Model order reduction methods: parametric variational inequalities

A. Benaceur^{1,2}, G. Drouet², <u>V. Ehrlacher¹</u>, A. Ern¹, I. Niakh^{1,2}

¹Ecole des Ponts ParisTech & INRIA

 2 EDF

Journée INRIA-IFPEN, December 5th, 2022

① Introduction to model order reduction for parametrized PDEs

2 Reduced-order model for parametric variational inequalities

3 Conclusions and Perspectives

Parametrized Partial Differential Equations

- There are a wide range of contexts where the state of a system of interest can be modeled by means of a set of PDEs.
- This set of equations may depend on some parameters $\mu = (\mu_1, \dots, \mu_p)$ with $p \in \mathbb{N}^*$, the values of which belong to a set of parameter values $\mathcal{D} \subset \mathbb{R}^p$.

For a given value $\mu \in D$ of the parameters, the solution of the associated PDE system generally is a function $u(\mu)$ which satisfies

 $\mathcal{A}(u(\boldsymbol{\mu});\boldsymbol{\mu})=0,$

where $\mathcal{A}(\cdot; \mu)$ is a parametric differential operator, the values of which depends on μ .

Simple toy example: heat equation

 $\Omega \subset \mathbb{R}^d$ and T > 0. Find $u(\mu)(t,x)$ $(x \in \Omega, t \in [0,T])$ of the parametrized problem

$$\begin{cases} \displaystyle \frac{\partial u(\boldsymbol{\mu})}{\partial t} - \nabla \cdot \left(\boldsymbol{\mu} \nabla u(\boldsymbol{\mu})\right) = f & \text{in } \Omega \times (0,T) \\ \\ -\boldsymbol{\mu} \frac{\partial u(\boldsymbol{\mu})}{\partial n} = h_0 u(\boldsymbol{\mu}), \text{ on } \partial \Omega \times (0,T) \\ \\ u(\boldsymbol{\mu})(t=0,\cdot) = u_0, & \text{in } \Omega \end{cases}$$

- $\mu \in \mathcal{D} := [\mu_{\min}, \mu_{\max}] \subset \mathbb{R}$: thermal conductivity
- $h_0 \in \mathbb{R}$: thermal exchange coefficient (Robin boundary conditions)
- $f \in L^2(0,T;D)$: source
- $u_0 \in H^1(D)$: initial condition

Example in an industrial context: collaboration with EDF

PhD thesis of Amina Benaceur (with Alexandre Ern): Model-order reduction for nonlinear coupled thermo-mechanical problems

Motivation:

- Motivation: Study of flow regulation valve used in nuclear reactor operation.
- Complex simulation: Coupled system with thermal (\approx 4h), mechanical (\approx 0.5j), instationnary nonlinear problems, with contact.

Motivation of model-order reduction methods

- For a given value μ ∈ D, the solution u(μ) is typically computed by means of a simulation code (using for instance finite elements, finite volumes...) which can be very costly in terms of computational time for complex systems.
- There is a wide variety of contexts which require the computation of u(μ) for a very large number of parameter values μ as quickly as possible!

Exemples:

- Optimization (design)
- Inverse problems (using experimental data for instance)
- Real time control
- Uncertainty quantification

Naive approaches are doomed to fail in such contexts

Principle of model order reduction

The aim of **model order reduction techniques** is to circumvent this difficulty. Their principle is the following:

- Offline stage: Compute u(μ) with the original costly simulation code for a small number of well-chosen values of μ
- Build another model, using the previous computations, which computes (an approximation) $u(\mu)$ for many other values of μ with a much smaller computational cost than the original simulation code: this is the reduced-order model.
- Online stage: Use the reduced-order model instead of the original simulation code to compute (much faster) u(μ) for a large number of values of μ

Model-order reduction methods

There exists a wide variety of model-order reduction methods.

The most classical approaches are called linear model-order reduction methods, among which:

- Proper Orthogonal Decomposition
- Reduced Basis methods
- Proper Generalized Decomposition

These linear approaches work very well typically for parametrized elliptic and parabolic systems.

More recently, **nonlinear model order reduction methods** (for instance based on neural networks or optimal transport) are being developped for othre types of problems for which linear methods do not work.

Linear approximation methods

Solution set:

$$\mathcal{M} := \{u(\mu), \ \mu \in \mathcal{D}\}$$

Assume that $\mathcal{M} \subset \mathcal{V}$ where \mathcal{V} is a Hilbert space (for instance $\mathcal{V} = L^2(\Omega)$ or $\mathcal{V} = H^1(\Omega)$).

A classical method to construct reduced-order models consists in looking for a N-dimensional linear subspace V_N of V (with N small) so that the error

$$\operatorname{dist}^{\mathcal{V}}(\mathcal{M}, V_N) := \sup_{u \in \mathcal{M}} \|u - \Pi_{V_N} u\|_V$$

is as small as possible (here Π_{V_N} denotes the orthogonal projection of \mathcal{V} onto V_N).

For a fixed value of N, the **best possible approximation error** is given by the **Kolmogorov** N-width of the set \mathcal{M} , defined as

$$d_N^{\mathcal{V}}(\mathcal{M}) := \inf_{\substack{V_N \subset \mathcal{V}, \\ \mathsf{dim}V_N = N}} \operatorname{dist}^{\mathcal{V}}(\mathcal{M}, V_N).$$

Example: For parabolic parametrized equations, it can be shown that $(d_N^{\mathcal{V}}(\mathcal{M}))_{N \in \mathbb{N}}$ decays **exponentially fast** with N [Cohen, DeVore, 2016]

Numerical results on an industrial test case: original model

Instationnary nonlinear heat problem on a flow regulation valve

Original mesh ≈ 51500 nodes 50 times steps

Computational time $\approx 140 \; s$

Numerical results on an industrial test case: reduced-order model

Reduced-order model with reduced basis size ${\cal N}=25$

Computational time: $\approx 0.1 \ s$

Error between the reduced-order model and the original model: below 1% (in $L^2(0,T;H^1(\Omega))$ norm)

Figure – Solution of reduced-order model

Method 1: Proper Orthogonal Decomposition

Finite training set and snapshots

 $\mathcal{D}_{\texttt{train}} := \{\mu_p\}_{p \in \{1:P\}} \subset \mathcal{D}, \qquad \{u(\mu_p)\}_{p \in \{1:P\}} \subset \mathcal{V}$

The POD method selects $V_N \subset \mathcal{V}$ one N-dimensional subspace which minimizes the error

$$\sum_{\in \mathcal{D}_{\texttt{train}}} \|u(\mu) - \Pi_{V_N} u(\mu)\|_{\mathcal{V}}^2$$

among all N-dimensional subspaces.

In practice, the POD method amounts to computing the Singular Value Decomposition of a large matrix.

Method 2: (Ideal) Greedy algorithms

Greedy algorithms used in reduced basis methods provides a practical way to find a quasi-optimal linear subspace V_N in many situations.

[DeVore et al., 2013]

• Initialization N = 1: Choose $\mu_1 \in \mathcal{D}_{\text{train}}$ such that

 $\mu_1 \in \operatorname*{argmax}_{\mu \in \mathcal{D}_{\mathrm{train}}} \|u(\mu)\|_{\mathcal{V}}.$

Let $V_1 := \text{Vect}\{u(\mu_1)\}.$

• Iteration $N \ge 2$: Let

 $\sigma_N = \max_{\mu \in \mathcal{D}_{\text{train}}} \|u(\mu) - \Pi_{V_{N-1}} u(\mu)\|_{\mathcal{V}}.$

If $\sigma_N < \epsilon$, stop. Otherwise, choose $\mu_N \in \mathcal{D}_{\text{train}}$ such that

 $\mu_N \in \operatorname*{argmax}_{\mu \in \mathcal{D}_{\text{train}}} \|u(\mu) - \Pi_{V_{N-1}} u(\mu)\|_{\mathcal{V}}.$

Let $V_N := \operatorname{Vect}\{u(\mu_1), \cdots, u(\mu_N)\}.$

In practice, a **posteriori error estimators** are used instead of the exact norms in the above greedy algorithm.

Quasi-optimality of greedy algorithms

[DeVore et al., 2013]

Theorem (DeVore, Petrova, Wojtaszczyk, 2012)

• For all $N \in \mathbb{N}^*$,

$$\sigma_{2N} \leq \sqrt{2}\sqrt{d_N^{\mathcal{V}}(\mathcal{M})}.$$

• If there exists $C_0 > 0$ et $\alpha > 0$ such that for all $n \in \mathbb{N}^*$, $d_N^{\mathcal{V}}(\mathcal{M}) \leq C_0 n^{-\alpha}$, then there exists C > 0 such that

 $\forall N \in \mathbb{N}^*, \quad \sigma_N \le C N^{-\alpha}.$

• If there exists $C_0 > 0$, $c_0 > 0$ and $\alpha > 0$ such that for all $N \in \mathbb{N}^*$, $d_N^{\mathcal{V}}(\mathcal{M}) \leq C_0 e^{-c_0 N^{\alpha}}$, the there exists C > 0 and c > 0 such that

 $\forall N \in \mathbb{N}^*, \quad \sigma_N \le C e^{-cN^{\alpha}}.$

Model reduction: elliptic problem (1/2)

Generic HF problem

- Minimization problem: $u(\mu) \in \mathcal{V}, \ u(\mu) = \underset{v \in \mathcal{V}}{\operatorname{argmin}} \frac{1}{2}a(\mu; v, v) f(\mu; v)$
- Algebraic representation: $U(\mu) \in \mathbb{R}^{\mathcal{N}}, \ A(\mu)U(\mu) = F(\mu)$

General organization

- Offline phase
- Online phase

Offline phase

1 Training set and snapshots

$$\mathcal{D}_{ ext{train}} := \{\mu_p\}_{p \in \{1:P\}} \subset \mathcal{D}, \qquad \{u(\mu_p)\}_{p \in \{1:P\}} \subset \mathcal{V}$$

- **2** Greedy parameter selection drawn by a posteriori error estimator
- **6** Generic sampling and compression by POD

$$V_{N} := Span \Big(\{\xi_n\}_{n \in \{1:N\}} \Big) = \operatorname{POD} \Big(\{u(\mu_p)\}_{p \in \{1:P\}}; \mathcal{V}, \delta_{\operatorname{POD}} > 0 \Big)$$

