very well suited to parallel implementations.

One drawback of direct solvers is that methods that are currently known tend to require substan-
tially more storage per degree of freedom than competing iterative methods. The talk will discuss how
this makes direct solvers particularly e�ective when they are combined with high order discretizations.
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Nonlinear ultrasonic testing (NLUT) based on contact acoustic nonlinearity (CAN) has been de-
veloped for inspection of closed cracks [1]. Accurate NLUT requires an understanding of the behavior
of higher- and sub-harmonic waves, which are used for the defect evaluation. However, the theoretical
explanation of the nonlinear scattering phenomena with CAN is not su�cient at present. In particular,
there remains investigation of nonlinear resonance due to the interaction among incident frequency and
amplitude, size of crack, and CAN.

In order to investigate the behavior of nonlinear resonance with higher- and sub-harmonic genera-
tion, the present study deals with the steady-state analysis of in-plane wave scattering by a crack with
contact boundary conditions. The system is composed of an unbounded elastic solid which includes a
crack under pre-opening displacement or static compressive stress. A time-harmonic P or SV wave is
incident, and clapping motion and dynamic friction are induced as a nonlinear phenomenon.

As is well known, transient wave scattering by a crack with nonlinear boundary conditions can be
described in a retarded potential boundary integral equation (BIE). On the other hand, the authors
proposed the steady-state BIE by means of a harmonic balance method as an asymptotic expression
of the vibration of crack faces after a su�cient elapsed time [2], and the validity of the steady-state
BIE has been con�rmed numerically. However, the steady-state BIE has multiple solutions under the
condition with respect to the sub-harmonic resonance reported in [3]. Therefore, it is necessary for
comprehension of the nonlinear resonance to investigate the structure of steady-state solution space.

For the above purpose, a numerical continuation method [4] is applied to the steady-stae BIE for
tracking the solution path, and a bordered method [5] is used for accurate detection of bifurcation
points. Through the numerical results, the relation between the bifurcation of steady-state solution
and the nonlinear resonance is investigated.
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Wave scattering problems for domains having periodic structures are of interest since they have
many applications in engineering and science, e.g., metamaterials with special properties such as neg-
ative refractive index. Therefore, there exist increasing demands for numerical methods of analysis
for one-periodic transmission problems for wave scattering. Fast direct solvers for the periodic wave
scattering problems have already been proposed by several research groups [1,2]. The fast direct solvers
by Gillman et al. [1] and Greengard et al. [2] are based on the interpolative decomposition approaches.
In interpolative decomposition approaches, it is important to speed up the algorithm by using a tech-
nique called proxy which replaces the evaluation of the in�uence from far boundary by that from a
virtual local boundary. In the transmission problems, integral equations for more than two domains
are coupled, thus making the use of proxy more delicate than in single domain problems. However,
the use of proxy in multi-domain problems have not been discussed very much so far.

Therefore in this presentation, we apply the Martinsson-Rokhlin type fast direct solver [3] to one-
periodic transmission problems using multi-trace boundary integral equation formulation [4]. We point
out that the numerical accuracy of the well-known PMCHWT formulation decreases when the contrast
between the interior and the exterior dielectric constants is small. As in the non-periodic case [5], we
show that the deterioration of the numerical accuracy can be avoided with the help of the multi-trace
boundary integral equations. We also propose a method to improve the numerical accuracy using a new
construction of the proxy. Finally, we demonstrate the validity of the proposed method with several
numerical examples and compare its performance with that of the periodic fast multipole boundary
element method based on the PMCHWT formulation and GMRES [6].
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1 Introduction

Vibration of a structure is one of the most important issues in engineering, and a lot of works have been
devoted to the realisation of vibration reduction devices. Recent studies have applied the topology
optimisation to design structures with desirable vibration properties and showed its e�ectiveness,
e.g., [1]. In those optimisations, the �nite element method (FEM) is commonly used to compute
design sensitivity. However, when the design object is large enough that its size is assumed to be
in�nite, the boundary element method (BEM) is preferred to the FEM because the BEM can deal
with the unbounded domain accurately with only a boundary mesh.

In this study, we present a numerical method for designing elastic wave absorber composed of
an elastic matrix and viscoelastic inclusions using a topology optimisation. We mainly discuss the
topological derivative for such a problem and its numerical evaluation. Since the topological derivative
consists of solutions of two boundary value problems that di�er only in boundary conditions, it is
preferable to solve them using the (fast) direct boundary element method, rather than the iterative
one. For this reason, we use LU decomposition based on H-matrix method to compute the topological
derivative. With the computed topological derivative, the topology optimisation is done with a level-
set-based solver [2].

2 Numerical example

Figure 6: Optimisation result. The left and right �gures
show the initial con�guration (J = 0.106 kW/m) and opti-
mal one (J = 17.9 kW/m), respectively.

We present a numerical example of the
topology optimisation to �nd a con�gura-
tion which maximises the absorbed energy
per unit time J in the �xed design domain
[0 m, 1 m] × [0 m, 1 m]. The elastic matrix
Ω(1) and viscoelastic inclusion Ω(2) are re-
spectively assumed to be steel (mass den-
sity ρ = 7.8 × 103 kg, Young's modulus
E = 205 GPa, Poisson's ratio ν = 0.3) and
epoxy resin (ρ = 1.85 × 103 kg, E = 3 GPa,
ν = 0.34, loss factor tan(20/180)π) under
plane strain conditions. The incident wave
is set to be a plane P-wave propagating in
x1 direction with the frequency 5 kHz and amplitude 1µm. Figure 6 shows the optimisation result,
from which we con�rm the e�ectiveness of the proposed method.
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Problem statement

Let us consider Ω− := {x ∈ R2 : |x| ≤ rint} with boundary Γ and its complementary Ω+ := R2\Ω−.
The Lamé parameters, µ and λ; the wavenumbers κp and κs (associated with the pressure wave,
respectively the shear wave) and the density ρ are positive constants. Considering a time-harmonic
incident wave uinc, the scattering problem is formulated as follows: �nd the displacement u in Ω+

solution to the Navier equation with a Dirichlet boundary condition u = −uinc on Γ and satisfying the
Kupradze radiation conditions at in�nity. The stress tensor σ is isotropic. In view of a �nite element
discretization, Ω+ is truncated by an arti�cial boundary Γ∞, which delimits the bounded domain Ω
under study. Denoting n the outgoing normal vector to Γ∞, T := 2µ∂n + λndiv + µn × curl the
traction operator and B the absorbing operator describing boundary conditions at in�nity, the solution
satisfy on the �ctitious boundary Γ∞: T u = Bu.

Analytical and numerical comparisons of two ABCs

Multiple choices are possible for the absorbing operator B, the optimal operator being the exact exterior
Dirichlet-to-Neumann map. We investigate two approximations:

◦ The Lysmer and Kuhlemeyer condition: Bu = i[(λ+ 2µ)κp(n ·u) +µκs(τ ·u)], with τ the tangential
vector to Γ∞. We point out the limitations of this low-order condition in high-frequency regime and/or
with incident S-waves. It motivates the investigation of a high-order condition.

◦ A Padé-localized condition: Bu = (I+ Λ2)−1Λ1u+ 2µMu, withM the tangential Günter derivative
[2]; Λ1 = iρω2

[
n(∂2

s + κ2
p,εI)−1/2n.In + τ (∂2

s + κ2
s,εI)−1/2τ .It

]
; In = n ⊗ n, It = I − In; ∂s the

curvilinear derivative; Λ2 = −i
[
τ
(
∂s(∂

2
s + κ2

s,εI)−1/2n.In
)
− n

(
∂s(∂

2
s + κ2

p,εI)−1/2τ .It
)]

and κp/s,ε :=
κp/s + iεp/s, with εp/s > 0 damping parameters. Local representation of the inverse of the square-root
operators are obtained using complex Padé approximants with rotating branch-cut [1, 3]. We detail
the choice of the di�erent parameters and the construction of this high-order condition which is an
adaptation of Chaillat et al. [2] to the 2D case. Numerical simulations in low and high frequency regime
with incident P-waves or S-waves attest the e�ciency of this ABC.
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The purpose of this presentation is to obtain well-posedness results in Lp-based Sobolev spaces for
boundary value problems of Robin type for the Stokes and Brinkman systems in a bounded Lipschitz
domain in R3 with the variable viscosity coe�cient and data in Lp-based Sobolev and Besov spaces.
First, we introduce a parametrix and construct the corresponding parametrix-based variable-coe�cient
Stokes Newtonian and layer integral potential operators with densities and the viscosity coe�cient in
Lp-based Sobolev or Besov spaces. Then we generalize various properties of these potentials, known
for the Stokes system with constant coe�cients, to the case of the Stokes system with variable co-
e�cients. Next, we show that the solvability of our Robin boundary value problem for the Stokes
system with variable coe�cients can be reduced to that of a system of segregated Boundary-Domain
Integral Equations (BDIEs). Then we prove that solvability of the variable coe�cient system of BDIEs
can be reduced to the solvability of a corresponding problem with constant coe�cients in Lp-based
Sobolev and Besov spaces, which we show to have a unique solution by exploiting known results for
the Robin boundary value problem associated to the Stokes system. Finally, the well-posedness for the
Stokes system is used to reduce the Robin problem for the variable coe�cient Brinkman system to an
equivalent Fredholm equation which is uniquely solvable in Lp-based Sobolev and Besov spaces. The
presentation outlines some further development of [1�3].
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In contrast with the well-known methods of matching asymptotics and multiscale (or compound)
asymptotics, the �functional analytic approach� proposed by Lanza de Cristoforis [5] allows to prove
convergence of expansions around interior small holes of size ε for solutions of elliptic boundary value
problems. Using the method of layer potentials, the asymptotic behavior of the solution as ε tends
to zero is described not only by asymptotic series in powers of ε, but by convergent power series. In
this talk we present the result of [2], where we use this method to investigate the Dirichlet problem
for the Laplace operator where holes are collapsing at a polygonal corner of opening ω. The strategy
relies on a combination of odd re�ections and conformal mappings so that the original problem is
transformed into a similar problem where the perforations are near the center of a disc, on potential
theory on Lipschitz domains (see [3]), and on a detailed analysis of the solution of the limiting problem
in proximity of the corner (cf. [1]). We show that in addition to the scale ε there appears the scale
η = επ/ω when π/ω is irrational, the solution of the Dirichlet problem is given by convergent series
in powers of these two small parameters. The �nal outcome can be compared with the multi-scale
expansions [4] for which convergence does not hold in general.
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In the past three decades, topology optimisation has been extensively researched as optimal de-
sign methods in material mechanics and is now recognised as the most promising one because of its
design �exibility. Now, some researchers have started to apply the topology optimisations to wide
varieties of physical problems such as �uid mechanics, thermal engineering, acoustics, elastodynamics,
electromagnetism and so forth. In the typical topology optimisation, the geometrical information on
the design object is expressed as a distribution of a function. The level set method is one of such
geometry expression methods [1]. In the level set method, the structural boundary is implicitly de�ned
as a zero-iso-contour of a scalar function which is often called as the level set function (LSF). By
its de�nition, the inner/outer regions of the boundary are recognised by the sign of the LSF. With
the level set method, we can naturally express the topological change in design objects i.e. merging
materials/split of a material. Most of the existing level-set-based topology optimisation, however, use
a �xed �nite element mesh for the sensitivity analysis to reduce the meshing cost in optimisation steps,
and material properties of each �nite element are given in proportional to the LSF, which may lead
low accuracy in the sensitivity analysis [2].

