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Introduction

Full Order Models (FOMs), e.g., FE, FV, FD,...

(i) dimension: N = O(106) / (e.g., FE mass matrix, Mh ∈ RN×N)

(ii) computational cost /
(iii) accuracy ,

Reduced Order Models (ROMs)

(i) dimension: r = O(10) , (e.g., ROM mass matrix, Mr = C⊺MhC ∈ R r×r )

(ii) computational cost ,
(iii) accuracy

(iiia) laminar flows: G-ROM ,
(iiib) turbulent flows: G-ROM / G-ROM + closure term ,
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Reduced Order Model (ROM)

Question: What kind of setting is good for the ROM?
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Proper Orthogonal Decomposition (POD)

• one of the most popular ROM techniques,

• seeks a low-dimensional basis {φj}rj=1,

• data for the parabolic PDE:

●
u = f (u), (1)

• collect the snapshots {u1
h, . . . ,u

M
h } from FE solutions,

• solve the minimization problem:

min
(φi ,φj )H=δij

1

M

M

∑
j=1

XXXXXXXXXXX

uh(tj) −
d

∑
i=1
(uh(tj), φi(x))

H
φi(x)

XXXXXXXXXXX

2

, (2)

• solve the eigenvalue problem:

Kvi = λivi , K =
1

M
Y TMhY (3)

λ1 ⩾ λ2 ⩾ ...λd ⩾ λd+1 = ... = λM = 0 (4)

(Cr )i =
1
√
M

1
√
λi

Yvi , i = 1, ..., r . (5)
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Galerkin ROM (G-ROM)

We derive the G-ROM framework on the incompressible Navier-Stokes

equations:

∂u
∂t
− Re−1∆u + u ⋅ ∇u +∇p = 0 , (6)

∇ ⋅ u = 0 , (7)

• the most straightforward ROM,

• build the ROM solution, i.e., ur as (ud is truth solution)

ur =
r

∑
i=1
(ar)i φi . (8)

• find the weak form of (6)-(7) by inserting ur into u in (6)-(7)

G-ROM:
●
ar = A ar + a⊺r B ar , (9)

• a is the unknown,

• the matrix Aim = −Re
−1 (∇φm,∇φi),

• the tensor Bimn = −(φm ⋅ ∇φn,φi)1 ≤ i ,m,n ≤ r .
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ROM Closure Problem

Structure-dominated Regime

• the rate is fast,

• resolved regime,

• closure term is not needed, e.g., G-ROM

Convection-dominated Regime

• the rate is not fast,

• under-resolved regime,

• to increase the numerical accuracy
• r ↑/
• add a closure ,

(
●
ur ,φi) = (f (ur ) ,φi) + Closure term. (10)

Closure term:

• models the interaction between the resolved and unresolved ROM modes,

• is not a closed term,

• is modeled with r -dimensional operators in an offline stage.
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ROM Closure Modeling

Question: How do we model the closure term?

• Functional ROM closures
• physical insight,

• e.g., eddy viscosity.

• Structural ROM closures
• mathematical arguments,

• e.g., approximate deconvolution, parameterized manifolds, data-driven.

Data-Driven Framework (D2):

• ansatz construction

Closure term(ad , ar) ≈ Ansatz(ar), (11)

• least-squares problem

min
D2 operators

M

∑
j=1
∥Closure term((ad)FOM

j ), (ar)FOM
j ) −Ansatz((ar)FOM

j )∥
2
(12)

D2-VMS-ROM: ( ●ur ,φi) = (f (ur) ,φi) +Ansatz(ar) (13)
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Coefficient-based D2-VMS-ROM

Ref: Mou C., Koc B., San O., Rebholz L.G., and Iliescu T. (2021). Data-driven variational multiscale reduced

order models. Computer Methods in Applied Mechanics and Engineering, 373:11347.

2S-D2-VMS-ROM

• using hierarchical structure of ROM space and basis

• resolved ROM scales X 1 ∶= span{φ1, . . . ,φr}
• unresolved ROM scales X 2 ∶= span{φr+1, . . . ,φd}
• two-scale decomposition

• ur ∈ X 1 resolved ROM component of u
• u′ ∈ X 2 unresolved ROM component of u

ud =
d

∑
j=1

aj φj =
r

∑
j=1
(ar )j φj +

d

∑
j=r+1

(a′)j φj = ur + u′

• VMS-ROM closure term

( ●ur , φi) = (f (ur) , φi) + [(f (ud) , φi) − (f (ur) , φi)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

VMS-ROM closure term

∀ i = 1, . . . , r
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2S-D2-VMS-ROM

2S-D2-VMS-ROM Algorithm:

• use the FOM data (snapshots)

• offline stage

• low-dimensional D2 operators

• coefficient-based ansatz:

VMS-ROM Closure term ≈ Ãar + a⊺r B̃ar (14)

min
Ã,B̃

M

∑
j=1
∥Closure term((ad)FOM

j ), (ar)FOM
j ) − [Ã(aFOM

r )j + ((aFOM
r )j)⊺B̃(aFOM

r )j] ∥
2

(15)

2S-D2-VMS-ROM: ȧ = (A + Ã)ar + a⊺r (B + B̃)ar (16)
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3S-D2-VMS-ROM

• large resolved ROM scales X 1 ∶= span{φ1, . . . ,φr1
}

• small resolved ROM scales X 2 ∶= span{φr1+1, . . . ,φr}
• unresolved ROM scales X 3 ∶= span{φr+1, . . . ,φd}

• three-scale decomposition:
• uL ∈ X 1 large resolved ROM component of u
• uS ∈ X 2 small resolved ROM component of u
• u′ ∈ X 3 unresolved ROM component of u

ud =

d

∑

j=1

aj φj =

r1

∑

j=1

(aL)j φj +

r

∑

j=r1+1

(aS)j φj

d

∑

j=r+1

(a′)j φj = uL + uS + u′ = ur + u′

• VMS-ROM closure terms

• large-small VMS-ROM closure term:

(
●
uL , φi) = (f (ur ) , φi) + [(f (ud) , φi) − (f (ur ) , φi)] ∀ i = 1, . . . , r1,

• small-unresolved VMS-ROM closure term:

( ●uS , φi) = (f (ur) , φi) + [(f (ud) , φi) − (f (ur) , φi)] ∀ i = r1 + 1, . . . , r ,
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continued

• two different least squares problems:

• 1st one: large and small resolved scales; produces ÃL and B̃L

• 2nd one: small resolved and unresolved scales; produces ÃS and B̃S

⎡⎢⎢⎢⎢⎢⎣

●
aL

●
aS

⎤⎥⎥⎥⎥⎥⎦
= A a + a⊺ B a +

⎡⎢⎢⎢⎢⎢⎣

ÃL aL + a⊺L B̃L aL

ÃS aS + a⊺S B̃S aS

⎤⎥⎥⎥⎥⎥⎦
, (17)

• 2 truncated SVD

• more flexibility in choosing the VMS-ROM closure operators ÃL, ÃS , B̃L,

and B̃S in the least squares problems.
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Numerical Results

Numerical results are obtained by using the Burgers and NSE equations

considering the reconstructive and predictive regimes.

⎧⎪⎪⎨⎪⎪⎩

ut − νuxx + uux = 0 , x ∈ [0,1], t ∈ [0,1],
u(0, t) = u(1, t) = 0 , t ∈ [0,1],

(18)

with the initial condition

u0(x) =
⎧⎪⎪⎨⎪⎪⎩

1, x ∈ (0,1/2],
0, x ∈ (1/2,1],

(19)

Snapshot Generation: ν = 10−3,h = 1/2048,∆t = 10−3, linear FE, CN.

r G-ROM 2S-D2-VMS-ROM 3S-D2-VMS-ROM

E(L2) E(L2) r1 tolS E(L2)
3 1.181e-01 7.278e-02 1 1e+00 1.322e-02

7 1.828e-01 1.755e-01 2 1e-03 3.915e-03

11 1.258e-01 1.229e-01 1 1e-03 1.787e-03

17 6.551e-02 6.456e-02 1 1e-02 2.310e-03

Table 1: Reconstructive regime, tol = tolL = 10
1, and optimal tolS .
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continued

Predictive regime: training set = [0,0.7] and testing set = [0.7,1].

r G-ROM 2S-D2-VMS-ROM 3S-D2-VMS-ROM

E(L2) tol E(L2) r1 tolS tolL E(L2)
3 2.185e-01 1e-01 3.623e-02 2 1e-01 1e+00 3.029e-02

7 2.054e-01 3e-02 2.004e-02 6 5e-02 3e-02 1.428e-02

11 1.620e-01 3e-02 1.608e-02 10 5e-02 3e-02 1.418e-02

17 1.103e-01 1e-02 1.524e-02 6 1e-02 1e-01 1.506e-02

Table 2: Predictive regime, optimal tol , tolS , and tolL.

Conclusions:

• 3S-D2-VMS-ROM has more flexibility in choosing the VMS-ROM closure

operators.

• 3S-D2-VMS-ROM is significantly more accurate than the

2S-D2-VMS-ROM for reconstructive regime.

• 3S-D2-VMS-ROM is more accurate than the 2S-D2-VMS-ROM for

predictive regime.
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Flow Past a Cylinder

We prescribe no-slip boundary conditions on the walls and cylinder, and the following inflow and outflow profiles:

u1(0, y, t) = u1(2.2, y, t) =
6

0.412
y(0.41 − y), (20)

u2(0, y, t) = u2(2.2, y, t) = 0, (21)

where u = ⟨u1, u2⟩.