Model reduction: elliptic problem (2/2)

Online phase

- Reduced problem: $u_N(\mu) \in V_N$, $a(\mu; u_N(\mu), w) = f(\mu; w)$, $\forall w \in V_N$
 - Algebraic representation: $U_N(\mu) \in \mathbb{R}^N, \ A_N(\mu)U_N(\mu) = F_N(\mu)$
 - Reduced arrays: $A_N(\mu) := \Xi^\top A(\mu)\Xi$, $F_N(\mu) := \Xi^\top F(\mu)$, with $\Xi := [\Xi_1 \cdots \Xi_N] \in \mathbb{R}^{\mathcal{N} \times N}$
 - Large-dimensional parameter-dependent matrix $A(\mu) \in \mathbb{R}^{N \times N} \longrightarrow$ inefficient Online phase

Affine parametric decomposition

Empirical Interpolation Method (EIM) [Barrault, Maday, Nguyen & Patera 2004]

$$A(\mu) \approx E^a(\mu) := \sum_{j \in \{1:J^a\}} \alpha_j^a(\mu) A_j, \quad A_j \in \mathbb{R}^{\mathcal{N} \times \mathcal{N}}, \ \alpha_j^a(\mu) \in \mathbb{R}, \ J^a \in \mathbb{N}^*$$

• Efficient Online phase:

$$A_N(\mu) \approx E_N^a(\mu) := \sum_{j \in \{1:J^a\}} \alpha_{\mathrm{on},j}^a(\mu) A_{N,j}, \quad A_{N,j} := \Xi^\top A_j \Xi \in \mathbb{R}^{N \times N}$$

Outline

Introduction to model order reduction for parametrized PDEs

2 Reduced-order model for parametric variational inequalities

3 Conclusions and Perspectives

Industrial context

Nonlinear computational mechanics

- Structural mechanics problems
 - [Johnson 1987], [Kikuchi & Oden 1988], [Wriggers 2006]
 - Parameter-dependent high-fidelity (HF) model
 - Example: load, geometry, material properties, ...
- Computationally expensive

Multi-query context

- Parametric study: model calibration, uncertainty quantification,
- High Performance Computing (HPC) is often not sufficient
- Reduced Order Model → Reduced Basis Method (RBM)

[Prud'homme, Rovas, Veroy, Machiels, Maday, Patera & Turinici 2001] [Hesthaven, Rozza & Stamm 2016], [Quarteroni, Manzoni & Negri 2016]

Variational inequalities

Optimization problem

• Energy minimization: [Glowinski 1984], [Capatina 2014]

$$\mathbb{I}! u \in \mathcal{K}, \quad u = \underset{v \in \mathcal{K}}{\operatorname{argmin}} \ \frac{1}{2}a(v,v) + \mathcal{F}(v) - f(v)$$

(quadratic term $a(\cdot, \cdot)$, nonlinear energy $\mathcal{F}(\cdot)$, load $f(\cdot)$)

Optimality conditions

• First kind $(\mathcal{F} \equiv 0)$: Find $u \in \mathcal{K}$ such that

$$a(u, v - u) \ge f(v - u), \quad \forall v \in \mathcal{K}(\mu)$$

• Second kind: Find $u(\mu) \in \mathcal{K}(\mu)$ such that

$$a(u, v - u) + \mathcal{F}(v) - \mathcal{F}(u) \ge f(v - u), \quad \forall v \in \mathcal{K}$$

Resolution methods

- Mixed (primal/dual) → Lagrangian methods [Fortin & Glowinski 1983], [Kikuchi & Oden 1988]
- ❷ Primal → Nitsche method (consitent boundary penalty method) [Nitsche 1971], [Chouly & Hild 2013], [Chouly, Hild & Renard 2015]

A generic model problem

Hertz contact problem with friction

 Linear Elasticity: small deformation assumption $-\operatorname{div}(\sigma(\boldsymbol{u})) = \boldsymbol{\ell}, \quad \text{in } \Omega, \quad \sigma(\boldsymbol{v}) := \mathbb{C} : \varepsilon(\boldsymbol{v})$ $a(\boldsymbol{u},\boldsymbol{v}) := \int_{\Omega} \sigma(\boldsymbol{u}) : \varepsilon(\boldsymbol{v}) \, d\Omega, \, f(\boldsymbol{v}) := \int_{\Omega} \boldsymbol{\ell} \cdot \boldsymbol{v} \, d\Omega$ 2 Signorini contact conditions: $u_{\boldsymbol{n}} \leq d^{\boldsymbol{n}}, \ \sigma_{\boldsymbol{n}\boldsymbol{n}}(\boldsymbol{u}) \leq 0, \ \sigma_{\boldsymbol{n}\boldsymbol{n}}(\boldsymbol{u})(u_{\boldsymbol{n}}-d^{\boldsymbol{n}}) = 0, \text{ on } \Gamma^{\mathsf{c}}$ $\mathcal{K}^{\boldsymbol{n}} := \{ v \in \mathcal{V} \mid u_{\boldsymbol{n}} \leq d^{\boldsymbol{n}}, \text{ on } \Gamma^{\mathsf{c}} \}$ Friction conditions: • Tresca: $\left\{egin{array}{l} \| oldsymbol{\sigma}_{oldsymbol{n} au}(oldsymbol{u})\| \leq s, & ext{if } oldsymbol{u}_{ au} = oldsymbol{0} \ oldsymbol{\sigma}_{oldsymbol{n} au}(oldsymbol{u}) = -s rac{oldsymbol{u}_{ au}}{\|oldsymbol{u}_{ au}\|}, & ext{otherwise} \end{array}
ight.$ $\Omega_2(\mu)$ $\mathcal{F}(\boldsymbol{v}) := \int_{\Gamma^{\mathsf{C}}} s \|\boldsymbol{v}_{\tau}\| \, d\Gamma$ Coulomb: (depends from above setting) $s \longrightarrow \nu_{\tau} |\sigma_{\pi\pi}(\boldsymbol{u})|$ $\mathcal{F}(\boldsymbol{w},\boldsymbol{v}) := \int_{\Gamma^{c}} \nu_{\mathcal{F}} |\sigma_{\boldsymbol{n}\boldsymbol{n}}(\boldsymbol{w})| \|\boldsymbol{v}_{\boldsymbol{\tau}}\| \, d\Gamma$

Γ^{top}₁

Outline

State of the art

[Gerner & Veroy 2012], [Haasdonk, Salomon & Wohlmuth 2012], [Balajewicz, Amsallem & Farhat 2016], [Fauque, Ramière & Ryckelynck 2018], [Benaceur, Ern & Ehrlacher 2020]

Contributions

Stable model reduction for mixed formulation

- Theoretical result on inf-sup stability
- Projected Greedy Algorithm (PGA)

Ontact problem in mixed formulation

modified Cone Projected Greedy (mCPG) algorithm

8 Friction problem in mixed formulation

Greedy Collocation Nodes Selection (GCNS) algorithm

O Nitsche's method for contact and friction problems

Challenging nonlinearities in Nitsche's tangent matrices

 $\mathbf{0} + \mathbf{2} \longrightarrow \mathsf{M2AN}$

Parameter-dependent HF model

• Well-posed parametric constrained minimization problem:

$$u(\mu) = \underset{v \in \mathcal{K}(\mu)}{\operatorname{argmin}} \ \frac{1}{2}a(\mu; v, v) - f(\mu; v), \quad \forall \mu \in \mathcal{D} \subset \mathbb{R}^m$$

Admissible set

$$\mathcal{K}(\boldsymbol{\mu}) := \left\{ v \in \mathcal{V} \mid b(\boldsymbol{\mu}; v, \eta) \leq g(\boldsymbol{\mu}; \eta), \quad \forall \eta \in \mathcal{W}^+ \right\} \neq \emptyset$$

Mathematical setting

- $\mathcal{V}, \mathcal{W} \longrightarrow$ finite-dimensional HF spaces
- $\mathcal{W}^+ \subset \mathcal{W} \longrightarrow$ positive cone
- $a(\mu; \cdot, \cdot), b(\mu; \cdot, \cdot), f(\mu; \cdot), g(\mu; \cdot)$: bounded (bi)linear forms
- $a(\mu; \cdot, \cdot)$: symmetric and uniformly coercive

Mixed formulation

Lagrangian:

$$\mathcal{L}(\mu; \boldsymbol{v}, \boldsymbol{\eta}) := \frac{1}{2}a(\mu; \boldsymbol{v}, \boldsymbol{v}) - f(\mu; \boldsymbol{v}) + b(\mu; \boldsymbol{v}, \boldsymbol{\eta}) - g(\mu; \boldsymbol{\eta})$$

• Saddle-point problem:

$$(u(\mu),\lambda(\mu))= egin{argmin}{l} {
m argmin} {
m max} \ {
m {\cal L}}(\mu;v,\eta) \ {
m v}\in {
m {\cal V}} \ \eta\in {
m {\cal W}}^+ \end{array}$$

• Key property: uniform inf-sup condition

$$\exists \beta_0 > 0, \quad \beta_{\mathrm{HF}}(\mu) := \inf_{\eta \in \mathcal{W}^+} \sup_{v \in \mathcal{V}} \frac{b(\mu; v, \eta)}{\|u\|_{\mathcal{V}} \|\eta\|_{\mathcal{W}}} \ge \beta_0$$

• Critical point of Lagrangian $(u(\mu), \lambda(\mu)) \in \mathcal{V} imes \mathcal{W}^+$ such that

$$\begin{cases} a(\mu; \boldsymbol{u}(\mu), \boldsymbol{v}) + b(\mu; \boldsymbol{v}, \lambda(\mu)) = f(\mu; \boldsymbol{v}), & \forall \boldsymbol{v} \in \mathcal{V} \\ b(\mu; \boldsymbol{u}(\mu), \eta - \lambda(\mu)) \leq g(\mu; \eta - \lambda(\mu)), & \forall \eta \in \mathcal{W}^+ \end{cases}$$

Decorrelated model reduction

Training set and snapshots

 $\mathcal{D}_{\text{train}} := \{\mu_p\}_{p \in \{1:P\}} \subset \mathcal{D}, \quad \{(u(\mu_p), \lambda(\mu_p))\}_{p \in \{1:P\}} \subset \mathcal{V} \times \mathcal{W}^+$