To reconcile low meshing cost and high accuracy, we have developed a topology optimisation method
using the BEM [3]. Since the BEM requires the meshing only on the boundary, numerical e�orts for the
mesh generation is very cheap compared to that for the FEM. This is especially true in the context of
wave scattering problems for which the FEM requires large computational costs to generate the mesh.
Thus, the in�nite domain needs to be approximated by a huge �nite domain in order to obtain accurate
results. Hence, for the topology optimisation especially in the wave scattering problems, the BEM is
far more suitable than the FEM. In the previous researches including ours, however, con�gurations of
design objects are updated by using only the topological derivative, which causes a slow convergence
of the optimisation. Furthermore, it is not clear if it is mathematically valid to deform the existing
boundaries by the topological derivative.

In this study, we propose a novel topology optimisation which uses both shape and topological
derivatives. We consider associating the variation of the objective functional by a shape deformation
and topological changes with an in�nitesimal increase of the LSF, which makes it possible to naturally
treat shape and topological derivatives simultaneously. Additional computational e�orts to compute
the two derivatives are quite cheap since these derivatives can be expressed by the solution of the same
boundary value problems, but the convergence of the proposed optimisation is improved nonetheless.

In the oral presentation, we show the detailed formulation and some numerical examples in two-
dimensional electromagnetic �elds which indicate the e�ectiveness of the proposed method.
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A discretisation method based on the space-time method [1] for a boundary integral equation is
discussed. The space-time method is a discretisation method, which treats the time direction as an
additional spatial coordinate and discretises boundary integral equations in the space-time domain. In
this talk, the time-domain boundary integral equation for the heat equation in 2D [2] is discretised
with the space-time method. In a standard time-domain boundary element method, integrals in the
layer potentials consist of integrals with respect to space and time. The time integral is known to
be estimated explicitly and the space integral is usually calculated with an appropriate quadrature
rule [3]. We will show that a similar approach for computations of the integrals in the space-time
method requires strong restriction for discretisation mesh. In order to avoid this restriction, we propose
another way of estimating those integrals. The computational time and accuracy of this method are
veri�ed thorough some numerical examples.
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In the proposed presentation, we discuss an application of the periodic fast boundary integral
method for Maxwell's equations in topological optimisation problems for electromagnetic metamateri-
als.

Electromagnetic metamaterials are micro-structured arti�cial `materials' designed to exhibit macro-
scale behaviours which no natural materials posses. NIMs (negative-index materials), having apparent
negative refractive indices, are examples of electromagnetic metamaterials which are typically realised
with �shnet structures [1], i.e., dielectric �lms sandwiched between thin metallic layers having periodical
holes. One may want to optimise the micro-structure of metamaterials, e.g., the shape, number and
arrangement of holes in the �shnet structure case, in order to obtain enhanced performances. One
may therefore be interested in the topological optimisation of metamaterials, in which the topological
derivatives of objective functions play an important role. In optical metamaterials, however, the size
of the micro-structure is of the order of the wavelength of light, thus restricting the degrees of freedom
for fabrication. Therefore, possible structures of optical metamaterials are often two dimensional
although the underlying electromagnetic phenomena are three dimensional. In such cases, one is more
interested in topological derivatives associated with circular cylindrical holes than the conventional
ones associated with spherical holes.

Figure 7: Domains and cylindrical
hole

For example, we consider domains which are periodic in x1,2

directions but extend to ±∞ in x3 direction as shown in Figure
1. The domain Ω− (Ω+) is �lled with air (dielectric material)
and one is interested in obtaining time harmonic electromagnetic
�elds in these domains. In the domain Ω+ one may consider
a cylindrical hole having a radius of ρ which connects the air
regions. The cylindrical-hole topological derivative (CHTD) Ě of
the electric �eld E is de�ned by Ě = lim

ρ↓0
(E(Ω \Ωρ)−E(Ω))/cρ2

where E(Ω \ Ωρ) (E(Ω)) stands for E with (without) cylindrical
hole and c is a constant. This limit exists in the present context.

In the proposed presentation we consider a thin metallic �lm having 2 dimensional periodic array
of holes. The structure is subject to an incident electromagnetic wave (light). We derive formulae
for the CHTDs of both electromagnetic �elds and the magnitudes of the transmitted waves. We then
use these CHTDs together with Yamada's level set method [2] to formulate a topological optimisation
method. No penalty for the number of holes is needed since this approach automatically excludes
too complicated hole geometries. The required computation of the periodic electromagnetic �elds is
carried out e�ciently with the help of the periodic FMM for Maxwell's equations [3]. We demonstrate
the usefulness of the proposed optimisation method by numerical examples in which the magnitude of
the transmitted electric �eld is maximised subject to the condition that the total area of holes is less
than a given limit.
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In case of multiply-connected domains, some properties of the boundary integral operators di�er
from the setting of a simply-connected domain. In particular, the kernel and the ellipticity property
of the hypersingular operator are di�erent. As a consequence, some boundary integral formulations,
like the symmetric formulation of mixed boundary value problems, may have a larger kernel than the
considered problem itself.

We will discuss some details of the changes in the analysis of the boundary integral operators and
of the considered boundary integral formulations. We will show some examples of failures of speci�c
formulations and how to �x these by appropriate modi�cations.
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In order to develop truly high-order integral equation-based solvers for boundary value problems
in three dimensions, all aspects of the solver must be high-order: discretization of the unknown,
quadratures for singular Green's functions, and most importantly, the description of the underlying
geometry (surface meshes in this case). Since the development of fast high-precision algorithms such as
the fast multipole method 30 years ago, there have been amazing advances in the areas of discretization,
singular quadrature [2], and fast direct solvers [3,6]. Unfortunately, due to the lack of robust schemes
for generating high-quality high-order triangulated surfaces, most integral equation-based simulations
have been limited to simple analytically de�ned geometries (despite the available high-order tools),
and real-world complex engineering geometries can only be described by �at-triangulations.

In two dimensions, high-order algorithms exist for generating periodic curves from a collection
data points [1], as well as for constructing high-order rounded geometries from polygons [5]. The
corresponding numerical codes are relatively short and straightforward. However, in three dimensions,
obtaining a smooth surface from an existing �at triangulation has proven to be more complicated.
Mesh-repair algorithms [4], while powerful, are generally limited to re-generating �at triangulations.

In this talk we will describe a recently developed algorithm for transforming a �at triangulation
(i.e. skeleton) of a smooth boundary Γ of a domain Ω into a high-order curvilinear triangulation that
can then be coupled with high-order integral equation methods. The algorithm is based on the fact
that convolution of the indicator function of the domain, 1Ω , with a Gaussian Gσ that has width σ
results in an in�nitely di�erentiable level-set function Φ in the volume. The Φ = 1/2 level-set can
then be meshed to high-order, and coincides closely with the original skeleton of Γ. Furthermore,
this computation can be reformulated as a boundary integral, accelerated via an FMM, and σ can
be constructed to depend on the local mesh size of the skeleton. Various numerical examples will be
shown, including high-order results from acoustic and electromagnetic scattering problems.
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Conventional BEMs based on piecewise polynomial approximation spaces are computationally ex-
pensive for high frequency scattering problems, because one needs at least a �xed number of degrees of
freedom per wavelength in order to capture the oscillatory solution. The Hybrid Numerical-Asymptotic
(HNA) approach attempts to overcome this by introducing partial knowledge of the high-frequency
asymptotic solution behaviour into the numerical approximation space, representing the BEM solution
as a sum of prescribed oscillatory functions multiplied by piecewise polynomial amplitudes on coarse
(essentially frequency-independent) meshes. Such approximation strategies have been shown, for a
range of scattering problems, to dramatically reduce the number of degrees of freedom required to
accurately represent the oscillatory solution at high frequencies [2].

The price one pays for this reduced number of degrees of freedom is that calculating the entries
of the (small) BEM matrix now involves the evaluation of oscillatory integrals. Hence an e�cient
HNA BEM implementation needs fast oscillatory quadrature methods. Most HNA methods analysed
in the literature to date involve Galerkin (variational) formulations. Here the oscillatory quadrature is
particularly challenging because of the high dimensionality of the integrals involved (double/quadruple
integrals for 2D/3D problems, respectively). In spite of this, e�cient implementations are possible, and
for the particular case of scattering by arbitrary 2D planar screens the Galerkin HNA BEM presented
in [3] achieves �xed accuracy of approximation with a frequency-independent computational cost.
Collocation formulations o�er a simpler alternative, since they involve lower-dimensional integrals.
However, they have not been investigated as widely as Galerkin implementations, with the low-order
method in [1] being a notable exception.

In this talk we present a collocation BEM implementation of the high-order exponentially accurate
hp HNA approximation space used in [3]. The (one-dimensional) oscillatory integrals in the BEM
matrix are computed with frequency-independent computational cost using Filon quadrature, and our
Python/C++ implementation can compute arbitrarily high frequency solutions in just a few seconds
on a laptop. We report results from our numerical investigations into how the design of the HNA
approximation space and the choice of collocation points a�ect accuracy and conditioning. We found
that when compared to the Galerkin scheme, similar convergence rates can be achieved, provided that
we �oversample� slightly, using a number of collocation points somewhat larger than the number of
degrees of freedom.
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In this paper, the radial integration boundary element method without internal cells is presented
for solving the steady/unsteady convection-conduction problems with spatially variable velocity and
coe�cient. The temperature boundary integral equation is derived by employing the fundamental
solution for the potential problems (Green function) as well as the normalized temperature and thermal
conductivity [1], which result in the appearance of domain integrals including the unknown quantities.
To avoid evaluating the domain integrals with internal cells, the transformation of domain integrals to
boundary integrals is carried out by employing the radial integration method [2] and approximating the
unknown quantities with the use of the compactly supported fourth-order spline radial basis functions
combined with polynomials in global coordinates [3]. Based on the central �nite di�erence technique,
an implicit time marching solution scheme is developed for solving the time dependent system of
equations. Finally, a boundary element method without internal cells is established for the analysis
of steady/unsteady convection-conduction problems with variable velocity and coe�cients. Several
numerical examples are given to demonstrate the validity and e�ectiveness of the proposed method.
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In this paper, a new and simple boundary-domain integral equation is presented to solve nonlinear
heat conduction problems with temperature-dependent conductivity of materials. The boundary-
domain integral equation is formulated for nonlinear heat conduction problems by using the funda-
mental solutions for the corresponding linear heat conduction problems [1, 2], which results in the
appearance of a domain integral due to the variation of the heat conductivity with temperature. The
arising domain integral is converted into an equivalent boundary integral using the radial integration
method (RIM) [3] by expressing the temperature as a series of basis functions. This treatment results
in a pure boundary element algorithm and requires no internal cells to evaluate the domain integral.
To solve the �nal system of algebraic equations formed by discretizing the boundary of the problem
into boundary elements, the Newton-Raphson iterative method is applied. Numerical examples are
presented to demonstrate the accuracy and e�ciency of the present method.
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Propagation of light in Photonic Crystal Fibers (PCF) depends on several geometrical parameters
and material characteristics, therefore numerical methods are needed to accurately study various PCF
con�gurations. More precisely, PCF cross sections consist of homogeneous inclusions with refractive
index ni surrounded by a medium with refractive index ne (see Fig. 8); the total e�ective refraction
index neff is the quantity of interest. In recent works [1], a waveguide mode solver based on the Bound-
ary Element Method (BEM) was proposed to determine neff . Our aim is to improve the performances
of this solver by using compression techniques and hierarchical matrices for the BEM matrices [2, 3].

dc d

Γ

Figure 8: Schematic of a PCF cross section

The mode solver requires to solve many instances of a direct problem. The use of compression
techniques for the direct problem leads to many di�culties because the involved matrix is not a classic
BEM matrix but a matrix with sparse and full blocks and is ill-conditioned. An iterative solution
with an approximate hierarchical LU preconditioning enables to enhance the convergence rate. For
this preconditioner, as reported in Table 1, the accuracy criterion εLU has to be smaller than the other
criteria εACA=εGMRES=10−5 to be e�cient which is unusual. Note also that the coarsening performed
to simplify the hierarchical structure can enhance the performances for the smallest values of εLU . The
results and the corresponding explanations will be reported at the conference.