• DOF: 103K (102962) velocity and 76K (76725) pressure

• linearized BDF2 temporal discretization with ∆t = 0.002

• Re = 1000

ROM Construction:

• use 10s of the FOM data, e.g., [13, 23] (one period=[13, 13.268])
• reconstructive regime: ROM basis=[13, 23], D2 operators=[13, 13.268]
• predictive regime: ROM basis=[13, 23], D2 operators=[13, 13.134] (half period)
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Flow Past A Cylinder, Re = 1000

0 1 2 3
0.603

0.607

0.611

0.615
FOM projection 2S-DD-VMS-ROM 3S-DD-VMS-ROM G-ROM

0 1 2 3
0.610

0.613

0.615

0.617
FOM projection 2S-DD-VMS-ROM 3S-DD-VMS-ROM G-ROM

0 1 2 3
0.610

0.614

0.619

0.623
FOM projection 2S-DD-VMS-ROM 3S-DD-VMS-ROM G-ROM

Figure 1: Flow past a cylinder, Re = 1000, reconstructive regime. Time evolution of

the kinetic energy for G-ROM, 2S-DD-VMS-ROM, and 3S-DD-VMS-ROM for

different r values.
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Flow Past A Cylinder, Re = 1000

3 6.5 10
0.540

0.579

0.617

0.655
FOM projection 2S-DD-VMS-ROM 3S-DD-VMS-ROM G-ROM

3 6.5 10
0.564

0.648

0.733

0.817
FOM projection 2S-DD-VMS-ROM 3S-DD-VMS-ROM G-ROM

3 6.5 10
0.547

0.580

0.612

0.645
FOM projection 2S-DD-VMS-ROM 3S-DD-VMS-ROM G-ROM

Figure 2: Flow past a cylinder, Re = 1000, predictive regime. Time evolution of the

kinetic energy for G-ROM, 2S-DD-VMS-ROM, and 3S-DD-VMS-ROM for different r

values.
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Residual-based Data-Driven Variational Multiscale (R-D2-VMS-ROM)

Ref: Koc, B., Rebollo, T. C., Iliescu, T. (2022). Residual Data-Driven Variational Multiscale Reduced Order

Models for Parameter Dependent Problems. arXiv preprint arXiv:2208.00059.

Aim: Create a ROM closure model depends on the ROM residual

For a given bilinear-linear form:

a(ud , v d) =< f , v d > (22)

Decompose (22) into two problems as:

a(uL, vL) + a(uS , vL) = ⟨f , vL⟩ (23a)

a(uS , vS) + a(uL, vS) = ⟨f , vS⟩ (23b)

The matrix-vector form of (23a)-(23b) is as follows:

ALL aL +ALS aS = bL (24a)

ASL aL +ASS aS = bS (24b)

Closure(aS) ≈ Ansatz(Res(aL)) .
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R-D2-VMS-ROM with one ansatz

R-D2-VMS-ROM with one ansatz

aS ≈ ÃResS(aL), (25)

where ResS(aL) = bS −ASL aL.

To construct the D2 operator in (25), we need to solve the following

generalized minimization problem:

min
Ã

M

∑
j=1
∥ aj

S − ÃResS(aj
L) ∥

2

L2
. (26)

R1-ROM ∶ (ALL −ALS ÃASL) aL = bL −ALS Ã bS . (27)
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R-D2-VMS-ROM with two ansatzes

R-D2-VMS-ROM with two ansatzes

aS ≈ Ã1 ResS(aL), (28)

ResL(aS) ≈ Ã2 ResL(aapprox
S ), (29)

where ResL(aS) = bL −ALS aS .

By using (26) and the following minimization problems to obtain the D2

operators Ã1 and Ã2, respectively.

min
Ã2

M

∑
j=1
∥ResL(u j

S) − Ã2 ResL(aapprox
S ) ∥2

L2
. (30)

R2-ROM ∶ (ALL − Ã2 ALS Ã1 ASL) aL = Ã2 (bL −ALS Ã1 bS). (31)
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Numerical Results

We present numerical results for the parameter-dependent CD problem

⎧⎪⎪⎨⎪⎪⎩

−µ∂xxu + c∂xu = f for x ∈ [0,1],
u(0) = 0 and u(1) = 0,

(32)

with the following exact solution

u(x , µ) = exp(cx/µ) − 1
exp(c/µ) − 1 − x , (33)

where µ is a parameter. The force term is f = −c = −400.

Snapshot Generation µ ∈ [1,10], ∆µ = 1, linear FE, h = 1/4096.