- Opposition of reduced spaces
 - Proper Orthogonal Decomposition (POD)

$$V_N := \operatorname{\boldsymbol{Span}}\left(\{\xi_n\}_{n \in \{1:N\}}\right) = \operatorname{POD}\left(\{u(\mu_p)\}_{p \in \{1:P\}}; \mathcal{V}, \delta_{\operatorname{POD}} > 0\right)$$

• Angle Greedy or Cone Projected Greedy (CPG) algorithms

$$W_R^+ := \mathbf{Span}^+ \left(\{ \upsilon_r \}_{r \in \{1:R\}} \right) = \mathtt{CPG} \left(\{ \lambda(\mu_p) \}_{p \in \{1:P\}}; \mathcal{W}, \delta_{\mathtt{mCPG}} > 0 \right)$$

[Burkovska, Haasdonk, Salomon & Wohlmuth 2015], [Benaceur, Ern & Ehrlacher 2020]

8 Reduced problem

$$(u_N(\mu), \lambda_R(\mu)) = rgmin \max_{oldsymbol{v} \in V_N} \mathcal{L}(\mu; oldsymbol{v}, \eta)$$

Main issue

We cannot guarantee that

$$\beta^{\mathrm{dec}}(\mu) := \inf_{\eta \in W_R^+} \sup_{v \in V_N} \frac{b(\mu; v, \eta)}{\|v\|_{\mathcal{V}} \|\eta\|_{\mathcal{W}}} > 0$$

Enhancement by supremizers

State of the art

- Key assumption: $b(\cdot, \cdot)$ parameter-independent, represented by operator $\mathcal{B} : \mathcal{W}^+ \to \mathcal{V}$ [Rozza & Veroy 2007], [Gerner & Veroy 2012], [Haasdonk, Salomon & Wohlmuth 2012]
 - Completion of $\{v_n\}_{n \in \{1:N\}}$ with supremizers
 - Enriched reduced primal space

$$V_{N,R} := V_N + S_R, \quad S_R := Span(\{\mathcal{B}v_r\}_{r \in \{:R\}})$$

Inf-sup stability

$$\inf_{\eta \in W_R^+} \sup_{v \in V_{N,R}} \frac{b(v,\eta)}{\|v\|_{\mathcal{V}} \|\eta\|_{\mathcal{W}}} \ge \beta_{\mathrm{HF}} \ge \beta_0 > 0$$

Parameter-dependent context

Enriched reduced primal space

$$V_{N,R}^{\mathrm{on}}(oldsymbol{\mu}):=V_N+S_R(oldsymbol{\mu}),\quad S_R(oldsymbol{\mu}):=oldsymbol{Span}igl(\{\mathcal{B}(oldsymbol{\mu})v_r\}_{r\in\{:R\}}igr)$$

Inf-sup stability

$$\beta^{\mathrm{on}}(\mu) := \inf_{\eta \in W_R^+} \sup_{v \in V_{N,R}^{\mathrm{on}}(\mu)} \frac{b(\mu; v, \eta)}{\|v\|_{\mathcal{V}} \|\eta\|_{\mathcal{W}}} \ge \beta_{\mathrm{HF}}(\mu) \ge \beta_0 > 0$$

• Construction must be performed online \longrightarrow computationally inefficient

Our contribution

Goal

- Compute a primal space offline ensuring inf-sup stability
- Approximate $S_R:= \underset{\mu\in\mathcal{D}}{+} S_R(\mu)$ by parameter-independent low-dimensional subspace

Approximation of S_R

• Let S be any finite-dimensional subspace of S_R . To measure how well S represents S_R , let

$$\sigma_S(\mu) := \| (\mathbb{I}^{\vee} - \Pi^{\vee}_{V_N+S})|_{S_R(\mu)} \|_{\mathcal{L}(\mathcal{V})}$$

• Basic properties: For all $\mu \in \mathcal{D}$, • $(\sigma_S(\mu))_S \searrow$ if $S \nearrow$ • $\sigma_{S_R}(\mu) = 0$

Main result

Let
$$c_{\mathrm{HF}}(\mu)$$
 be the boundedness constant of $b(\mu; \cdot, \cdot)$.
If $\sigma_S(\mu) < \frac{\beta^{\mathrm{on}}(\mu)}{c_{\mathrm{HF}}(\mu)}$, then $\inf_{\eta \in W_R^+} \sup_{v \in V_N + S} \frac{b(\mu; v, \eta)}{\|v\|_{\mathcal{V}} \|\eta\|_{\mathcal{W}}} \ge \beta_S^*(\mu) := \frac{\beta^{\mathrm{on}}(\mu) - c_{\mathrm{HF}}(\mu)\sigma_S(\mu)}{1 + \sigma_S(\mu)} > 0.$

Projected Greedy Algorithm (PGA)

- Build $S_R^{\mathrm{red}} := \mathrm{PGA}\left(\mathcal{D}_{\mathrm{train}}, V_N, \delta_{\mathrm{PGA}}\right) \subset S_R$ such that $\max_{\mu \in \mathcal{D}_{\mathrm{train}}} \sigma_{S_R^{\mathrm{red}}}(\mu) \leq \delta_{\mathrm{PGA}}$
- Primal reduced space $V_{N,R}^{\mathrm{off}} := V_N + S_R^{\mathrm{red}}$
- Inf-sup stability:

$$\beta^{\text{off}}(\mu) := \inf_{\eta \in W_R^+} \sup_{v \in V_{N,R}^{\text{off}}} \frac{b(\mu_v, \eta)}{\|v\|_{\mathcal{W}} \|\eta\|_{\mathcal{W}}} > 0, \forall \mu \in \mathcal{D}_{\text{train}}$$

Notice that nothing is asserted out of $\mathcal{D}_{\texttt{train}}.$

Some details

$$\begin{array}{ll} \text{1: while } e_n > \delta \ \text{do} \\ \text{2: } & S^n := S^{n-1} + Span\{v_{n-1}\} \\ \text{3: } & \mu_n \in \operatorname{argmax} \sigma_{S^n}(\mu) \\ & \mu \in \mathcal{D}_{\text{train}} \\ \text{4: } & v_n^{(1)} := \operatorname{argmax} \\ & v \in S_R(\mu_n) \\ & \|v\|_{\mathcal{V}} \leq 1 \\ \text{5: } & v_n := (\mathbb{I}^{\mathcal{V}} - \Pi_{\mathcal{V}_N + S^n}^{\mathcal{V}})(v_n^{(1)}) \\ \text{6: } & e_{n+1} := \sigma_{S^n}(\mu_n) \\ \text{7: } & n = n + 1 \\ \text{8: end while} \end{array}$$

Main points

Monotonicity:

$$\Big(\max_{\mu\in\mathcal{D}_{\text{train}}}\sigma_{S^n}(\mu)\Big)_{n\geq 0}\searrow$$

Recall:

$$\sigma_{\boldsymbol{S_R}}(\boldsymbol{\mu}) = \boldsymbol{0}, \forall \boldsymbol{\mu} \in \mathcal{D}$$

• Finite termination: $\exists n_0 \leq P \times R$, $\max_{\mu \in \mathcal{D}_{\text{train}}} \sigma_{S^n}(\mu) = 0, \, \forall n \geq n_0$

Hertz contact between two half-disks

- Parametric domain:
 - 1 $\mathcal{D} := [0.7, 1.3](m)$
 - $\ensuremath{\textcircled{0}}$ $\mathcal{D}_{\mathrm{train}}$ uniform discretization
- Geometric load:
 - () $\gamma_0 = 0.001 \text{m}$
 - **2** $d = 0.09 \text{m} (\leq 10\% \max(R_1, R_2))$
- Potential contact manifold: $\theta \in \left[-\frac{5\pi}{8}, -\frac{3\pi}{8}\right]$
- Finite Element discretization:
 - **1** $\Omega(\mu)$ are μ -dependent
 - **2** Geometric mapping: $h(\mu) : \widehat{\Omega} \to \Omega(\mu)$
 - **3** displacement: \mathbb{P}_1
 - ④ Lagrange multiplier: ℙ₀ using LAC method [Abbas, Drouet & Hild 2018]

Contact problem

Setting

•
$$\Omega(\mu) \subset \mathbb{R}^d$$
; $\Gamma(\mu) = \Gamma^{\mathsf{D}}(\mu) \cup \Gamma^{\mathsf{N}}(\mu) \cup \Gamma^{\mathsf{c}}(\mu)$

•
$$\boldsymbol{u}(\mu): \Omega(\mu) \to \mathbb{R}^d; \boldsymbol{\ell}(\mu): \Omega(\mu) \to \mathbb{R}^d$$

•
$$\boldsymbol{n}(\mu) \in \mathbb{R}^d$$
 ; $\boldsymbol{\tau}(\mu) \in \mathbb{R}^{d imes (d-1)}$

•
$$\sigma(\boldsymbol{v}) := \mathbb{C} : \varepsilon(\boldsymbol{v});$$

 $\varepsilon(\boldsymbol{v}) := \frac{1}{2} \left(\nabla \boldsymbol{v} + \nabla \boldsymbol{v}^\top \right)$

•
$$v = v_n n + \tau v_\tau$$

•
$$\sigma(v)n = \sigma_{nn}(v)n + \tau \sigma_{n\tau}(v)$$

Linear Elasticity

Signorini contact conditions on $\Gamma^{c}(\mu)$

$$\begin{split} -\mathsf{div}(\sigma(\boldsymbol{u}(\mu))) &= \boldsymbol{\ell}(\mu), \quad \text{in } \Omega(\mu) \\ \boldsymbol{u}(\mu) &= \boldsymbol{0}, \quad \text{on } \Gamma^{\mathsf{D}}(\mu) \\ \sigma(\boldsymbol{u}(\mu))\boldsymbol{n} &= \boldsymbol{0}, \quad \text{on } \Gamma^{\mathsf{N}}(\mu) \end{split}$$

$$egin{aligned} &u_{m{n}}(\mu) \leq d^{m{n}}(\mu) \ &\sigma_{m{nn}}(m{u}(\mu)) \leq 0 \ &\sigma_{m{nn}}(m{u}(\mu)) \Big(u_{m{n}}(\mu) - d^{m{n}}(\mu) \Big) = 0 \end{aligned}$$