εLU without coarsening with coarsening
10−4 1569 1228
10−5 622 271
10−6 92 38

Table 1: Number of iterations for a case with 4840 unknowns and εGMRES=10−5.
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Most popular approximation methods for time domain boundary integral equations have in com-
mon that they discretize space and time separately. In particular, well-established boundary element
methods for stationary integral equations are combined with suitable time discretization schemes [1].
On the other hand, space-time discretizations treat the time variable like an additional spatial coordi-
nate, facilitating the application of traditional �nite element technology to the entire initial boundary
value problem. While space-time �nite element methods have already reached a certain degree of
maturity, the development of such boundary element methods is lacking.

In this talk, we discuss collocation schemes for retarded potential boundary integral equations
with space-time basis functions. The lateral boundary of the space-time cylinder is described by an
unstructured tetrahedral mesh. On this mesh standard �nite element spaces are constructed and
used to approximate the densities. The central challenge is the robust numerical integration over the
intersection of the space-time mesh and the surface of the backward light cone. We provide a �rst
concept of such a cubature method based on popular techniques utilized in the context of implicitly
de�ned surfaces [2]. Several numerical examples with encouraging results are examined.

The talk concludes by addressing critical issues encountered in this early stage of development, the
limitations of the presented approach as well as its competitiveness.
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3 Problem Statement

We consider small amplitude out-of-plane vibrations of thin elastic plates with defects. This is modelled
as an eigenvalue problem of the bi-Laplacian with a discrete set of clamped points. A boundary integral
equation (BIE) is used to compute the eigenvalues for a wide range of two-dimensional geometries. Two
key phenomena of the eigenfunctions will be discussed. First, careful placement of clamping points
can entirely eliminate particular eigenvalues and suggests a strategy for manipulating the vibrational
characteristics of rigid bodies so that undesirable frequencies are removed. Second, clamping can result
in partitioning of the domain so that vibrational modes are largely con�ned to certain spatial regions.
Future work includes solving similar eigenvalue problems to simulate porous media �ow with small
obstacles.

4 Boundary Integral Equation Formulation

We are interested in solutions of the eigenvalue problem ∆2u = λu, x ∈ Ω ⊂ R2, with the clamping
constraint u(xk) = 0, k = 1, . . . ,M [2]. We use the clamped boundary condition u = ∂nu = 0, x ∈ ∂Ω.
Letting G be the fundamental solution of the eigenvalue operator ∆2 − λ, the local behavior of the
eigenfunction at the clamped points xk satis�es u(x) ∼ G(x − xk), x → xk. Then, the eigenfunction
can be decomposed into a singular and regular part u(x) = uS(x) + uR(x), where

uS(x) =

M∑
k=1

αkG(x− xk),

and uR satis�es the homogeneous PDE

∆2uR − λuR = 0, x ∈ Ω,

uR = −uS , ∂nuR = −∂nuS , x ∈ ∂Ω.

Using techniques for BIEs of fourth-order PDEs [1], the PDE for uR is recast as a second-kind system
of BIEs. The singularity strengths, αk, and eigenvalues, λ, are found by solving the non-linear equation

F(α1, . . . , αM , λ) = [uS(x1) + uR(x1), . . . , uS(xM ) + uR(xM )] = 0,

with the normalization condition α2
1 + · · ·α2

M = 1. By applying high-order quadrature to the integral
equation and an appropriate non-linear solver to F , eigenvalues and eigenfunctions can be reliably
computed with high accuracy in complex two-dimensional domains.
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Abstract

Solving inverse scattering problems related with the recovery of the shape of multiple obstacles when
no a priori information about their number, size or location is provided, is an important �eld in
Applied Mathematics and Physics that arises in a large number of di�erent industrial and engineering
applications such as non-destructive testing, geophysical exploration, biomedicine, radar imaging and
antenna design.

In this work we study an iterative method based on the computation of iterated topological deriva-
tives for the detection and shape identi�cation of multiple electromagnetic scatterers characterized by
various kind of boundary conditions [1, 2]. The topological derivative of a shape functional measures
the sensitivity of such functional to having an in�nitesimal scatterer at each point of the region of
interest. It can be used as an indicator function that classi�es each point as belonging either to one
scatterer or to the background media. In this work we obtain closed-form formulae for the detection
of electromagnetic defects. The formulae rely on the computation of shape derivatives followed by
asymptotic expansions using Mie series derived from a boundary integral formulation of the involved
forward problem.

The iterative inverse algorithm, that requires to solve the forward problem at each iteration step,
can be coupled to any boundary integral equation solver. We use the fast spectral algorithm developed
in [3�5]. Numerical experiments illustrating the ability of the method to �nd shapes accurately without
a priori information in a rather small number of iterations will be shown.
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Many natural phenomena are governed by di�usion and convection transport processes. The trans-
port phenomena usually occur in environments where the velocity of the �uid changes within the
domain in question. In some cases, for example, in turbulence modelling with turbulent viscosity hy-
pothesis, or in cases of temperature dependent material properties, the di�usion coe�cient also changes
within the domain.

The solution of the unsteady convection-di�usion partial di�erential equation is a challenging
task, for which many numerical algorithms have been proposed. If the fundamental solution of the
convection-di�usion equation is adopted, the problem can be, in the case of a constant velocity �eld
and constant coe�cients, described by a pure boundary integral equation. Variable velocity and co-
e�cients lead to domain integrals in the integral formulation. A decomposition of the velocity �eld
into a constant and a variable part has been proposed in the past [1]. Such decomposition leads to a
domain integral involving the variable part of the velocity and the unknown �eld function.

In this work, we present an alternative formulation [2, 3] which leads to an integral formulation
where the gradient of the �eld function is not needed but the gradient of the di�usion coe�cient is
needed instead. Thus, the �nal integral equation includes only the unknown function on the boundary
and in the domain and its derivative on the boundary.

We present boundary-domain integral formulations of the vorticity transport equation and the
energy transport equation, where material properties and the velocity �eld are spatially and temporarily
variable. When coupled with the solution of the kinematics equation, we are able to solve �ow and heat
transport problems. Discretization has been done using a collocation scheme. Second order accuracy
of the proposed scheme has been shown. The domain integral contribution has been treated via a
combination of a domain decomposition approach and matrix approximation using the Adaptive Cross
Approximation method.

The developed boundary element based numerical algorithm has been used to perform simulations
of �ow and heat transfer of water-based suspensions of nanoparticles - nano�uids, which exhibit tem-
perature dependent material parameters. The results show good agreement with benchmark test cases
and experimental measurements and verify the validity of the proposed simulation algorithm.
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Numerical simulation of engineering problems with a large number of DOFs usually entails an
excessive time and memory expense. Using the fast methods, which key idea is to separate the mutual
node-to-node interactions into short and long-range interactions, is a promising alternative. The two
commonly used fast multipole methods (FMM) are: the analytical FMM (A-FMM, [1]) and the kernel-
independent FMM (KI-FMM, [2], [3]). The �rst one, requires involved preliminary work to obtain
analytic expansions, and thus may have notable restraints. For the second, the only analytical work
required is that performed for conventional (not fast) boundary element method (BEM); it concerns
with accounting for short-range interactions between neighboring boundary elements.

The KI-FMM consists of representing long-range interactions by the in�uence of equivalent densities
distributed on equivalent surfaces. The complexity of the method is proportional to p2, where p
is the number of nodes on a surface. Therefore, a proper choice of the shape of a surface, which
enables reduction of a number p of nodes, maintaining the required accuracy, is of prime signi�cance
to speed up calculations and is the main goal of our investigations. For 2D problems, as we have
shown in [3], the circular surfaces, being smooth, provide computational advantages over the square
surfaces. This suggests using for 3D problems smooth spherical equivalent surfaces, rather than cubic
surfaces. However, for spherical surfaces the problem of appropriate approximation of the surface and
the density and corresponding quadrature rules arises. For solving this problem, we propose using
congruent spherical elements, de�ned in a special system of angular coordinates. The special spherical
elements provide an exact representation of the spherical surface and enable signi�cant decrease of the
number p of nodes. (In practice, to approximate the whole sphere, we use 6 congruent elements with
the total number of 26 nodes only). E�cient integration of densities over these elements is suggested
and implemented into a procedure of general use.

For illustration, 2D potential and 3D elasticity problems are considered. The key parameters of the
suggested KI-FMM [3] are established in numerical experiments. The results of preliminary tests for
systems with a several thousand of unknowns, con�rm e�ciency of the modi�ed KI-FMM developed:
(i) the accuracy of the method is at the level of the analytical FMM (in 2D case) and the conventional
BEM; (ii) for 3D problems the KI-FMM with spherical surfaces is 2-3-fold faster, more accurate and
stable, than when using cubic surfaces.
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The problem of �nding an approximate particular solution of an elliptic system of partial di�erential
equations is considered. To construct the approximation, the di�erential operator is applied to a vector
of radial basis functions, [1]. The resulting vectors are linearly combined to interpolate the vector-
valued function on the right hand side. For the conservative body forces, the problem can be reduced to
the scalar case, [2]. The solvability of the interpolation problem is established. Additionally, stability
and accuracy estimates for the method are given. These theoretical results are illustrated on several
numerical examples related to the Lamé system and its numerical solution by the use of the BEM.
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We will �rst discuss a single trace boundary integral formulation of a problem of transient scattering
of waves by obstacles with locally homogeneous material properties. Among the aspects that will be
handled are: mapping properties of the solution operator, the e�ect of Galerkin semidiscretization in
space, and the convergence properties of Runge-Kutta Convolution Quadrature applied to the semidis-
crete system of retarded equations. The exposition will be done for acoustic waves, but all results hold
for elastodynamics as well.
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Boundary element formulations in time domain are well established in the engineering and the
mathematical literature. In principle three types of formulations can be found:

• Direct in time domain with analytical integration of the time convolution

• Calculation in Laplace or Fourier domain with a subsequent numerical inverse transformation

• Formulations based on the Convolution Quadrature Method (CQM)

The latter formulation goes back to Lubich [1] and can either be formulated as a true time stepping
method or as a calculation of decoupled Laplace domain problems with an inverse transformation (see,
e.g., [2]). Common to all these approaches is the restriction to a constant time step size.