ROM Construction Use µtraining = 1,2, ...,9,10 to generate the ROM basis

functions and operators and train the D2-VMS-ROM operators. We test all the

ROMs for µtesting = 0.5,0.1,0.05,15, which fall outside the training range.
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continued

To compare the numerical accuracy of the methods, we use the following

metric to compute the ROM errors:

E2L2 = ∥uL(µtesting) −
L

∑
i=1
(uFOM(µtesting),φi)

L2
φi ∥

L2

. (34)

For a fair comparison, we also consider the coefficient-based D2-VMS-ROM:

ALS aS ≈ Ã aL, (35a)

C-ROM ∶ (ALL + Ã) aL = bL. (36)
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Testing the ROMs for µ = 0.5

L G C R1 R2

1 4.38e+00 5.72e+00 5.45e-04 3.04e-04

2 3.71e-01 3.66e-01 1.04e-04 8.88e-03

3 4.26e-01 4.19e-01 7.64e-05 3.14e-03

4 1.68e-01 1.68e-01 8.19e-05 1.78e-03

5 1.61e-01 1.61e-01 2.46e-04 1.22e-03

6 9.92e-02 9.92e-02 1.72e-04 8.84e-04

7 9.48e-02 9.48e-02 1.18e-04 6.80e-04

Table 3: L2 error (34) for G-ROM, C-ROM, R1-ROM, and R2-ROM for various L

values.

L ALS aS C L ALS aS C

1 3.06e+02 7.10e+02 6 5.90e+02 2.40e-02

2 1.21e+03 1.77e+01 7 4.18e+02 9.31e-05

3 1.21e+03 1.90e+01 8 2.64e+02 7.84e-05

4 1.00e+03 7.06e-01 9 1.26e+02 1.02e-02

5 7.85e+02 3.76e-01 10 0 0

Table 4: Consistency error comparison for C-D2-VMS-ROM with various L values. 25
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continued

In Tables 4, 5, and 6, to investigate the ROM consistency, we list the norm of

the closure term and its ansatz.

L aS R1 L aS R1

1 6.37e-02 7.01e-02 6 2.95e-03 6.03e-03

2 2.48e-02 2.67e-02 7 2.13e-03 5.12e-03

3 1.14e-02 1.28e-02 8 1.50e-03 7.41e-04

4 6.36e-03 8.77e-03 9 9.35e-04 4.23e-04

5 4.17e-03 7.11e-03 10 0 0

Table 5: Consistency error comparison for R1-D2-VMS-ROM with various L values.

L ResL(aS) R2 L ResL(aS) R2

1 4.24e+01 4.07e+01 6 6.86e+02 9.31e+02

2 1.24e+03 1.32e+03 7 5.31e+02 8.24e+02

3 1.21e+03 1.23e+03 8 4.43e+02 6.97e+03

4 1.06e+03 1.16e+03 9 3.74e+02 3.57e+02

5 8.34e+02 1.00e+03 10 0 0

Table 6: Consistency error comparison for R2-D2-VMS-ROM with various L values.
26
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Testing for All µ Values

Instead of further investigating different µtesting values that are out of the

training set, we use the average L2 error (37) to measure the ROM consistency

for µtesting = 0.5,0.1,0.05,15.

Eavg =
1

M

M

∑
j=1
∥uL(µtesting

j ) −
r

∑
i=1
(uFOM(µtesting

j ),φi)
L2
φi ∥

L2

. (37)

L G-ROM C-ROM R1-ROM R2-ROM

1 1.95e+01 3.99e-03 8.98e-04 1.14e-03

2 4.17e-01 5.76e-03 2.11e-04 1.13e-02

3 3.31e+00 5.06e-03 2.92e-04 6.24e-03

4 3.07e-01 4.68e-03 3.36e-04 5.36e-03

5 1.93e+00 4.43e-03 1.03e-03 4.91e-03

6 2.64e-01 4.17e-03 8.30e-04 4.53e-03

7 1.49e+00 3.95e-03 6.54e-04 4.25e-03

Table 7: Average L2 error (37) for G-ROM, C-ROM, R1-ROM, and R2-ROM for

various L values.
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Conclusions

• The errors in Table 3, the G-ROM and C1-ROM yield the worst results

among all the ROMs.

• Furthermore, R1-ROM give the lowest errors among all the ROMs.

• The order of magnitude of the C-ROM error quickly diminishes than the

norm of the closure term.

• In Tables 5-6, we observe that the order of magnitude of the R1-ROM and

R2-ROM are the same as their closure terms, and as L goes to d . Thus,

we conclude that R1-ROM and R2-ROM are equally consistent models.

• Based on the errors in Table 7, G-ROM and R1-ROM are the worst and

most accurate, respectively.

• Although R2-ROM involves more information from the sub-scale equation,

R1-ROM is more accurate than R2-ROM.
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