HF model

HF spaces

•
$$\mathcal{V}(\mu) \subset \left\{ \boldsymbol{v} \in H^1(\Omega(\mu); \mathbb{R}^d) \mid \boldsymbol{v} = \boldsymbol{0} \text{ on } \Gamma^{\mathsf{D}}(\mu) \right\}; \mathcal{W}(\mu) \subset L^2(\Gamma^{\mathsf{c}}(\mu); \mathbb{R})$$

• Positive cone
$$\mathcal{W}^{n}(\mu) := \left\{ \eta^{n} \in \mathcal{W}(\mu) \mid \eta^{n} \geq 0 \right\} \subset L^{2}(\Gamma^{c}(\mu); \mathbb{R}_{+})$$

Variational formulation

• Variational inequality: For all $\mu \in \mathcal{D}$, find $u(\mu) \in \mathcal{K}^{n}(\mu)$ such that

$$a(\mu; \boldsymbol{u}(\mu), \boldsymbol{v} - \boldsymbol{u}(\mu)) \ge f(\mu; \boldsymbol{v} - \boldsymbol{u}(\mu)), \quad \forall \boldsymbol{v} \in \mathcal{K}(\mu)$$

• Admissible set:

$$\mathcal{K}^{\boldsymbol{n}}(\mu) := \left\{ \boldsymbol{v} \in \boldsymbol{\mathcal{V}}(\mu) \mid b^{\boldsymbol{n}}(\mu; \boldsymbol{v}, \eta^{\boldsymbol{n}}) \leq g^{\boldsymbol{n}}(\mu; \eta^{\boldsymbol{n}}), \quad \forall \eta^{\boldsymbol{n}} \in \mathcal{W}^{\boldsymbol{n}}(\mu) \right\}$$

Bilinear Forms

Linear Forms

•
$$a(\mu; \boldsymbol{u}, \boldsymbol{v}) := \int_{\Omega(\mu)} \sigma(\boldsymbol{u}) : \varepsilon(\boldsymbol{v}) \, d\Omega(\mu)$$
 • $f(\mu; \boldsymbol{v}) := \int_{\Omega(\mu)} \ell(\mu) \cdot \boldsymbol{v} \, d\Omega(\mu)$

•
$$b^{\boldsymbol{n}}(\mu; \boldsymbol{v}, \eta^{\boldsymbol{n}}) := \int_{\Gamma^{\mathsf{c}}} v_{\boldsymbol{n}} \eta^{\boldsymbol{n}} d\Gamma$$

•
$$g^{\mathbf{n}}(\mu;\eta^{\mathbf{n}}) := \int_{\Gamma^{\mathsf{c}}} d^{\mathbf{n}}(\mu) \eta^{\mathbf{n}} d\Gamma$$

HF solutions

Computed with FreeFem++ and Python.

Projected Greedy Algorithm (1/2)

•
$$\beta_{S^n}(\mu) := \inf_{\eta^n \in W_R^+} \sup_{v \in V_N + S^n} \frac{b(\mu; v, \eta^n)}{\|v\|_V \|\eta^n\|_W}$$

•
$$\sigma_{S^n}(\mu) := \| (\mathbb{I}^{\mathcal{V}} - \Pi^{\mathcal{V}}_{V_N + S^n}) |_{S_R(\mu)} \|_{\mathcal{L}(\mathcal{V})}$$

•
$$\beta_{\min}^{n} := \min_{\mu \in \mathcal{D}_{\text{train}}} \beta_{S^{n}}(\mu)$$

•
$$\sigma_{\max}^n := \max_{\mu \in \mathcal{D}_{\text{train}}} \sigma_{S^n}(\mu)$$

Projected Greedy Algorithm (2/2)

Inf-sup constants

•
$$\beta_{\mathrm{HF}}(\mu) := \inf_{\eta^{n} \in \mathcal{W}^{+}} \sup_{v \in \mathcal{V}} \frac{b(\mu; v, \eta^{n})}{\|u\|_{\mathcal{V}} \|\eta^{n}\|_{\mathcal{W}}}$$

•
$$\beta^{\operatorname{dec}}(\mu) := \inf_{\substack{\eta^n \in W_R^+ \ v \in V_N}} \sup_{\substack{\|v\|_{\mathcal{V}} \|\eta^n\|_{\mathcal{W}}}} \frac{b(\mu; v, \eta^n)}{\|v\|_{\mathcal{V}} \|\eta^n\|_{\mathcal{W}}}$$

$${}^{\mathrm{on}}(\mu) := \inf_{\substack{\eta \, \boldsymbol{n} \in W_R^+ \ v \in V_{N,R}^{\mathrm{on}}(\mu)}} \frac{b(\mu; v, \eta^{\boldsymbol{n}})}{\|v\|_{\mathcal{V}} \|\eta^{\boldsymbol{n}}\|_{\mathcal{W}}}$$

$$P \beta^{\text{off}}(\mu) := \inf_{\substack{\eta^n \in W_R^+ \ v \in V_{N,R}^{\text{off}}}} \sup_{\substack{v \in V_{N,R}^{\text{off}}}} \frac{b(\mu; v, \eta^n)}{\|v\|_{\mathcal{V}} \|\eta^n\|_{\mathcal{W}}}$$

Validation: (uniform distributed) random points in ${\cal D}$

• β

Main conclusions

• We guarantee

 $\beta^{\mathrm{off}}(\mu) > 0 \ \forall \mu \in \mathcal{D}_{\mathtt{train}}$

• We obtain

 $\beta^{\mathrm{off}}(\mu) > 0 \; \forall \mu \in \mathcal{D}_{\mathtt{valid}}$

modified Cone Projected Greedy (mCPG) algorithm (1/4)

In practice, the CPG algorithm is applied to the family $\{\theta_q\}_{q \in \{1:Q\}} = \{\lambda(\mu_p)\}_{p \in \{1:P\}}$.

CPG algorithm

[Benaceur, Ern & Ehrlacher 2020]

- **1** Input: HF positive cone \mathcal{W}^+ ; Family $\{\theta_q\}_{q \in \{1:Q\}} \subset \mathcal{W}^+$; Tolerance $\delta_{CPG} > 0$
- **2** Iteration $r \ge 1$: Select $q_r \in \{1 : Q\}$ such that

$$q_r \in \operatorname*{argmax}_{q \in \{1:Q\}} \left\| \left(\mathbb{I}^{\mathcal{W}} - \Pi^{\mathcal{W}}_{W^+_{r-1}} \right) (\theta_q) \right\|_{\mathcal{W}}$$

and define $W_r^+ = Span^+ \{\theta_{q_1}, \cdots, \theta_{q_r}\}.$

• Output: Subset $\{\theta_{q_r}\}_{r \in \{1:R\}} \subset \{\theta_q\}_{q \in \{1:Q\}}$ s.t. $W_R^+ := Span^+(\{\theta_{q_r}\}_{r \in \{1:R\}})$ satisfies

$$W_R^+ \subset W^+ := \operatorname{Span}^+\left(\{\theta_q\}_{q \in \{1:Q\}}\right) \text{ and } e_{\operatorname{CPG}}(R) := \frac{\max_{q \in \{1:Q\}} \|\left(\frac{W^* - \Pi_{W_R}^*}{W_R}\right)(\theta_q)\|_{\mathcal{W}}}{\max_{q \in \{1:Q\}} \|\theta_q\|_{\mathcal{W}}} \le \delta_{\operatorname{CPG}}$$

mCPG algorithm (2/4)

mCPG algorithm

- **1** Input: HF positive cone \mathcal{W}^+ ; Family $\{\theta_q\}_{q \in \{1:Q\}} \subset \mathcal{W}^+$; Tolerance $\delta_{\mathtt{mCPG}} > 0$
- **2** Iteration $r \ge 1$: Select $q_r \in \{1 : Q\}$ such that

$$q_r \in \operatorname*{argmax}_{q \in \{1:Q\}} \left\| \left(\mathbb{I}^{\mathcal{W}} - \Pi^{\mathcal{W}}_{W^+_{r-1}} \right) (\theta_q) \right\|_{\mathcal{W}}.$$

Define
$$u_r = heta_{q_r} - \widetilde{ heta}_{r-1}$$
 where

$$\widetilde{\theta}_{r-1} \in \operatorname{argmin}_{\widetilde{\theta} \in W_{r-1}^+, \theta_{q_r} - \widetilde{\theta} \in \mathcal{W}^+} \left\| \theta_{q_r} - \widetilde{\theta} \right\|_{\mathcal{W}}$$

and define $W_r^+ = Span^+ \{\nu_1, \cdots, \nu_r\}$. **Output:** Subset $\{\nu_r\}_{r \in \{1:R\}}$ s.t. $W_R^+ := Span^+ (\{\nu_r\}_{r \in \{1:R\}})$ satisfies $\max \| \| (\mathbb{I}^{\mathcal{W}} - \mathbb{I}^{\mathcal{W}}_+) (\theta_q) \|$

$$W_{R}^{+} \subset W^{+} := Span^{+} \left(\{ \theta_{q} \}_{q \in \{1:Q\}} \right) \text{ and } e_{\mathtt{mCPG}}(R) := \frac{q \in \{1:Q\}^{||} (W_{R}^{+})^{-q} ||_{W}}{\max_{q \in \{1:Q\}} \|\theta_{q}\|_{W}} \le \delta_{\mathtt{mCPG}}$$

mCPG algorithm (3/4)

mCPG algorithm

- Main advantage: avoid ill-conditioning issues (Gram-Schmidt not available on cones)
- Progressive construction of a cone with wider aperture than CPG
- Enlarged Nonnegative Greedy (ENG) algorithm: [Bakhta, Boiveau, Maday & Mula 2020]

mCPG algorithm (4/4)

Comparison of CPG and mCPG

Main conclusions

Accuracy /

Cone aperture

Extension 1: Coulomb contact problem

Strong formulation

$$\begin{split} \|\sigma_{n\tau}(u(\mu))\| &\leq \nu_{\mathcal{F}} |\sigma_{nn}(u(\mu))|, \quad \text{if } u_{\tau}(\mu) = \mathbf{0} \\ \sigma_{n\tau}(u(\mu)) &= -\nu_{\mathcal{F}} |\sigma_{nn}(u(\mu))| \frac{u_{\tau}(\mu)}{\|u_{\tau}(\mu)\|}, \quad \text{otherwise} \end{split}$$