The generalisation of the CQM to a variable time step size has been done by Lopez-Fernandez and
Sauter [3], where the initial works use the implicit Euler as underlying time stepping method. This
choice limits the convergence order to one. To obtain higher convergence orders implicit Runge-Kutta
methods as underlying time stepping method has been proposed in [5]. These formulations have been
presented for the single layer potential in acoustics.

Here, the generalised CQ is applied to elastodynamics, where the single and double layer approach
as well as a direct formulation for mixed boundary value problems will be presented. Essentially,
the performance of the Runge-Kutta based generalized CQ is studied with respect to its convergence
behaviour. As usual, the convergence order of the formulation is restricted by either the order of the
Runge-Kutta method or by the spatial convergence order. In the presentation only a low order spatial
discretisation is used. Numerical examples show the expected behavior.
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We consider the preconditioned conjugate gradient method (PCG) with optimal preconditioner in
the frame of the boundary element method (BEM) with adaptive mesh-re�nement. As model problem
serves the weakly-singular integral equation V φ = f associated with the Laplace operator. Given an
initial mesh T0, adaptivity parameters 0 < θ ≤ 1 and λ > 0, counter j = 0 (for the mesh-sequence Tj)
and k = 0 (for the PCG steps per mesh Tj), as well as a discrete initial guess φ00 ≈ φ on T0 (e.g.,
φ00 = 0), our adaptive strategy reads as follows:

(i) Update counter (j, k) 7→ (j, k + 1).
(ii) Do one PCG step to obtain φjk from φj(k−1).
(iii) Compute re�nement indicators ηj(T, φjk) for all elements T ∈ Tj .
(iv) If λ−1 ‖φjk − φj(k−1)‖2 > ηj(φjk)

2 =
∑

T∈Tj ηj(T, φjk)
2, continue with (i).

(v) Otherwise determine marked elementsMj ⊆ Tj such that θ ηj(φjk)2 ≤
∑

T∈Mj
ηj(T, φjk)

2.
(vi) Re�ne all T ∈Mj to obtain the new mesh Tj+1.
(vii) Update counter (j, k) 7→ (j + 1, 0) and continue with (i).

For a posteriori error estimation, we employ the weighted-residual error estimator. If the �nal φjk
on each mesh Tj is the exact Galerkin solution, then linear convergence of adaptive BEM, even with
optimal algebraic rates, has �rst been proved in [3, 4]. As a novel contribution, we now extend this
result to adaptive BEM with inexact PCG solver.

We prove that the proposed adaptive algorithm does not only lead to linear convergence of the error
estimator (for arbitrary 0 < θ ≤ 1 and λ > 0) with optimal algebraic rates (for 0 < θ, λ� 1 su�ciently
small), but also to almost optimal computational complexity, if H2-matrices (resp. the fast multipole
method) are employed for the e�ective treatment of the discrete integral operators. In particular, we
provide an additive Schwarz preconditioner which can be computed in linear complexity and which is
optimal in the sense that the condition numbers of the preconditioned systems are uniformly bounded
(see [2] in the context of the hypersingular integral equation).
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Many problems in electrical engineering or �uid mechanics can be modelled by parabolic-elliptic
interface problems, where the domain of the exterior elliptic problem might be unbounded. This
class of problems can be solved by the non-symmetric coupling of �nite elements (FEM) and boundary
elements (BEM) analysed in [1]. However, if the parabolic equation in the interior domain is convection
dominated, this method is not stable anymore, i.e., heavy oscillations can occur in the computed
solution.

A possible remedy for this unwanted behaviour is to use an upwind stabilised vertex-centered �nite
volume method (FVM), thus we propose a (non-symmetric) coupling of FVM and BEM. This method
has already been analysed for stationary problems, see [2], but not for time-dependent ones. As an
alternative for the stabilised FVM we will also use the Streamline Upwind Petrov-Galerkin method
(SUPG), which is based on FEM. Hence, this leads to the (non-symmetric) SUPG-BEM coupling.

In this talk we will present the main ideas of both coupling methods. Furthermore, we will discuss
the analysis of the methods concerning convergence and error estimates. Finally, some numerical
examples compare the methods and illustrate the theoretical �ndings.
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In recent years, Nitche's method [1] has become increasingly popular within the �nite element
community as a method for weakly imposing boundary conditions. Inspired by this, we propose a
penalty-based method for weakly imposing boundary conditions within boundary element methods.

We consider boundary element methods where the Calderón projector is used for the system ma-
trix and boundary conditions are weakly imposed using a particular variational boundary operator.
Regardless of the boundary conditions, both the primal trace variable and the �ux are approximated.
We focus on the imposition of Dirichlet, mixed Dirichlet�Neumann, and Robin conditions for Laplace
problems.

The theory is illustrated by a series of numerical examples using the software library Bempp [2].
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We determine the coupled fundamental MHD [1, 2] velocity u, pressure p and electric potential φ
produced by a concentrated source point immersed in a conducting Newtonian liquid located above
the z = 0 plane, solid, motionless and impermeable slip wall. The liquid has uniform viscosity µ and
conductivity σ > 0. It is subject to a prescribed uniform magnetic �eld B normal to the wall and
with magnitude B > 0. Moreover, the �ow Reynolds number vanishes so that (u, p) is a creeping �ow
driven by the non-uniform Lorentz body force f = j ∧ B with j the current. The vector j is given
by the Ohm's law j = σ(u ∧ B − ∇φ) and obeys the charge conservation property ∇.j = 0. This
work actually extends recent papers devoted to the unbounded liquid case [3] and to a liquid bounded
by a plane no-slip wall [4]. Here, the slip plane wall is either a perfectly conducting or insulating
boundary on which the famous Navier [5] slip condition is required for the fundamental �ow (u, p).
Using a two-dimensional Fourier transform (for coordinates x and y parallel with the wall) makes it
possible to analytically obtain the required MHD �elds (u, p, φ) in terms of one-dimensional integrals,
whatever the prescribed source point unit strength e. At point x(x, y, z) in the liquid the quantities
(u, p, φ) are found to deeply depend on both e and (x− x0, y− y0, z, h, d) with x0(x0, y0, h) the source
point location and d = (

√
µ/σ)/B the so-called Hartmann layer thickness [6]. This dependence will

be illustrated at the oral presentation by exhibiting some fundamental �ow patterns computed for
di�erent wall properties (insulating or perfectly conducting nature, wall slip length taken in the Navier
slip boundary condition) and for di�erent point force orientations (i. e. taking e either parallel with
or normal to the slip wall).
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For some applications it is relevant to determine the MHD �ow about a solid body moving in a
quiescent conducting liquid in presence of an ambient magnetic �eld [1]. However, even for a translating
sphere [2], this problem is very involved since one has to simultaneously gain not only the liquid
velocity u and pressure p but also the magnetic �eld B and the electric �eld E prevailing in the liquid.
Indeed, the quantities (u, p,B,E) satisfy Navier-Stokes and Maxwell equations which are coupled by
the Lorentz body force f = σ(E+u∧B)∧B and the conservation law ∇.(E+u∧B) = 0 where σ > 0
denotes the liquid uniform conductivity. Under the assumption of low magnetic Reynolds number,
B keeps in the entire liquid its prescribed far-�eld uniform value Bez [2]. In addition, for a solid
and insulating sphere, with radius a, translating parallel with B at the velocity Uez, the �ow (u, p) is
axisymmetric and without swirl so that E = 0 [2]. This �ow depends upon two dimensionless numbers:
the Reynolds number Re = ρ|U |a/µ (here ρ and µ designate the liquid uniform density and viscosity,
respectively) and the Harmann number Ha = a/d comparing the sphere radius with the so-called [3]
Hartmann layer thickness d = (

√
µ/σ)/|B|. As soon as Re� 1 inertial e�ects are negligible and (u, p)

obeys the linear creeping �ow equations with Lorentz body force f = σ(u∧B)∧B. This �ow has been
asymptotically obtained in [4] for Ha � 1 and in [5] for Ha � 1. Recently, [6] provided the solution
whatever Ha > 0 by employing a new boundary approach based on two fundamental axisymmetric
creeping MHD �ows obtained in [7]. Since particle-particle interactions are also encountered in practice,
the present works extends [6] to the case of two axisymmetric spherical particles admitting the same
axis of revolution parallel with B and translating along this axis (at not necessary equal velocities).
Not only the computed force experienced by each sphere but also the �ow pattern about the 2-sphere
cluster will be given for several values of the sphere-sphere gap and of the Harmann number.
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Gratings are ubiquitous in optical and electromagnetic systems due to their remarkable properties.
In this presentation, we present a novel deterministic method [1] to quantify the e�ect of stochastic
perturbations on perfect electric conductor (PEC) grating surfaces. In our approach, the �rst two
statistical moments�mean and variance�are obtained based on a �rst-order shape-Taylor approxi-
mation [2]. The Helmholtz equation is then solved via the boundary elements method (BEM) with
hierarchical bases or Haar wavelets and to �nd the mean; the second moment is obtained through
tensorization of the Helmholtz problem for the shape derivative and solving using a sparse approxi-
mation [3]. We compared our method with the Galerkin Monte-Carlo (MC) algorithm to validate the
approximation and assess the limitations of the approach. We show that the sparse approximation con-
verges faster than a dense one, with signi�cantly less computational e�ort than MC based approaches.
In addition, we compare our method with the well-known small perturbation method (SPM) [4] to
obtain additional insights. Moreover, simulations of grating e�ciency reveal the applicability of the
approach for problems of practical signi�cance.
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This talk is concerned with the wavenumber-explicit numerical analysis of boundary integral equa-
tions for the Helmholtz equation ∆u + k2u = 0, with wavenumber k > 0, posed in the exterior of a
2- or 3-dimensional bounded obstacle Ω with Dirichlet boundary conditions on ∂Ω. We consider the
standard second-kind combined-�eld integral-equation formulations of this problem

A′k,ηv = fk,η and Ak,ηφ = gk, (5)

where the integral operators A′k,η and Ak,η are de�ned by

A′k,η :=
1

2
I +D′k − iηSk, Ak,η :=

1

2
I +Dk − iηSk,

η ∈ R \ {0} is an arbitrary coupling parameter, Sk is the single-layer operator, Dk is the double-layer
operator, and D′k is the adjoint double-layer operator.

We consider solving the equations in (5) in L2(∂Ω) using the h-BEM; i.e. the Galerkin method
where the approximation spaces are piecewise polynomials of �xed degree on shape-regular meshes of
diameter h, with h decreasing to zero. To �nd the Galerkin solution one must solve a linear system
of dimension N ∼ h−(d−1); this is often done using Krylov-subspace iterative methods such as the
generalized minimal residual method (GMRES).

For the numerical analysis of this situation when k is large, there are now, roughly speaking, two
main questions:

Q1. How must h decrease with k in order to maintain accuracy of the Galerkin solution as k →∞?

Q2. How does the number of GMRES iterations required to achieve a prescribed accuracy grow with
k?

Regarding Q1: Numerical experiments indicate that, in many cases, the condition hk . 1 is su�-
cient for the Galerkin method to be quasi-optimal (with the constant of quasi-optimality independent
of k); this feature can be described by saying that the h-BEM does not su�er from the pollution e�ect
(in constrast to the h-FEM).