Weak formulation

For all $\mu \in \mathcal{D}$, find $\boldsymbol{u}(\mu) \in \mathcal{K}(\mu)$ such that

 $a(\mu; \boldsymbol{u}(\mu), \boldsymbol{v} - \boldsymbol{u}(\mu)) + \mathcal{F}(\mu; \boldsymbol{u}(\mu), \boldsymbol{v}) - \mathcal{F}(\mu; \boldsymbol{u}(\mu), \boldsymbol{u}(\mu)) \geq f(\mu; \boldsymbol{v} - \boldsymbol{u}(\mu)), \quad \forall \boldsymbol{v} \in \mathcal{K}(\mu)$

Extension 2: Nitsche's method (frictionless contact problems)

State of art

[Nitsche 1971], [Chouly & Hild 2013], [Chouly 2014], [Chouly, Hild & Renard 2015] [Mlika, Renard & Chouly 2017], [Chouly, Ern & Pignet 2020], [Chouly, Hild, Lleras & Renard 2022]

Alart-Curnier reformulation

$$\sigma_{\boldsymbol{nn}}(\boldsymbol{u}(\mu)) = \left[\sigma_{\boldsymbol{nn}}(\boldsymbol{u}(\mu)) - \gamma \left(u_{\boldsymbol{n}}(\mu) - d^{\boldsymbol{n}}(\mu)\right)\right]_{-}$$

Nitsche's energy

$$\begin{split} J^{\text{Nitsche}}(\mu; \boldsymbol{v}) &:= \mathcal{J}(\mu; \boldsymbol{v}) - \frac{1}{2} \int_{\Gamma^{\text{c}}(\mu)} \frac{1}{\gamma} |\sigma_{\boldsymbol{nn}}(\boldsymbol{v})|^2 d\Gamma(\mu) \\ &+ \frac{1}{2} \int_{\Gamma^{\text{c}}(\mu)} \frac{1}{\gamma} \Big[\sigma_{\boldsymbol{nn}}(\boldsymbol{v}) - \gamma \Big(v_{\boldsymbol{n}} - d^{\boldsymbol{n}}(\mu) \Big) \Big]_{-}^2 d\Gamma(\mu) \end{split}$$

Variational formulation

Well-posed parametric unconstrained minimization problem:

$$m{u}(\mu) = \mathop{\mathrm{argmin}}\limits_{m{v}\inm{\mathcal{V}}(\mu)} J^{\mathrm{Nitsche}}(\mu;m{v})$$

Introduction to model order reduction for parametrized PDEs

2 Reduced-order model for parametric variational inequalities

3 Conclusions and Perspectives

Conclusions

Reduced-order models can yield tremendous gains in terms of computational costs for parametric studies.

How to choose a good method? Depends on the nature of the problem at hand!

Reduced-order model for parametrized variational inequalities

- Inf-sup stability in the framework of a mixed formulation and parameter-dependent constraints
- An effective and stable RBM for the frictional contact problem in the mixed formulation
- An effective RBM for contact problems formulated with Nitsche's method
- Applications: Mechanical contact problem with friction, hydromechanical coupling [Plassart 2011]

Perspectives

Other works on applications of model order reduction methods

- Parametrized non-symmetric eigenvalue problems: collaboration with CEA for applications in neutronics
- Non-parametrized geometrical variability: collaboration with SAFRANTech for applications in aircraft engine design (based on neural networks)

Perspective of collaboration with IFPEN (Guillaume Enchéry)

- Model order reduction of flow simulations in cracked porous media : linear and nonlinear model order reduction methods
- Preliminary work on nonlinear methods (based on optimal transport techniques) [Battisti, Blickhan, Ehrlacher, Enchéry, Lombardi & Mula, 2022]

Coulomb contact problem

Strong formulation

$$\begin{split} \|\sigma_{n\tau}(u(\mu))\| &\leq \nu_{\mathcal{F}} |\sigma_{nn}(u(\mu))|, \quad \text{if } u_{\tau}(\mu) = \mathbf{0} \\ \sigma_{n\tau}(u(\mu)) &= -\nu_{\mathcal{F}} |\sigma_{nn}(u(\mu))| \frac{u_{\tau}(\mu)}{\|u_{\tau}(\mu)\|}, \quad \text{otherwise} \end{split}$$

Weak formulation

For all $\mu \in \mathcal{D}$, find $\boldsymbol{u}(\mu) \in \mathcal{K}(\mu)$ such that

 $a(\mu; \boldsymbol{u}(\mu), \boldsymbol{v} - \boldsymbol{u}(\mu)) + \mathcal{F}(\mu; \boldsymbol{u}(\mu), \boldsymbol{v}) - \mathcal{F}(\mu; \boldsymbol{u}(\mu), \boldsymbol{u}(\mu)) \geq f(\mu; \boldsymbol{v} - \boldsymbol{u}(\mu)), \quad \forall \boldsymbol{v} \in \mathcal{K}(\mu)$

HF model

Mixed formulation

- Space triplet $\mathcal{V}(\mu) \times \mathcal{W}^{n}(\mu) \times \mathcal{X}^{\tau}(\mu; \nu_{\mathcal{F}} \lambda^{n}(\mu))$
- solution denoted $(u(\mu), \lambda^n(\mu), \lambda^{\tau}(\mu))$
- Uzawa algorithm

$$\begin{aligned} a(\mu; \boldsymbol{u}_{k+1}(\mu); \boldsymbol{v}) + b^{\boldsymbol{n}}(\mu; \boldsymbol{v}, \lambda_{k}^{\boldsymbol{n}}(\mu)) + b^{\boldsymbol{\tau}}(\mu; \boldsymbol{v}, \lambda_{k}^{\boldsymbol{\tau}}(\mu)) &= f(\mu; \boldsymbol{v}), \quad \forall \boldsymbol{v} \in \boldsymbol{\mathcal{V}}(\mu) \\ \lambda_{k+1}^{\boldsymbol{n}}(\mu) &= \Pi_{\mathcal{W}^{\boldsymbol{n}}(\mu)}^{\mathcal{W}(\mu)} (\lambda_{k}^{\boldsymbol{n}}(\mu) - \rho(\boldsymbol{u}_{k+1,\boldsymbol{n}}(\mu) - d^{\boldsymbol{n}}(\mu))) \\ \lambda_{k+1}^{\boldsymbol{\tau}}(\mu) &= \Pi_{\boldsymbol{\mathcal{X}}^{\boldsymbol{\tau}}(\mu; \boldsymbol{\nu}_{\mathcal{F}} \lambda_{k+1}^{\boldsymbol{n}}(\mu))}^{\boldsymbol{\mathcal{X}}(\mu)} (\lambda_{k}^{\boldsymbol{\tau}}(\mu) - \rho \boldsymbol{u}_{k+1,\boldsymbol{\tau}}(\mu)) \end{aligned}$$

Tangential constraints

Tangential space:

$$\mathcal{X}(\mu) \subset L^2(\Gamma^{\mathsf{c}}(\mu); \mathbb{R}^{d-1})$$

Admissible tangential stresses:

$$\mathcal{K}^{\boldsymbol{ au}}(\mu;\eta^{\boldsymbol{n}}) := \left\{ \boldsymbol{ heta}^{\boldsymbol{ au}} \in \mathcal{X}(\mu) \mid \| \boldsymbol{ heta}^{\boldsymbol{ au}} \| \leq \eta^{\boldsymbol{n}} \text{ a.e on } \Gamma^{\mathsf{c}}(\mu)
ight\}$$

• Tangential contact operator: $b^{\tau}(\mu; v, \theta^{\tau}) := \langle v_{\tau}, \theta^{\tau} \rangle_{\Gamma^{c}(\mu)}$ • Friction functional: $\mathcal{F}(\mu; w, v) := \langle -\nu_{\mathcal{F}} | \sigma_{nn}(w) |, ||v_{\tau}|| \rangle_{\Gamma^{c}(\mu)}$

Algebraic formulation

Collocation method

• Admissible tangential stresses:

$$\mathcal{X}^{\boldsymbol{\tau}}_{\mathcal{C}(\mu)}(\mu;\eta^{\boldsymbol{n}}) := \left\{ \boldsymbol{\theta}^{\boldsymbol{\tau}} \in \mathcal{X}(\mu) \mid \|\boldsymbol{\theta}^{\boldsymbol{\tau}}(\boldsymbol{c}_{s}(\mu))\| \leq \eta^{\boldsymbol{n}}(\boldsymbol{c}_{s}(\mu)), \; \forall s \in \{1:\mathcal{S}_{0}\} \right\}$$

Uzawa

$$\mathsf{Find}\,\left(U_{k+1}(\mu),\Lambda_{k+1}^{\boldsymbol{n}}(\mu),\mathbf{\Lambda}_{k+1}^{\boldsymbol{\tau}}(\mu)\right)\in\mathbb{R}^{\mathcal{N}}\times\mathbb{R}_{+}^{\mathcal{R}}\times X_{\mathcal{C}(\mu)}^{\boldsymbol{\tau}}(\mu;\nu_{\mathcal{F}}\Lambda_{k+1}^{\boldsymbol{n}}(\mu))\text{ such that }\mathcal{L}_{k+1}^{\boldsymbol{\tau}}(\mu)$$

$$\begin{aligned} & (A(\mu)U_{k+1}(\mu) + B^{n}(\mu)^{\top}\Lambda_{k+1}^{n}(\mu) + B^{\tau}(\mu)^{\top}\Lambda_{k+1}^{\tau}(\mu) = F(\mu) \\ & \Lambda_{k+1}^{n}(\mu) = \Pi_{\mathbb{R}^{\mathcal{R}}_{+}}(\Lambda_{k+1}^{n}(\mu) - \rho(B^{n}(\mu)U_{k+1}(\mu) - G^{n}(\mu))) \\ & \Lambda_{k+1}^{\tau}(\mu) = \Pi_{X^{\tau}_{\mathcal{C}}(\mu)}(\mu;\nu_{\mathcal{F}}\Lambda_{k+1}^{n}(\mu)) (\Lambda_{k+1}^{\tau}(\mu) - \rho B^{\tau}(\mu)U_{k+1}(\mu)) \end{aligned}$$

Discretization

- \mathbb{P}_1 shape functions $\mathcal{S} = (d-1) \times \mathcal{R}$ $\mathcal{S}_0 = \mathcal{R}$
- $X_{\mathcal{C}(\mu)}^{\tau}(\mu;\nu_{\mathcal{F}}\Lambda_{k+1}^{n}(\mu)) := \left\{ \Theta^{\tau} \in \mathbb{R}^{(d-1) \times \mathcal{R}} \mid \|\Theta^{\tau,r}\| \le \nu_{\mathcal{F}}\Lambda_{k+1}^{n,r}(\mu), \ \forall r \in \{1:\mathcal{R}\} \right\}$

Plain RBM

Setting

- Geometric mapping: $h(\mu): \widehat{\Omega} \to \Omega(\mu)$ such that $\widehat{\Gamma}^{c} := h_{c}^{-1}(\mu)(\Gamma^{c}(\mu))$
- Reference mesh: μ -independent \mathcal{N} , \mathcal{R} and \mathcal{S}
- Collocations nodes: $\widehat{\mathcal{C}} := \{\widehat{c}_s\}_{s \in \{1: \mathcal{S}_0^{\mathrm{HF}}\}} \subset \widehat{\Gamma}^{\mathsf{c}}$ such that $\mathcal{C}(\mu) := h(\mu)(\widehat{\mathcal{C}})$

Preliminaries

RB spaces

$$\begin{array}{l} \bullet \ \operatorname{POD} \longrightarrow V_N := \operatorname{Span}\Big(\{\xi_n\}_{n \in \{1:N\}}\Big), \quad \mathbf{X}_S^{\tau} := \operatorname{Span}\Big(\{\boldsymbol{v}_s^{\tau}\}_{s \in \{1:S\}}\Big) \\ \bullet \ \operatorname{mCPG} \longrightarrow W_R^n := \operatorname{Span}^+\left(\{\boldsymbol{v}_r^n\}_{r \in \{1:R\}}\right) \end{array}$$

Stabilization using PGA algorithm

$$b(\mu; \boldsymbol{v}, \boldsymbol{\eta}) := b^{\boldsymbol{n}}(\mu; \boldsymbol{v}, \eta^{\boldsymbol{n}}) + b^{\boldsymbol{ au}}(\mu; \boldsymbol{v}, \boldsymbol{\eta}^{\boldsymbol{ au}}), \quad \forall \boldsymbol{v} \in \boldsymbol{\mathcal{V}}(\mu), \; \forall \boldsymbol{\eta} := (\eta^{\boldsymbol{n}}, \eta^{\boldsymbol{ au}}) \in \boldsymbol{\mathcal{Y}}(\mu)$$

- $\textbf{ 0 Dependence of the RB problem on the HF dimensions \longrightarrow \texttt{EIM} }$
- 4 Large collocation sets

$$\mathbf{X}_{S,\boldsymbol{\mathcal{C}}}^{\boldsymbol{\tau}}\mathrm{HF}_{(\mu)}(\boldsymbol{\mu};\boldsymbol{\nu}_{\mathcal{F}}\Lambda_{R,k+1}^{\boldsymbol{n}}(\boldsymbol{\mu})) := \left\{\boldsymbol{\Theta} \in \mathbb{R}^{S} \mid \left| \left| (Q^{\boldsymbol{\tau}}\boldsymbol{\Theta})^{r} \right| \right| \leq \boldsymbol{\nu}_{\mathcal{F}} \left(Q^{\boldsymbol{n}}\Lambda_{R,k+1}^{\boldsymbol{n}}(\boldsymbol{\mu}) \right)^{r}, \; \forall r \in \{1:\boldsymbol{\mathcal{R}}\} \right\}$$

Greedy Collocation Node Selection (GCNS)

0 Input: Training set $\mathcal{D}_{\text{train}}$; HF collocation nodes $\widehat{\mathcal{C}}$; RB spaces $\left(V_N, W_R^n, X_S^{\tau}\right)$

9 Output: Reduced set of collocation nodes $\widehat{C}(q) \subset \widehat{\mathcal{C}}$

Iteration $q \ge 1$

$$\begin{aligned} \bullet & \mu_{q} \in \underset{\mu \in \mathcal{D}_{\text{train}}}{\operatorname{argmax}} \left\| \left[\left\| \lambda_{S}^{\tau,q}(\mu) \right\| - \nu_{\mathcal{F}} \lambda_{R}^{n,q}(\mu) \right]_{+} \right\|_{\ell^{\infty}(\mathcal{C}(\mu))} \\ \bullet & \overline{\mathcal{Q}}(q) := \underset{s \in \{1:S_{0}\}}{\operatorname{argmax}} \left[\left(\left\| \lambda_{S}^{\tau,q}(\mu_{q}) \right\| - \nu_{\mathcal{F}} \lambda_{R}^{n,q}(\mu_{q}) \right) (h(\mu_{q})(\widehat{c_{s}})) \right] \end{aligned}$$

$$\widehat{\boldsymbol{C}}(q+1) := \widehat{\boldsymbol{C}}(q) \cup \{\widehat{\boldsymbol{c}}_s\}_{s \in \overline{\mathcal{Q}}(q)}; \mathcal{Q}(q+1) := \mathcal{Q}(q) \cup \overline{\mathcal{Q}}(q)$$

Main points

- Initialization \longrightarrow no friction constraints $(\widehat{C}(0) := \emptyset)$
- Stopping criterion $\longrightarrow e_{\text{GCNS}}(q) > e_{\text{GCNS}}(q-1)$

Hertz contact between two half-disks

- Parametric domain:
 - **1** $\mathcal{D} := [0.7, 1.3](m)$
 - 2 $\mathcal{D}_{\mathrm{train}}$ uniform discretization
- Geometric load:
 - $g_0 = 0.001 \text{m}$
 - **2** $d = 0.09 \text{m} (\leq 10\% \max(R_1))$
- Friction coefficient:
 - 1 $\nu_{\mathcal{F}} := 0.2$
- Potential contact manifold: $\theta \in \left[-\frac{5\pi}{8}, -\frac{3\pi}{8}\right]$
- Finite Element discretization:
 - **1** $\Omega(\mu)$ are μ -dependent
 - **2** Geometric mapping: $h(\mu): \widehat{\Omega} \to \Omega(\mu)$
 - **3** displacement: \mathbb{P}_2
 - **4** Lagrange multipliers: \mathbb{P}_1

HF solutions

Projected Greedy Algorithm (PGA)

Reduced bases

Plain bases

- primal $\longrightarrow N = 30$
- dual $\longrightarrow R = S = 20$
- PGA algorithm
 - Tolerance:

$$\delta_{\text{PGA}} := \sup_{\mu \in \mathcal{D}_{\text{train}}} \frac{\beta_{\text{HF}}(\mu)}{c_{\text{HF}}(\mu)} = 0.072$$

• Enriched primal basis:

$$\dim(V_{N,R}^{off}) = 70$$

Greedy Collocation Node Selection (GCNS) algorithm

Tangential constraint error

$$e_{\mathtt{GCNS}}^{\boldsymbol{n}\boldsymbol{\tau}}(q) := \max_{\boldsymbol{\mu} \in \mathcal{D}_{\mathrm{train}}} \left\| \left[\left\| \boldsymbol{\lambda}_{S}^{\boldsymbol{\tau},q}(\boldsymbol{\mu}) \right\| - \nu_{\mathcal{F}} \boldsymbol{\lambda}_{R}^{\boldsymbol{n},q}(\boldsymbol{\mu}) \right]_{+} \right\|_{\ell^{\infty}(\mathcal{C}(\boldsymbol{\mu}))}$$

• RB approximation error on $\lambda^{ au}(\mu)$

$$e_{\texttt{GCNS}}(q) := \max_{\mu \in \mathcal{D}_{\texttt{train}}} \frac{\|\boldsymbol{\lambda}^{\boldsymbol{\tau}}(\mu) - \boldsymbol{\lambda}_{S}^{\boldsymbol{\tau},q}(\mu)\|_{\Gamma^{\texttt{c}}(\mu)}}{\|\boldsymbol{\lambda}^{\boldsymbol{\tau}}(\mu)\|_{\Gamma^{\texttt{c}}(\mu)}}$$

• At convergence
$$\longrightarrow q = 20$$
, $S_q = 40$

RB solutions

Comparison of the computational cost between the HF model and the RB model

(N, R, S)	(30, 20, 20)
HF times(s)	450
RB time(s)	35

Frictionless contact problem

Linear Elasticity: small deformation assumption

$$-\mathsf{div}(\sigma(\boldsymbol{u}(\boldsymbol{\mu}))) = \boldsymbol{\ell}(\boldsymbol{\mu}), \quad \text{in } \Omega(\boldsymbol{\mu}), \quad \sigma(\boldsymbol{v}) := \mathbb{C}: \varepsilon(\boldsymbol{v})$$

 $a(\mu;\boldsymbol{u},\boldsymbol{v}):=\int_{\Omega(\mu)}\sigma(\boldsymbol{u}):\varepsilon(\boldsymbol{v})\,d\Omega(\mu),\quad f(\mu;\boldsymbol{v}):=\int_{\Omega(\mu)}\boldsymbol{\ell}(\mu)\cdot\boldsymbol{v}\,d\Omega(\mu)$

Ø Signorini contact conditions:

$$\begin{split} u_{\boldsymbol{n}}(\mu) &\leq d^{\boldsymbol{n}}(\mu), \ \sigma_{\boldsymbol{n}\boldsymbol{n}}(\boldsymbol{u}(\mu)) \leq 0, \ \sigma_{\boldsymbol{n}\boldsymbol{n}}(\boldsymbol{u}(\mu))(u_{\boldsymbol{n}}(\mu) - d^{\boldsymbol{n}}(\mu)) = 0, \text{ on } \Gamma^{\mathsf{c}}(\mu) \\ & \mathcal{K}^{\boldsymbol{n}}(\mu) := \{ v \in \mathcal{V}(\mu) \ \mid u_{\boldsymbol{n}}(\mu) \leq d^{\boldsymbol{n}}(\mu), \quad \text{on } \Gamma^{\mathsf{c}}(\mu) \} \end{split}$$