This talk will present rigorous results on Q1 and Q2, recently obtained in [1] (building on, and
using, the results of [2] and [3]), and then compare them with the results of numerical experiments.
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We �rst review some recent developments in the numerical analysis of space�time �nite and boundary
element methods for the solution of parabolic evolution equations. These results are then used to
discuss the non�symmetric coupling of �nite and boundary element methods for the heat equation in
free space. Numerical examples are given.
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We consider well-posedness, convergence and a posteriori error estimates for �uid-structure inter-
action in the time domain. For an elastic body immersed in a �uid, a single-layer ansatz reduces the
exterior linear wave equation for the �uid to an integral equation on the boundary. The resulting prob-
lem is solved using a Galerkin boundary element method in time domain, coupled to a �nite element
method for the Lamé equation inside the elastic body. Based on ideas from the time�independent cou-
pling formulation, we give a priori and a posteriori error estimates, which demonstrate the convergence
and give rise to adaptive mesh re�nement procedures.
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Surface integral methods are e�ective ways to obtain solutions of Maxwell's equations for electro-
magnetic scattering. At the moment, the most famous surface integral methods in computational
electromagnetics (CEM) are based on the Stratton-Chu formulism [1] in which the induced vector
surface current densities are found by solving integral equations that contain dyadic Green's functions
with hypersingular behaviours. Nonetheless, not only special numerical treatments are needed to deal
with the integrals with hypersingular kernels, but also the �elds on and close to the surface are dif-
�cult to be obtained with high accuracy by post processing. Also, the intrinsic numerical instability
of the traditional surface integral methods at long wavelength limit makes them not suitable to solve
problems when parts of the boundary are close to each other or multiscale problems. In this talk, we
introduce a novel, robust boundary integral method of CEM by solving directly the electric �eld E.
This can be achieved because each component of E obeys the Helmholtz equation, and in the Carte-
sian coordinate system, the continuity condition ∇ ·E = 0 is equivalent to ∇2(r ·E) + k2(r ·E) = 0
where k is the wavenumber and r is a position vector. As a result, we solve CEM problems with
three Helmholtz equations for three Cartesian components of E and another Helmholtz equation for
the scalar function (r ·E) when the usual boundary conditions of E are imposed on the surface [2,3].
By using the recently developed boundary regularized integral solution formulation for the Helmholtz
equation in which the singularity associated with the Green's function is removed analytically [4], we
are able to solve the problems with long wavelength limit or low frequency limit without any numerical
instability issue [2,3]. Also, this new integral solution formulation does not have the term proportional
to the solid angle. Together with the regular integrands, we can apply high order surface elements to
obtain results with high accuracy [2�4].
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The atomic-scale structure of �uids at the solid-liquid interface plays central roles in problems
ranging from understanding proteins to improving battery technology. This poses serious challenges
for quantitative modeling: on one hand, classical continuum models fail to reproduce known facts
even qualitatively correctly; on the other hand, for many problems, atomistically detailed models
are impractically expensive. Most approaches for addressing this multiscale problem rely either on
complicated partial di�erential equation models, or on coupling atomistic and continuum models.
However, existing approaches have failed to capture key nonlinear phenomena in the �rst layer of
�uid molecules. Using the electrostatic response of a liquid surrounding a charged biomolecule as an
example, we propose a new approach, which capitalizes on the well-known fact that boundary-integral
equations focus attention on the interface itself, and in particular on the transmission conditions [1,2].
We have shown that the transmission condition associated with the classical continuum model, based
on macroscopic dielectric theory, is easily corrected with a simple nonlinear term that is a function of
the local electric �eld [1]. We call this the solvation-layer interface condition (SLIC) model. In this talk,
we will discuss solution existence and uniqueness, as well as numerical methods. The corrected model is
easy to compute numerically on complicated geometries, as it represents merely a diagonal perturbation
of the usual BEM problem, combined with a short nonlinear iteration [1,2]. Results illustrate that this
remarkably simple correction to a familiar continuum model increases accuracy to the level of fully
atomistic calculations thousands of times more expensive, and achieves this accuracy while reducing
the number of model parameters by an order of magnitude. A variety of related problems in interfacial
response lead to modi�ed transmission conditions, and we suggest that the boundary-element method
community has a myriad of opportunities to advance multiscale modeling.
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Time dependence in boundary integral reformulations of parabolic PDEs is re�ected in the fact
that the layer potentials involve integrals over time in addition to integrals over the boundary surface.

This implies that in the numerical solution a time step involves the summation over space and the
complete time history. Thus the naive approach has order N2M2 complexity, where N is the number of
unknowns in the spatial discretization and M is the number of time steps. However, with a space-time
version of the fast multipole method the complexity can be reduced to nearly NM .

The talk will focus on the application of the methodology to problems with time dependent geome-
tries. Two di�erent situations will be considered: In the �rst the boundary at time t is a di�eromorpic
image of a �xed reference geometry. Here the discretization consists of simple space-time tensor prod-
uct �nite element spaces. Since this setting does not allow for topology changes in time, we will also
consider a full space time discretization to handle more general situations.

The eventual goal of this work is to solve free surface problems, such as the Stefan problem, which
describes the evolution of a phase change interface. The talk will conclude with a new approach to
solve one dimensional problems with shape optimization techniques.
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In a homogeneous medium, when illumated by an incident time-harmonic acoustic wave uinc, the
M > 1 obstacles Ωp, p = 1, . . . ,M , generate a scattered wave u solution of the Helmholtz equation: ∆u+ k2u = 0 R3 \ ∪Mp=1Ωp

u = −uinc ∪Mp=1Γp
u is radiating.

The quantity k is the positive wavenumber, the radiating condition stands for the Sommerfeld one and
Γp are the boundaries of Ωp. The boundary condition is here set to Dirichlet but another condition
can be imposed.

It is well known that this problem can be rewritten equivalently under the form of a system of
boundary integral equations (BIEs) with the densities ρ and λ as unknowns. If L and M represent
respectively the volume single- and double-layer integral operators, then

u(x) = Lρ(x) +Mλ(x), ∀x 6∈ ∪Mp=1Ωp.

Following [1], the BIE can be classi�ed as direct or indirect, depending on whether or not the unknown
dentities ρ and λ are the Cauchy data. Direct BIE here also refers to the null-�eld method.

In multiple scattering context, a natural preconditioner is the one representing single scattering
e�ects. For M obstacles and given the matrix of a discretized integral equation, this preconditioner is
composed by the M blocks located on the diagonal of this matrix. Each block represents the scattering
problem by one obstacle. This geometric preconditioner is called single scattering preconditioner.

This talk focuses on the e�ects of this preconditioning on boundary integral equations. The main
result is that, after being preconditioned by their single scattering preconditioner, every direct integral
equations become exactly the same [1]. This does not depend on the geometry of the obstacles and can
moreover be extended in a di�erent form for indirect integral equations such as the one of Brakhage-
Werner. These properties imply in particular that the convergence rate of a Krylov subspaces solver
will be exactly the same for every preconditioned integral equations. To illustrate this, some numerical
simulations are provided using µ−di�, an open-source Matlab toolbox for solving multiple scattering
by disks [2].
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In this paper we present a method to decrease the computational cost of the BDIM (boundary-
domain integral method), which was introduced by �kerget et. al. [1]. The method has been adapted
for the solution of three-dimensional �ow and heat transfer problems by solving the velocity-vorticity
formulation of Navier-Stokes equations. The governing equations form a non-linear system of three
partial di�erential equations - the kinematics equations, which links the velocity and vorticity �elds
in space and time, the vorticity transport equation, which governs di�usive and advective transport of
vorticity and the energy equation, which governs transport of heat.

The BDIM numerical algorithm is based on the integral formulation of the governing equations
using the Laplace fundamental solution and a collocation scheme. In order to determine boundary
conditions for the vorticity transport equation, the boundary element method is employed to the
kinematics equation in order to solve for the unknown vorticity values. The equations are solved in an
iterative manner in order to account for the non-linearities. With the aim of reducing computational
cost of this procedure, several fast techniques have been introduced in the past (Ravnik et. al [2]),
such as fast multipoles, wavelet transform and domain decomposition.

Recently, [4], we focused on the acceleration of the domain integral contribution by employing
the adaptive cross approximation method [5] coupled with the H matrix structure [4]. We study the
in�uence of the problem non-linearity (�ow Reynolds and Rayleigh number values) and the problem
size (computational grid) on the acceleration rate and accuracy of resulting the �ow and temperature
�elds especially in the areas of where sharp function pro�les are expected (�ow boundary layers). The
results show, that the acceleration strategy should be tuned to the expected �ow circumstances.
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We consider the electric �eld integral equation (EFIE) arising from the scattering of time-harmonic
electromagnetic waves by a perfectly conducting screen. When discretizing the EFIE by means of
Galerkin boundary element methods (BEM), one obtains ill-conditioned systems on �ne meshes and
iterative solvers perform poorly. In order to reduce the number of iterations needed to �nd a solution,
one uses preconditioning. Finding a suitable preconditioner for the case of screens poses some challenges
due to the energy trace spaces at hand. Moreover, since solution of the EFIE on screens feature edge
singularities, its amenability to adaptive re�nement is desirable.

The standard �Calderón preconditioning� technique is suboptimal when dealing with screens [1]. In
addition, it requires a div-conforming dual �nite element space such that the curl/div duality pairing
matrix is well conditioned. The existing technique resorts to BC functions [2] to ful�ll this property
on uniform meshes. However, the resulting dual pairing matrix becomes ill-conditioned as the ratio
hmax/hmin increases and demands additional manipulations in order to handle non-uniform meshes.

In this presentation, we discuss a new strategy to build a preconditioner for the EFIE on screens
using operator preconditioning. For this, we construct a compact equivalent inverse of the EFIE oper-
ator on the disk using recently found Calderón-type identities [3]. Furthermore, stable discretization of
our preconditioner only requires dual meshes for low-order Lagrangian �nite element spaces, which are
used to discretize the same energy trace spaces that arise from the Laplacian. As a consequence, our
approach allows for non-uniform meshes without additional computational e�ort. Finally, we present
some numerical experiments validating our claims.
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At speci�c frequencies, schools of �sh can exhibit a high re�ectivity of acoustic signals from sonar
systems, resulting in a a strong impact on the quality of the sonar signal used for underwater surveil-
lance. This phenomenon happens for �sh that have swim bladders �lled with air. Because of the
high contrast in density between air and water, a strong low-frequency resonance is present. These
resonances, also known as Minnaert resonances, have been observed in practice and can be explained
theoretically.

Although the resonance frequency of a single air bubble in water can be determined analytically
with Mie series, numerical methods need to be used to investigate the impact of the shape as well
as the number of bubbles in the system. Speci�cally, the resonance frequency of a cloud of bubbles
depends on the con�guration and distances between them. When bubbles are close by each other,
high-accuracy numerical methods need to be used to compute the resonance frequency of the coupled
system. The boundary element method (BEM) for the multiple traces formulation (MTF) of the
Helmholtz transmission problem will be used to accurately analyse the low-frequency resonances. The
numerical results will be compared with a method based on transmission matrices. It will be shown
that the BEM accurately predicts the pronounced frequency shifts in the resonances of the clouds of
bubbles.
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We construct a preconditioner for negative order operators discretized by discontinuous triangular
Lagrange elements. The canonical example is the Single Layer operator discretized by piecewise con-
stant functions. We propose a variation of the well-studied dual mesh preconditioning technique [1�3].
The resulting preconditioner yields a uniformly bounded condition number. Our approach easily ex-
tends to operators discretized on locally re�ned triangulations, and higher order discontinuous elements.