Variational formulation

Well-posed parametric constrained minimization problem:

$$u(\mu) = \underset{v \in \mathcal{K}(\mu)}{\operatorname{argmin}} \mathcal{J}(\mu; v) := \frac{1}{2}a(\mu; v, v) - f(\mu; v), \quad \forall \mu \in \mathcal{D} \subset \mathbb{R}^m$$

Nitsche's method (1/2)

State of art

[Nitsche 1971], [Chouly & Hild 2013], [Chouly 2014], [Chouly, Hild & Renard 2015] [Mlika, Renard & Chouly 2017], [Chouly, Ern & Pignet 2020], [Chouly, Hild, Lleras & Renard 2022]

Alart-Curnier reformulation

$$\sigma_{\boldsymbol{nn}}(\boldsymbol{u}(\mu)) = \left[\sigma_{\boldsymbol{nn}}(\boldsymbol{u}(\mu)) - \gamma \left(u_{\boldsymbol{n}}(\mu) - d^{\boldsymbol{n}}(\mu)\right)\right]_{-}$$

Nitsche's energy

$$\begin{split} J^{\text{Nitsche}}(\mu; \boldsymbol{v}) &:= \mathcal{J}(\mu; \boldsymbol{v}) - \frac{1}{2} \int_{\Gamma^{\mathsf{c}}(\mu)} \frac{1}{\gamma} |\sigma_{\boldsymbol{nn}}(\boldsymbol{v})|^2 d\Gamma(\mu) \\ &+ \frac{1}{2} \int_{\Gamma^{\mathsf{c}}(\mu)} \frac{1}{\gamma} \Big[\sigma_{\boldsymbol{nn}}(\boldsymbol{v}) - \gamma \Big(v_{\boldsymbol{n}} - d^{\boldsymbol{n}}(\mu) \Big) \Big]_{-}^2 d\Gamma(\mu) \end{split}$$

Variational formulation

Well-posed parametric unconstrained minimization problem:

$$m{u}(\mu) = \mathop{\mathrm{argmin}}\limits_{m{v}\inm{\mathcal{V}}(\mu)} J^{\mathrm{Nitsche}}(\mu;m{v})$$

Nitsche's method (2/2)

Optimality conditions

$$a^{\boldsymbol{n}}_{\gamma}(\boldsymbol{\mu};\boldsymbol{u}(\boldsymbol{\mu}),\boldsymbol{v}) + \int_{\Gamma^{c}(\boldsymbol{\mu})} \frac{1}{\gamma} \Big[P^{\boldsymbol{n}}_{\gamma,d^{\boldsymbol{n}}}(\boldsymbol{\mu};\boldsymbol{u}(\boldsymbol{\mu})) \Big]_{-} P^{\boldsymbol{n}}_{\gamma,0}(\boldsymbol{\mu};\boldsymbol{v}) \, d\Gamma(\boldsymbol{\mu}) = f(\boldsymbol{\mu};\boldsymbol{v}), \quad \forall \boldsymbol{v} \in \boldsymbol{\mathcal{V}}(\boldsymbol{\mu})$$

Notations

Bilinear form

$$a^{\boldsymbol{n}}_{\gamma}(\mu; \boldsymbol{u}, \boldsymbol{v}) := a(\mu; \boldsymbol{u}, \boldsymbol{v}) - \int_{\Gamma^{\mathsf{c}}(\mu)} \frac{1}{\gamma} \sigma_{\boldsymbol{nn}}(\boldsymbol{u}) \sigma_{\boldsymbol{nn}}(\boldsymbol{v}) \, d\Gamma(\mu)$$

Operators

•
$$P^{\boldsymbol{n}}_{\gamma,d\boldsymbol{n}}(\mu;\boldsymbol{v}) := \sigma_{\boldsymbol{n}\boldsymbol{n}}(\boldsymbol{v}) - \gamma(v_{\boldsymbol{n}} - d^{\boldsymbol{n}}(\mu))$$
 • $P^{\boldsymbol{n}}_{\gamma,0}(\mu;\boldsymbol{v}) := \sigma_{\boldsymbol{n}\boldsymbol{n}}(\boldsymbol{v}) - \gamma v_{\boldsymbol{n}}$

Resolution method

• Nonlinear problem —> iterative method

 $\left[P^{\boldsymbol{n}}_{\boldsymbol{\gamma},d^{\boldsymbol{n}}}(\boldsymbol{\mu};\boldsymbol{u}_{k}(\boldsymbol{\mu})+\boldsymbol{\delta}\boldsymbol{u}_{k}(\boldsymbol{\mu}))\right]_{-}\approx\left[P^{\boldsymbol{n}}_{\boldsymbol{\gamma},d^{\boldsymbol{n}}}(\boldsymbol{\mu};\boldsymbol{u}_{k}(\boldsymbol{\mu}))\right]_{-}+H(-P^{\boldsymbol{n}}_{\boldsymbol{\gamma},d^{\boldsymbol{n}}}(\boldsymbol{\mu};\boldsymbol{u}_{k}(\boldsymbol{\mu})))P^{\boldsymbol{n}}_{\boldsymbol{\gamma},0}(\boldsymbol{\mu};\boldsymbol{\delta}\boldsymbol{u}_{k}(\boldsymbol{\mu}))$

HF model

Iterative algorithm

- $u_{k+1}(\mu) = u_k(\mu) + \delta u_k(\mu)$
- Sequence of problems: For all $k \geq 0$, find $\delta \boldsymbol{u}_k(\mu) \in \boldsymbol{\mathcal{V}}(\mu)$ such that

 $a_{\gamma}^{\boldsymbol{n}}(\mu; \boldsymbol{\delta u}_{k}(\mu), \boldsymbol{v}) + b_{\gamma}^{\boldsymbol{n}}(\mu; \boldsymbol{u}_{k}(\mu); \boldsymbol{\delta u}_{k}(\mu), \boldsymbol{v}) = -r_{\gamma}^{\boldsymbol{n}}(\mu; \boldsymbol{u}_{k}(\mu); \boldsymbol{v}), \quad \forall \boldsymbol{v} \in \boldsymbol{\mathcal{V}}(\mu)$

Algebraic formulation

For all $k \geq 0$, find $\mathbf{\Delta} U_k(\mu) \in \mathbb{R}^{\mathcal{N}}$ such that

$$A^{\boldsymbol{n}}_{\gamma}(\mu)\boldsymbol{\Delta}\boldsymbol{U}_{k}(\mu) + B^{\boldsymbol{n}}_{\gamma}(\mu,\boldsymbol{u}_{\boldsymbol{k}}(\boldsymbol{\mu}))\boldsymbol{\Delta}\boldsymbol{U}_{k}(\mu) = -R^{\boldsymbol{n}}_{\gamma}(\mu,\boldsymbol{u}_{\boldsymbol{k}}(\boldsymbol{\mu}))$$

Notations

Tangent matrix Bⁿ_γ(μ, w)

$$b^{\boldsymbol{n}}_{\gamma}(\boldsymbol{\mu};\boldsymbol{w};\boldsymbol{u},\boldsymbol{v}) := \int_{\Gamma^{\mathsf{c}}(\boldsymbol{\mu})} \frac{1}{\gamma} H(-P^{\boldsymbol{n}}_{\gamma,d^{\boldsymbol{n}}}(\boldsymbol{\mu};\boldsymbol{w})) P^{\boldsymbol{n}}_{\gamma,0}(\boldsymbol{\mu};\boldsymbol{u}) P^{\boldsymbol{n}}_{\gamma,0}(\boldsymbol{\mu};\boldsymbol{v}) \, d\Gamma(\boldsymbol{\mu}) = \int_{\Gamma^{\mathsf{c}}(\boldsymbol{\mu})} \frac{1}{\gamma} H(-P^{\boldsymbol{n}}_{\gamma,d^{\boldsymbol{n}}}(\boldsymbol{\mu};\boldsymbol{w})) P^{\boldsymbol{n}}_{\gamma,0}(\boldsymbol{\mu};\boldsymbol{v}) \, d\Gamma(\boldsymbol{\mu}) = \int_{\Gamma^{\mathsf{c}}(\boldsymbol{\mu})} \frac{1}{\gamma} H(-P^{\boldsymbol{n}}_{\gamma,d^{\boldsymbol{n}}}(\boldsymbol{\mu};\boldsymbol{w})) P^{\boldsymbol{n}}_{\gamma,0}(\boldsymbol{\mu};\boldsymbol{w}) \, d\Gamma(\boldsymbol{\mu}) = \int_{\Gamma^{\mathsf{c}}(\boldsymbol{\mu})} \frac{1}{\gamma} H(-P^{\boldsymbol{n}}_{\gamma,d^{\boldsymbol{n}}}(\boldsymbol{\mu};\boldsymbol{w})) P^{\boldsymbol{n}}_{\gamma,0}(\boldsymbol{\mu};\boldsymbol{w}) \, d\Gamma(\boldsymbol{\mu};\boldsymbol{w}) \, d\Gamma(\boldsymbol{\mu}) = \int_{\Gamma^{\mathsf{c}}(\boldsymbol{\mu})} \frac{1}{\gamma} H(-P^{\boldsymbol{n}}_{\gamma,d^{\boldsymbol{n}}}(\boldsymbol{\mu};\boldsymbol{w})) P^{\boldsymbol{n}}_{\gamma,0}(\boldsymbol{\mu};\boldsymbol{w}) \, d\Gamma(\boldsymbol{\mu}) = \int_{\Gamma^{\mathsf{c}}(\boldsymbol{\mu})} \frac{1}{\gamma} H(-P^{\boldsymbol{n}}_{\gamma,d^{\boldsymbol{n}}}(\boldsymbol{\mu};\boldsymbol{\mu})) P^{\boldsymbol{n}}_{\gamma,0}(\boldsymbol{\mu};\boldsymbol{\mu}) \, d\Gamma(\boldsymbol{\mu}) = \int_{\Gamma^{\mathsf{c}}(\boldsymbol{\mu})} \frac{1}{\gamma} H(-P^{\boldsymbol{n}}_{\gamma,d^{\boldsymbol{n}}}(\boldsymbol{\mu};\boldsymbol{\mu})) P^{\boldsymbol{n}}_{\gamma,0}(\boldsymbol{\mu}) \, d\Gamma(\boldsymbol{\mu}) = \int_{\Gamma^{\mathsf{c}}(\boldsymbol{\mu})} \frac{1}{\gamma} H(-P^{\boldsymbol{n}}_{\gamma,d^{\boldsymbol{n}}}(\boldsymbol{\mu})) P^{\boldsymbol{n}}_{\gamma,0}(\boldsymbol{\mu}) \, d\Gamma(\boldsymbol{\mu}) = \int_{\Gamma^{\mathsf{c}}(\boldsymbol{\mu})} \frac{1}{\gamma} H(-P^{\boldsymbol{n}}_{\gamma,d^{\boldsymbol{n}}}(\boldsymbol{\mu})) + \int_{\Gamma^{\mathsf{c}}(\boldsymbol{\mu})} \frac{1}{\gamma} H(-P^{\boldsymbol{n}}$$