Compared to earlier proposals, the preconditioner has the following advantages: It does not require
the inverse of a non-diagonal matrix; it applies without any mildly grading assumption on the mesh;
and it does not require a barycentric re�nement of the mesh underlying the trial space.

The preconditioning strategy requires the application of an opposite order operator, e.g. for pre-
conditioning of the Single Layer operator one can use the Hypersingular operator, or, in any case for
uniform triangulations, the multilevel operator from [4]. The total cost of the preconditioner is the
sum of the cost of the opposite order operator, which for the multilevel operator is proportional to the
number of triangles N , and additional cost that is always proportional to N .

A numerical study of our preconditioner for the Single Layer operator will be presented, which
compares various trial spaces, and for the opposite order operator, the Hypersingular operator against
the multilevel operator.
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Viscous �ow of soft particles coupled to electric, magnetic or other physical variables that evolve
simultaneously can be observed in many physical systems. Stability, accuracy and computationally
e�ciency of numerical solvers become critically important and intricately coupled for such problems.
Integral equation methods become particularly attractive for such multi-scale and multi-physics prob-
lems owing to their well-known strengths in reducing the dimensionality of the problem and the exact
satisfaction of far-�eld boundary conditions. We describe new second-kind boundary integral equation
formulation for a certain class of these problems, an e�cient close evaluation scheme [1] and a new
periodization scheme [2, 3]. Application of the method to study the electro-hydrodynamics of vesi-
cle suspensions [4, 5] and magneto-hydrodynamics of soft particles in the context of smart material
design [6] will be presented.
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Since the introduction of Isogeometric Analysis by [5], the methodology has gained attention in
various communities. Many applications of boundary element methods within the isogeometric frame-
work have been introduced and investigated; where B-splines related to the regularity of the geometry
mappings are used as ansatz- and test functions [3, 6].

As shown by [1], the intrinsic properties of the B-spline bases make them exceptionally well suited
for a discretization of Hilbert Complexes, and thus for application in electromagnetic problems, where
�rst implementations have successfully been tested [7].

We will brie�y discuss the approximation properties of the spline spaces w.r.t. the trace spaces of
the three-dimensional de Rahm Complex, i.e. the spaces H1/2(Γ), H

−1/2
× (divΓ,Γ), and H−1/2(Γ), and

compare to classical results [2, 8].
We will introduce the concepts mentioned above and discuss numerical results of a fast boundary

element method, built on the implementation presented in [3], utilising an interpolation based fast
multipole method [4]. We will �nally compare to classical Raviart-Thomas elements of higher order,
see e.g. [8].
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We consider the reconstruction of a surface impedance function of a sound soft obstacle coated with
a thin layer of an penetrable material from few far �eld data at a �xed frequency. For a long time most
of the investigations of such problems were made for the �rst order impedance boundary condition.
Only recently Bourgeois and Haddar [4] proved the uniqueness for the solution of 3D problem with
generalized impedance boundary condition and proposed a method, [5], for 2D GIBC inverse problems
based on the minimization of the cost function for the far �eld map, which was approximated by �nite
element method.

The method we use is based on an iteratively regularized Newton-type method, which combines
ideas of both iterative and decomposition methods. Employing a boundary integral equation approach
an inverse problem is proved to be equivalent to a system of nonlinear integral equations. It was
�rstly introduced in [3] for 2D electrostatic case and then the method was extended too many di�erent
inverse problems. In 2011 Ivanyshyn and Kress [2] applied the method for reconstructing the �rst
order surface impedance for Helmholtz equation in 3D and in 2013 Cakoni and Kress [1] applied the
nonlinear integral equation method for 2D electrostatic problem with GIBC.

In this study we present the results on the extention of a nonlinear integral equation approach to
the inverse scattering problems for a generalized surface impedance in three dimensions. The method
turns out to be e�cient, since it avoids solving the direct problem at each iterative step, and the
method is stable even for a limited data.

The research was supported by TÜBITAK under the grant 116F299.
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For the discretisation of time-dependent partial di�erential equations usually explicit or implicit
time stepping schemes are used. An alternative approach is the usage of space-time methods, where the
space-time domain is discretised and the resulting global linear system is solved at once. In this talk
the model problem is the scalar wave equation. First, a brief overview of known results for the wave
equation and its boundary integral equations is presented. Second, a space-time boundary integral
equation, motivated by variational formulations in the domain [1], is examined. For this space-time
formulation a space-time boundary element method is introduced. Finally, numerical examples for a
one-dimensional spatial domain are presented and discussed.
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E�cient evaluation of discretized boundary integral operators is one of the key ingredients of any
implementation of the boundary element method. In our talk we concentrate on the implementation of
two main approaches to the treatment of singular kernels, namely the regularized numerical scheme [1,2]
and the analytic evaluation [3]. In addition, for the latter case we present a newly developed method
of simultaneous evaluation of the surface integrals for constant and linear trial functions.

Aiming at modern processing units with wide SIMD registers, we present techniques such as data
alignment, array-of-structures to structure-of-arrays transition, or loop collapsing leading to e�cient
utilization of the available vector instruction sets. The provided scalability experiments validate the
proposed methods and show that vectorization has become a necessary instrument in high performance
computing.
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Our aim is to solve large scale problems discretized by the boundary element method. To this
end, we propose to use parallel computers equipped with graphics processing units to assemble and
solve the linear systems involved in the discretization. Depending on the application case, we either
assemble the full dense system matrix (in parallel) or we compress the matrix by hierarchical matrices
with adaptive cross approximation. In either case, Krylov subspace solvers are applied to solve the
linear system. Our multi-GPU parallel implementation is achieved by porting a sequential CPU BEM
code to GPUs and by applying a multi-GPU library for generic Krylov subspace solvers (MPLA, [1, 3])
and a GPU-based hierarchical matrix library (hmglib, [2]). In our presentation, we will give details on
the parallel implementation and we will show our latest parallel performance benchmarks.
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A problem of a straight mixed mode non-interface fracture in an in�nite plane is treated analytically
with the help of complex analysis techniques. The surfaces of the fracture are subjected to surface
elasticity in the form proposed by Steigmann and Ogden [1,2]. The boundary conditions on the banks
of the fracture connect the stresses and the derivatives of the displacements. The mechanical problem
is reduced to two systems of singular integro-di�erential equations which are further reduced to the
systems of equations with logarithmic singularities. It is shown that modeling of the fracture with
the Steigmann-Ogden elasticity produces the stress and strain �elds which are bounded at the crack
tips. The existence and uniqueness of the solution for almost all the values of the parameters is proved
by reducing the systems of singular integro-di�erential equations to the systems of weakly-singular
integral equations. It is shown that introduction of the surface mechanics into the modeling of fracture
leads to the size-dependent equations. A numerical scheme of the solution of the systems of singular
integro-di�erential equations is suggested, and the numerical results are presented for di�erent values
of the mechanical and the geometric parameters. The results of this research are reported in the
paper [1]. The study of a related contact problem for a frictionless contact of a rigid stamp into an
elastic semi-plane are reported in [2]. The problem is solved by reduction to a system of singular
integro-di�erential equations as well.
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An adaptive surface element subdivision method for evaluation of nearly singular integrals and
singular integrals in three-dimensional(3D) boundary element method(BEM) is presented in this pa-
per. Element subdivision is one of the most widely used methods for evaluating nearly singular and
singular integrals. The Spherical Element Subdivision Method [1�3], one of the element subdivision
methods, can automatically re�ne patches as they approach the source point, and evaluate nearly sin-
gular integrals and singular integrals accurately and e�ciently for cases of arbitrary type fundamental
solution, arbitrary shape of element and arbitrary location of the source point. However, this method
cannot guarantee the success of element subdivision similar to Advancing Front Method(AFM), which
is empirical and popular mesh generation method without strict theory but has been veri�ed by subse-
quent number of experiments. Therefore, in this paper, we further present a new element subdivision
method based on binary-tree. This method splits an element into two patches at each step, and con-
tinues the splitting process recursively until meeting a given criteria. This subdivision algorithm is
more convenient to implement and can guarantee the convergence of the iterative subdivision based
on the given terminating condition. The patches that intersects with the sphere centered at the source
point are set to be invalid, and thus the cavity is formed. New patches will be generated along the
radial direction of the sphere to �ll the cavity motioned above. The distribution of patches close to
source point is dense, conversely, the distribution of patches far away form source point is sparse. For
singular integral, the patches closed to source point own relatively regular shape. Numerical examples
are presented by planar and curved surface elements. Results have demonstrated that not only can
our method guarantee successful element subdivision, but also our method can provide much better
accuracy and e�ciency with fewer Gaussian sample points than the conventional method.
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An adaptive volume element subdivision method for the numerical evaluation of singular domain
integrals and nearly singular domain integrals using binary tree in three-dimensional (3D) boundary
element method (BEM) is presented. The application of BEM for solving boundary value problems
with body forces, time dependent e�ects or certain class of non-linearities generally leads to an integral
equation which contains domain integrals. The singular integrals arise when the source point is inside,
at vertices or on the boundary of the volume element. While, the nearly singular integrals arise
when the source point is close to but not inside or on the boundary of element. For the solution of
transient heat conduction problem when using time-dependent boundary integral equation method, as
the time step value is very small, the integrand in the domain integral is close to singular. And the
domain integrals cannot be evaluated accurately and e�ciently by standard Gaussian quadrature, thus
rendering accurate evaluation of the integral di�cult. The Spherical Element Subdivision Method [1],
proposed by the �rst author, by which the singular integrals and nearly singular integrals can be
evaluated accurately and e�ciently for cases of arbitrary type fundamental solution, arbitrary shape
of element and arbitrary location of the source point, is used for subdividing an element into a number
of patches through a sequence of spheres with decreasing radius. Although this method overcomes
all the di�culties associated with integration in the BEM, it cannot guarantee successful element
subdivision for some situations. Hence, a general, adaptive and e�cient volume element subdivision
method using binary tree is presented in this paper, which can generate patches successfully under
any circumstances. In this method, the volume element is subdivided into a number of patches by
binary tree. A binary tree is a tree data structure in which each node has at most two children.
A signi�cant advantage of this structure is that a single data structure can handle volume element
subdivision very e�ciently. For singular domain integrals, the subdivision rule is based on coupling
minimum subdivision size and the ratio of circumradius of element to the distance between the source
point and center of element. The subdivision will be executed continuously when the ratio is greater
than the reference value. The minimum subdivision size is used to avoid the in�nite loop and control
the number of patches generated. For nearly singular domain integrals, only the ratio(as mentioned
above) should be regarded as the terminating condition without considering the minimum subdivision
size. With the proposed method, the patches obtained are automatically re�ned and each patch of
the integration element is acceptable in shape and size for standard Gaussian quadrature. Numerical
examples demonstrate that our method is more robust and reliable to provide much better accuracy
and e�ciency than conventional subdivision methods [2].
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Within a successful Computer Aided Engineering (CAE) driven product development, an ideal
CAE tool should possess the following �ve features:

1) Automatic meshing and analysis for any complicated structures with complex geometries;
2) Accuracy much better than existing FEM tools is achievable;
3) Arbitrary geometries and material compositions of structures can be easily handled;
4) Accelerated by the fast methods, such as the Fast Multipole Method, the Hierarchical Matrix;
5) Adaptive solution procedures to guarantee the reliability of the computational results.

We name this kind of CAE as 5aCAE. In this talk, I will �rst explain why the BIE has advantages
over FEM to achieve the gaol of 5aCAE, also considering the currently popular meshless methods and
isogeometric analysis, and then brie�y introduce some new algorithms we have proposed for software
implementation. These algorithms are as follows:

1) A Boundary Face Method (BFM) [1], which combines the BIE with Computer Graphics and is
a truly isogeometric analysis method, can perform CAE analysis on a CAD model directly.

2) A Dual Interpolation Method [2], which combines the traditional element interpolation and
meshless approximation, uni�es the conforming and nonconforming elements that are separately used
in traditional BEM implementations.

3) A simpli�ed binary tree meshing method, which realizes entirely automatic meshing for arbi-
trarily complex structures, even with geometrically `dirty' part of their CAD models.

4) A Spherical Element Subdivision Method [3], by which the singular integrals and nearly singular
integrals can be evaluated accurately and e�ciently for cases of arbitrary type fundamental solution,
arbitrary shape of element and arbitrary location of the source point.

5) An adaptive Fast Multipole Method [4] and a Geometric Mapping Cross Approximation (GMCA)
Method.

6) A domain sequence optimization method for multi-domain problems, which can deal with arbi-
trary inter-domain connections with optimized band of the assembling system matrix.
Finally, I will introduce the software developed using above algorithms and Integrating the BFM into
the commercial CAD software UG-NX, making the CAE entirely within the CAD environment. I will
also show a number of examples of real complicated industrial products and engineering structures.
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The numerical modeling of objects �owing through con�ned geometries arise in many applications.
Examples includes the modeling of blood coagulation, the development of micro�uidic devices, and
the understanding of bacteria and other microswimmers. As an alternative to traditional methods, the
boundary integral formulation reduces the dimensionality of the problem by one and usually leads to
much smaller discretized systems to solve. The trade-o� is that it requires dense matrix computations
and special techniques for handling the evaluation of integral operators when points are "near" each
other in physical space. There has been much work on these two items separately: fast algorithms for
dense matrix computations and special quadrature rules for near �eld evaluations. The work presented
in this talk brings these two techniques together hopefully increasing the range of problems for which
boundary integral methods can be applied. Speci�caly, this talk presents an adaptive discretization
technique which locally re�nes the discretization on the con�ning walls when the objects or bodies
get close to them. At the same time, a fast direct solver for the locally re�ned discretization is
built following the algorithm proposed in [2]. The solver utilizes the fact that the local re�nement
corresponds to a low rank update to the original system, and thus the inverse of the new system can
be applied to a given vector via a Woodbury formula with little cost. Numerical results illustrating
the performance of the method for objects �owing through a periodic pipe using the boundary integral
formulation from [1] will be presented.

References

[1] G. Marple, A. Barnett, A. Gillman and S. Veerapaneni, A fast algorithm for simulating multiphase
�ows through periodic geometries of arbitrary shape, SIAM J. Sci. Comput., 38(5): B740-B772,
2016.

[2] Y. Zhang ans A. Gillman, A fast direct solver for boundary value problems on locally perturbed
geometries, J. Comput. Phys., 356 (2018), 356-371.

130



Index of contributors

Adrian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Aimi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34, 35
Alouges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 74
Amlani . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Ancellin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Andriulli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Antoine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Arnautovski-Toseva . . . . . . . . . . . . . . . . . . . . . . . . . 19
Aussal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 74
Ayala . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Aydin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106, 107
Aylwin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Baran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Bardhan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
Baydoun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Beer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Bertoluzza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Bespalov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Betcke. . . . . . . . . . . . . . . . . . . . . . . . . .54, 56, 69, 105
Bonnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24, 30
Bonnet-Ben Dhia . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Bozkaya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Burman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Caudron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Chadebec. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
Chaillat . . . . . . . . . . . . . . . . . . . . . . 17, 25, 31, 35, 70
Chan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Chandler-Wilde . . . . . . . . . . . . . . . . . . . . . . . . . 27, 59
Chaumont-Frelet . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Chazallon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Chen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29, 73
Chi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128
Ciarlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Claeys . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 33, 60, 78
Costabel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85

Dölz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37, 121
Dalla Riva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Dansou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Daquin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Darbas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31, 83
Darrigrand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Dauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Demaldent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24, 33
Desiderio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34, 35
Dias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Diligenti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34, 35
Dohr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Dominguez . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Duenser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Dumont . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Egger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
Elwin van't Wout. . . . . . . . . . . . . . . . . . . . . . . . . .118
Erath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40, 104
Escapil-Inchauspé . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Führer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45, 103
Falletta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Fay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
Fedeli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35, 43
Fendoglu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Feuillade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Fliss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Frangi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35, 43
Fukuda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Furukawa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Galkowski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Ganesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38, 47
Gao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48, 51, 92, 93
Gelat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Geuzaine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26, 83
Gibbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Gillman. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50, 130
Gilvey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Gimperlein . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52, 111
Gray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Grcev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Greengard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Grigori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Groth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Guardasoni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Haberl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54, 103
Haider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
Haqshenas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Harbrecht . . . . . . . . . . . . . . . . . . . . . . . . . . 37, 57, 125
Hattori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Hawkins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Henriquez . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Heuer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45, 58
Hewett. . . . . . . . . . . . . . . . . . . . . . .27, 59, 69, 72, 91
Hiptmair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60, 117
Hirai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Hirose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Huybrechs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Isakari . . . . . . . . . . . . . . . . . . . . . . . . . . . 61, 62, 82, 86
Issa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

131



IABEM 2018, Paris

Jakowski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Jelich. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
Jerez-Hanckes . . . . . . . . . . . . . 41, 65, 66, 108, 118
Ju . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Kamahori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Karkulik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45, 68
Klaseboer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Kleanthous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Klotz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Knepley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Kohr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Kpadonou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Kurz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Kuzmina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Lafranche. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Langdon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Lanza de Cristoforis . . . . . . . . . . . . . . . . . . . . . . . . 84
Le Louër . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31, 76, 97
Lee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Lefebvre-Lepot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Leitner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Lindsay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
Linkov. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
Loseille . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Lukas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Mantic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Marburg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22, 64
Marchand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Marchevsky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Martinsson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Marussig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Maruyama. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
Matsumoto . . . . . . . . . . . . . . . . . . 61, 62, 81, 82, 86
Matsushima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Mattesi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Melenk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Merta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Mikhailov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Mogilevskaya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Moiola . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27, 59
Moore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Moreva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Mouhoubi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Mueller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
Musolino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Nakamoto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Nataf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Nicaise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Nien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Niino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87, 88
Nishimura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81, 88

Oezdemir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89, 124
Oneil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Pölz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Péron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
Parolin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Peng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48, 92, 93
Perrussel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63, 94
Peters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Pigeonneau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Pinto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Poirier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63, 94
Praetorius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54, 103

Quaife . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Rahimi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Rapun. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Ravnik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98, 116
Rejwer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Rieder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Rjasanow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
Ryatina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Rybarska-Rusinek . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Sa�ari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Saitoh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Salmerón . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Sayas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38, 101
Schöps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Schanz . . . . . . . . . . . . . . . . . . . . . . . . . 55, 75, 95, 102
Schimanko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Schorr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40, 104
Scroggs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Scuderi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Sellier . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74, 106, 107
Silva Oelker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Spence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Steinbach . . . . . . . . . . . . . . . . . . 36, 87, 89, 110, 123
Stephan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Stevenson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Tabrizi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Takahashi . . . . . . . . . . . . . . . . . . . . . . . 61, 62, 82, 86
Tausch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Tezer-Sezgin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Thierry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
Tibaut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98, 116
Tjandrawidjaja . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

132



IABEM 2018, Paris

Touhei. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
Trevelyan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51

Urzua-Torres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

van Venetië. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
van't Wout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Veerapaneni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Vico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Vincent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
Volkov. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47

Watson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Wolf. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121
Wu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Yaman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Yang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48, 92, 93
Ye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Yvanyshyn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76

Zank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Zapletal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Zaspel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Zemlyanova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Zhang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50, 127�130
Zhao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

133



IABEM 2018, Paris

Registered participants

ADRIAN, Simon
simon.adrian@tum.de
Politecnico di Torino

AIMI, Alessandra
alessandra.aimi@unipr.it
University of Parma

ALOUGES, François
francois.alouges@polytechnique.edu
Ecole polytechnique

AMLANI, Faisal
faisal.amlani@ensta.fr
Laboratoire POems, ENSTA-ParisTech

ANCELLIN, Matthieu
matthieu.ancellin@ucd.ie
University College Dublin

ANDRIULLI, Francesco
francesco.andriulli@polito.it
Politecnico di Torino

ARNAUTOVSKI TOSHEVA, Vesna
atvesna@feit.ukim.edu.mk
University SS Cyril and Methodius University,
Faculty of Electrical Engineering and Informa-
tion Technologies

AUSSAL, Matthieu
matthieu.aussal@polytechnique.edu
Ecole polytechnique

AYALA, Alan
alan.ayala-obregon@inria.fr
Inria Paris

BAYDOUN, Suhaib Koji
suhaib.baydoun@tum.de
TUM - Chair of Vibroacoustics
of Vehicles and Machines

BECACHE, Eliane
eliane.becache@inria.fr
POEMS, INRIA/ENSTA/CNRS

BEER, Gernot
gernot.beer@tugraz.at
em. Professor

BESSON, Jeanne
jeannebsn@orange.fr
ENSTA ParisTech/Université Paris-Sud

BONAZZOLI, Marcella
bonazzoli@ljll.math.upmc.fr
Inria Bordeaux Sud-Ouest, Laboratoire J.-L.
Lions, Sorbonne Université

BONNET, Marc
mbonnet@ensta.fr
CNRS

BONNET-BEN DHIA, Anne-Sophie
bonnet@ensta.fr
POEMS CNRS

CASTELLANO GUAYASAMÍN, María José
majo_cas26@hotmail.com
POEMS UMR CNRS-INRIA-ENSTA

CAUDRON, Boris
boris.caudron@univ-lorraine.fr
Thales - Université de Lorraine - Université de
Liège

CHAILLAT, Stéphanie
stephanie.chaillat@ensta-paristech.fr
CNRS-POEMS

CHANDLER-WILDE, Simon
s.n.chandler-wilde@reading.ac.uk
University of Reading

CHAUMONT-FRELET, Théophile
theophile.chaumont@enpc.fr
CERMICS and Inria SERENA

CHEN, Hai-Bo
hbchen@ustc.edu.cn
University of Science and Technology of China

CHEN, Jeng-Tzong
jtchen@mail.ntou.edu.tw
Department of Harbor and River Engineering,
National Taiwan Ocean University