• Residual vector $R^{\boldsymbol{n}}_{\gamma}(\mu, \boldsymbol{w})$

$$\begin{split} r^{\boldsymbol{n}}_{\gamma}(\boldsymbol{\mu};\boldsymbol{w};\boldsymbol{v}) &:= a^{\boldsymbol{n}}_{\gamma}(\boldsymbol{\mu};\boldsymbol{w},\boldsymbol{v}) + \theta^{\boldsymbol{n}}_{\gamma}(\boldsymbol{\mu};\boldsymbol{w};\boldsymbol{v}) - f(\boldsymbol{\mu};\boldsymbol{v}), \\ \theta^{\boldsymbol{n}}_{\gamma}(\boldsymbol{\mu};\boldsymbol{w},\boldsymbol{v}) &:= \int_{\Gamma^{\mathsf{c}}(\boldsymbol{\mu})} \frac{1}{\gamma} \Big[P^{\boldsymbol{n}}_{\gamma,d^{\boldsymbol{n}}}(\boldsymbol{\mu};\boldsymbol{w}) \Big]_{-} P^{\boldsymbol{n}}_{\gamma,0}(\boldsymbol{\mu};\boldsymbol{v}) \, d\Gamma(\boldsymbol{\mu};\boldsymbol{v}) \Big]_{-} \end{split}$$

RB model

Plain approach

- Setting: geometric mapping $h(\mu): \widehat{\Omega} \to \Omega(\mu)$ such that μ -independent \mathcal{N}
- RB space: POD $\longrightarrow V_N := Span\bigl(\{m{\xi}_n\}_{n\in\{1:N\}}\bigr)$
- Reduced problem: For all $k \ge 0$, find $\Delta U_{N,k}(\mu) \in \mathbb{R}^N$ such that $A^{\boldsymbol{n}}_{\gamma,N}(\mu)\Delta U_{N,k}(\mu) + B^{\boldsymbol{n}}_{\gamma,N}(\mu,k)\Delta U_{N,k}(\mu) = -R^{\boldsymbol{n}}_{\gamma,N}(\mu,k)$
- Large-dimensional "parameter/iteration"-dependent arrays: $\Xi := [\Xi_1 \cdots \Xi_N] \in \mathbb{R}^{\mathcal{N} \times N}$ • $B^{\boldsymbol{n}}_{\gamma,N}(\mu,k) := \Xi^{\top} B^{\boldsymbol{n}}_{\gamma}(\mu, \boldsymbol{u}_{N,k}(\mu)) \equiv$ • $R^{\boldsymbol{n}}_{\gamma,N}(\mu,k) := \Xi^{\top} R^{\boldsymbol{n}}_{\gamma}(\mu, \boldsymbol{u}_{N,k}(\mu))$

Computationally efficient approach

- Affine decomposition
 - Offline phase → training set

$$B_{\gamma}^{\boldsymbol{n}}(\boldsymbol{\mu},\boldsymbol{u}_{k}(\boldsymbol{\mu})) \approx E^{b^{\boldsymbol{n}}}(\boldsymbol{\mu},k) := \sum_{s \in \{1:S^{b^{\boldsymbol{n}}}\}} \alpha_{s}^{b^{\boldsymbol{n}}}(\boldsymbol{\mu},k) B_{\gamma,s}^{\boldsymbol{n}}, \quad B_{\gamma,s}^{\boldsymbol{n}} \in \mathbb{R}^{\mathcal{N} \times \mathcal{N}}, \, \alpha_{s}^{b^{\boldsymbol{n}}}(\boldsymbol{\mu},k) \in \mathbb{R}$$

HF solutions

Relative error on the Alart-Curnier reformulation of Signorini's contact conditions

$\mu(m)$	0.7			1			1.3		
h(mm)	5	2.5	1.25	5	2.5	1.25	5	2.5	1.25
$e_{\rm AC}^{\boldsymbol{n}}(\%)$	1	0.52	0.28	1.45	0.72	0.33	1.17	1.1	0.43

•
$$e_{\mathrm{AC}}^{\boldsymbol{n}}(\mu) := \frac{\left\|\sigma_{\boldsymbol{n}\boldsymbol{n}}(\boldsymbol{u}(\mu)) - \left[P_{\gamma,d\boldsymbol{n}}^{\boldsymbol{n}}(\mu;\boldsymbol{u}(\mu))\right]_{-}\right\|_{\ell^{2}(\Gamma^{\mathsf{c}}(\mu))}}{\|\sigma_{\boldsymbol{n}\boldsymbol{n}}(\boldsymbol{u}(\mu))\|_{\ell^{2}(\Gamma^{\mathsf{c}}(\mu))}}$$

Convergence of order 1

EIM errors

•
$$e_{\text{EIM}}^{b^{n}}(S^{b^{n}}, \mathcal{D}_{*}) := \frac{\max_{\mu \in \mathcal{D}_{*}} \max_{k \in \{1:k^{cv}(\mu)\}} \|B_{\gamma}^{n}(\mu, u_{k}(\mu)) - E^{b^{n}}(\mu, k)\|_{\ell^{\infty}(ij)}}{\max_{\mu \in \mathcal{D}_{*}} \max_{k \in \{1:k^{cv}(\mu)\}} \|B_{\gamma}^{n}(\mu, u_{k}(\mu))\|_{\ell^{\infty}(ij)}}, \mathcal{D}_{*} = \mathcal{D}_{\text{train}} \text{ or } \mathcal{D}_{\text{valid}}$$

• $e_{\text{EIM}}^{b^{n}, cv}(S^{b^{n}}) := \frac{\max_{\mu \in \mathcal{D}_{\text{valid}}} \|B_{\gamma}^{n}(\mu, u_{k^{cv}(\mu)}(\mu)) - E^{b^{n}}(\mu, k^{cv}(\mu))\|_{\ell^{\infty}(ij)}}{\max_{\mu \in \mathcal{D}_{\text{valid}}} \|B_{\gamma}^{n}(\mu, u_{k^{cv}(\mu)}(\mu))\|_{\ell^{\infty}(ij)}}$

 $B^{\boldsymbol{n}}_{\gamma}(\mu, \boldsymbol{u}_k(\mu))$

RB approximation errors

•
$$e_N^{\boldsymbol{u}}(\mu) := \frac{\|\boldsymbol{u}(\mu) - \boldsymbol{u}_N(\mu)\|_{\boldsymbol{V}(\mu)}}{\|\boldsymbol{u}(\mu)\|_{\boldsymbol{V}(\mu)}}$$

• $e_N^{\boldsymbol{nn}}(\mu) := \frac{\|\sigma_{\boldsymbol{nn}}(\boldsymbol{u}(\mu)) - \sigma_{\boldsymbol{nn}}(\boldsymbol{u}_N(\mu))\|_{\ell^2(\Gamma^c(\mu))}}{\|\sigma_{\boldsymbol{nn}}(\boldsymbol{u}(\mu))\|_{\ell^2(\Gamma^c(\mu))}}$

•
$$e_{N,\max}^{u} := \max_{\mu \in \mathcal{D}_{valid}} e_{N}^{u}(\mu)$$

• $e_{N,\max}^{nn} := \max_{\mu \in \mathcal{D}_{valid}} e_{N}^{nn}(\mu)$

 $\boldsymbol{u}(\mu)$

 $\sigma_{nn}(\boldsymbol{u}(\mu)$

Plain RBM vs RBM-EIM

Comparison with the mixed formulation (1/2)

$\mathsf{HF} \text{ energy } \mathcal{J}(\mu; \boldsymbol{u}(\mu)) := \tfrac{1}{2} a(\mu; \boldsymbol{u}(\mu), \boldsymbol{u}(\mu)) - f(\mu; \boldsymbol{u}(\mu)), \ \mu \in \mathcal{D}_{\texttt{train}}$

Comparison with the mixed formulation (2/2)

$$\begin{array}{l} \bullet \ e^{\boldsymbol{u}}_{N,R}(\mu) := \frac{\|\boldsymbol{u}(\mu) - \boldsymbol{u}_N(\mu)\|_{\boldsymbol{\mathcal{V}}(\mu)}}{\|\boldsymbol{u}(\mu)\|_{\boldsymbol{\mathcal{V}}(\mu)}} \\ \bullet \ e^{\lambda}_{N,R}(\mu) := \frac{\|\lambda(\mu) - \lambda_R(\mu)\|_{\ell^2(\Gamma^{\mathsf{c}}(\mu))}}{\|\lambda(\mu)\|_{\ell^2(\Gamma^{\mathsf{c}}(\mu))}} \end{array}$$

•
$$e_{N,R,\max}^{\boldsymbol{u}} := \max_{\boldsymbol{\mu} \in \mathcal{D}_{\text{valid}}} e_{N,R}^{\boldsymbol{u}}(\boldsymbol{\mu})$$

•
$$e_{N,R,\max}^{\lambda} := \max_{\mu \in \mathcal{D}_{\text{valid}}} e_{N,R}^{\lambda}(\mu)$$

 $e^{oldsymbol{u}}_{N,R, ext{max}}$ and $e^{oldsymbol{u}}_{N, ext{max}}$

R = 10, R = 30, R = 40