CHI, Baotao
zhangjm@hnu.edu.cn
Hunan University

134



IABEM 2018, Paris

CHOLLET, Igor
igor.chollet@inria.fr
LJLL

CIARLET, Patrick
patrick.ciarlet@ensta-paristech.fr
ENSTA ParisTech

CLAEYS, Xavier
claeys@ann.jussieu.fr
Sorbonne universite, LJLL, INRIA Alpines

COLLINO, Francis
francis.collino@orange.fr
POEMS

CROUCH, Steven
crouch@umn.edu
University of Minnesota

DANSOU, Anicet
anicet.dansou@insa-strasbourg.fr
INSA STRASBOURG

DARBAS, MARION
marion.darbas@u-picardie.fr
CNRS

DARRIGRAND, Eric
eric.darrigrand-lacarrieu@univ-rennes1.fr
IRMAR - Université de Rennes

DEMALDENT, Edouard
edouard.demaldent@cea.fr
CEA LIST

DESIDERIO, Luca
luca.desiderio@polito.it
Politecnico di Torino

DOHR, Stefan
dohr@math.tugraz.at
TU Graz

DOMINGUEZ, Victor
victor.dominguez@unavarra.es
Universidad Publica de Navarra

DORVILLE, Rene
rene.dorville@orange.fr
Université des Antilles

DÖLZ, Jürgen
doelz@gsc.tu-darmstadt.de
TU Darmstadt

DUMONT, Ney
dumont@puc-rio.br
Ponti�cal Catholic University of Rio de Janeiro

ERATH, Christoph
erath@mathematik.tu-darmstadt.de
TU Darmstadt

ESCAPIL-INCHAUSPÉ, Paul
pescapil@uc.cl
Ponti�cia Universidad Católica de Chile

FALLETTA, Silvia
silvia.falletta@polito.it
DISMA - Politecnico di Torino

FEDELI, Patrick
patrick.fedeli@polimi.it
Politecnico di Milano

FENDOGLU, Hande
hande.fendoglu@metu.edu.tr
Middle East Technical University

FLISS, Sonia
sonia.�iss@ensta-paristech.fr
POEMS, Ensta Paristech

FUEHRER, Thomas
tofuhrer@mat.uc.cl
Ponti�cia Universidad Católica de Chile, Facul-
tad de Matemáticas

FURUKAWA, Akira
furukawa.a.aa@m.titech.ac.jp
Tokyo Institute of Technology

GANESH, Mahadevan
mganesh@mines.edu
Colorado School of Mines

GAO, Xiao-Wei
xwgao@dlut.edu.cn
Dalian University of Technology

GIBBS, Andrew
andrew.gibbs@cs.kuleuven.be
KU Leuven - Department of Computer Science

135



IABEM 2018, Paris

GILLMAN, Adrianna
adrianna.gillman@rice.edu
Rice University

GILVEY, Ben
benjamin.gilvey@durham.ac.uk
Durham University

GIMPERLEIN, Heiko
h.gimperlein@hw.ac.uk
Heriot-Watt University

GORDELIY, Elizaveta
lisa.gordeliy@gmail.com

GRAY, Leonard
harpogray@gmail.com
Retired

GRIGORI, Laura
laura.grigori@inria.fr
Inria

HABERL, Alexander
alexander.haberl@asc.tuwien.ac.at
TU Wien

HAIDER, Anita Maria
anita.haider@tugraz.at
Graz University of Technology

HAQSHENAS, Reza
s.haqshenas@ucl.ac.uk
Postdoctoral Research Associate

HARBRECHT, Helmut
helmut.harbrecht@unibas.ch
University of Basel

HEUER, Norbert
nheuer@mat.uc.cl
Ponti�cia Universidad Católica de Chile

HEWETT, David
d.hewett@ucl.ac.uk
University College London

HIPTMAIR, Ralf
hiptmair@sam.math.ethz.ch
ETH Zurich

HIRAI, Tetsuro
t_hirai@nuem.nagoya-u.ac.jp
Nagoya university

ISAKARI, Hiroshi
isakari@nuem.nagoya-u.ac.jp
Nagoya University

ISSA, Mohammad
issa@laplace.univ-tlse.fr
LAPLACE - ENSEEIHT

IVANYSHYN YAMAN, Olha
olhaivanyshyn@iyte.edu.tr
Izmir Institute of Technology

JELICH, Christopher
c.jelich@tum.de
TU Munich - Chair of Vibroacoustics of Vehi-
cles and Machines

JEREZ HANCKES, Carlos
cjerez@ing.puc.cl
Ponti�cia Universidad Católica de Chile

JU, Chuanming
zhangjm@hnu.edu.cn
Hunan University

KARKULIK, Michael
michael.karkulik@usm.cl
Universidad Técnica Federico Santa María

KLEANTHOUS, Antigoni
antigoni.kleanthous.12@ucl.ac.uk
UCL

KPADONOU, Félix
felix.kpadonou@ensta-paristech.fr
ENSTA ParisTech - UMA

KUZMINA, Kseniia
kuz-ksen-serg@yandex.ru
Bauman Moscow State Technical University,
Ivannikov Institute for System Programming of
the RAS

LANGDON, Stephen
s.langdon@reading.ac.uk
University of Reading

136



IABEM 2018, Paris

LE LOUER, FREDERIQUE
frederique.le-louer@utc.fr
Université de technologie de Compiègne

LEE, Jia-Wei
jwlee@mail.tku.edu.tw
Department of Civil Engineering, Tamkang Uni-
versity

LEFEBVRE-LEPOT, Aline
aline.lefebvre@polytechnique.edu
CMAP Ecole polytechnique

LEITNER, Michael
m.leitner@tugraz.at
Graz University of Technology

LI, Yue
li.yue@siemens.com
Siemens Industry Software NV

MANTIC, Vladislav
mantic@us.es
Universidad de Sevilla

MARCHAND, Pierre
pierre.marchand@inria.fr
Inria

MARCHEVSKIY, Ilya
iliamarchevsky@mail.ru
Bauman Moscow State Technical University,
Ivannikov Institute for System Programming of
the RAS

MARTINSSON, Per-Gunnar
martinsson@maths.ox.ac.uk
University of Oxford

MARUYAMA, Taizo
taizo_maruyama@rs.tus.ac.jp
Tokyo University of Science

MATSUMOTO, Yasuhiro
y.m.2234@gmail.com
Kyoto Univ.

MATSUSHIMA, Kei
k_matusima@nuem.nagoya-u.ac.jp
Nagoya University

MATTESI, Vanessa
vanessa.mattesi@uliege.be
University of Liège

MAVALEIX-MARCHESSOUX, Damien
damien.mavaleix-marchessoux@ensta-paristech.fr
POEMS

MIKHAILOV, Sergey
mastssm@brunel.ac.uk
Brunel University London

MODAVE, Axel
axel.modave@ensta-paristech.fr
CNRS - POEMS

MOGILEVSKAYA, So�a
mogil003@umn.edu
University of Minnesota

MOLAVI TABRIZI, Amir
a.molavitabrizi@northeastern.edu
Northeastern University

MUSOLINO, Paolo
musolinopaolo@gmail.com
Aberystwyth University

NAKAMOTO, Kenta
k_nakamoto@nuem.nagoya-u.ac.jp
Nagoya University

NAMESTNIKOVA, Inna
lbsriin@brunel.ac.uk
Brunel University

NIINO, Kazuki
niino@i.kyoto-u.ac.jp
Kyoto University

NISHIMURA, Naoshi
nchml@i.kyoto-u.ac.jp
Kyoto University

OF, Günther
of@tugraz.at
Graz University of Technology

ONEIL, Mike
oneil@cims.nyu.edu
Courant Institute, NYU

137



IABEM 2018, Paris

PAROLIN, Emile
emile.parolin@inria.fr
INRIA SACLAY

PENG, Hai-Feng
hfpeng@dlut.edu.cn
Dalian University of Technology

POIRIER, Jean-René
poirier@laplace.univ-tlse.fr
LAPLACE ENSEEIHT

PÖLZ, Dominik
poelz@tugraz.at
Graz University of Technology

QUAIFE, Bryan
bquaife@fsu.edu
Florida State University

RAIN, Oliver
oliver.rain@de.bosch.com
Robert Bosch GmbH

RAPUN, Maria-Luisa
marialuisa.rapun@upm.es
Universidad Politecnica de Madrid

RAVNIK, Jure
jure.ravnik@um.si
University of Maribor, Faculty of Mechanical
Engineering

REJWER, Ewa
e_rejwer@prz.edu.pl
Rzeszow University of Technology

RJASANOW, Sergej
rjasanow@num.uni-sb.de
University of Saarland, Saarbruecken, Germany

SAYAS, Francisco-Javier
fjsayas@udel.edu
University of Delaware

SCHANZ, Martin
m.schanz@tugraz.at
Graz University of Technology

SCHIMANKO, Stefan
stefan.schimanko@asc.tuwien.ac.at
TU Wien

SCHORR, Robert
schorr@gsc.tu-darmstadt.de
Graduate School of Computational Engineering

SCROGGS, Matthew
matthew.scroggs.14@ucl.ac.uk
University College London

SELLIER, Antoine
sellier@ladhyx.polytechnique.fr
LadHyX

SHRAVAN, VEERAPANENI
shravan@umich.edu
UNIVERSITY OF MICHIGAN

SILVA OELKER, Gerardo
grsilva@uc.cl
Ponti�cia Universidad Católica de Chile, Uni-
versity of Notre Dame

SPENCE, Euan
e.a.spence@bath.ac.uk
University of Bath

STEINBACH, Olaf
o.steinbach@tugraz.at
TU Graz

STEPHAN, Ernst
ernst.stephan@ewe.net
Inria Alpines

SUN, Qiang
qiang.sun@unimelb.edu.au
Chemical Engineering, The University of Mel-
bourne

TAUSCH, JOHANNES
tausch@smu.edu
Southern Methodist University

THIERY, Bertrand
thierry@ljll.math.upmc.fr
CNRS

TIBAUT, Jan
jan.tibaut@um.si
University of Maribor

138



IABEM 2018, Paris

TJANDRAWIDJAJA, Yohanes
yohanes.tjandrawidjaja@ensta-paristech.fr
ENSTA ParisTech

TREVELYAN, Jon
jon.trevelyan@durham.ac.uk
Durham University

URZUA-TORRES, Carolina
carolina.urzua@sam.math.ethz.ch
ETH Zurich

VAN VENETIE, Raymond
r.vanvenetie@uva.nl
University of Amsterdam

VAN'T WOUT, Elwin
e.wout@uc.cl
Ponti�cia Universidad Católica de Chile

WATSON, John
elementaryjohn@hotmail.com
Elementary Data Ltd

WOLF, Felix
wolf@gsc.tu-darmstadt.de
TU Darmstadt, Graduate School CE

YANG, Kai
kyang@dlut.edu.cn
Dalian University of Technology

YE, Wenjing
mewye@ust.hk
Hong Kong University of Science and Technol-
ogy

ZANK, Marco
zank@math.tugraz.at
TU Graz

ZAPLETAL, Jan
jan.zapletal@vsb.cz
IT4Innovations

ZASPEL, Peter
peter.zaspel@unibas.ch
University of Basel

ZEMLYANOVA, Anna
azem@ksu.edu
Kansas State University

ZHANG, Jianming
zhangjm@hnu.edu.cn
Hunan University

ZHANG, Yabin
yz89@rice.edu
Rice University

ZHAO, Wenchang
wenchang.zhao@tum.de
Technical University of Munich

139




	Introduction
	Numerical example
	Problem Statement
	Boundary Integral Equation Formulation

