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Introduction

Full Order Models (FOMs), e.g., FE, FV, FD,...

(i) dimension: N = O(10°) @ (e.g., FE mass matrix, M, ¢ R™V)
(ii) computational cost ®

(iii) accuracy ©

Reduced Order Models (ROMs)
(i) dimension: r = O(10) ® (e.g., ROM mass matrix, M, = C"M,C € R™")
(ii) computational cost ©
(iii) accuracy
(iiia) laminar flows: G-ROM ©
(iiib) turbulent flows: G-ROM ® G-ROM + closure term ©



Reduced Order Model (ROM)

Question: What kind of setting is good for the ROM?




Proper Orthogonal Decomposition (POD)

e one of the most popular ROM techniques,
e seeks a low-dimensional basis {@j};zl,

e data for the parabolic PDE:
u=f(u), (1)
e collect the snapshots {u;, R u,’:/’} from FE solutions,

e solve the minimization problem:
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Galerkin ROM (G-ROM)

We derive the G-ROM framework on the incompressible Navier-Stokes

equations:
0 _
a—l;—Re "Au+u-Vu+vp=0, (6)
V-u=0, (7)

e the most straightforward ROM,
e build the ROM solution, i.e., u, as  (ug is truth solution)
ur =Y (a,)i i. (8)
i=1

e find the weak form of (6)-(7) by inserting u, into u in (6)-(7)

G-ROM: a, =Aa, +a, Ba,, (9)

e a is the unknown,
e the matrix A;,, = —Re™! (Ve Vep;),
e the tensor Bj,,, = 7(<pm . chn,ap,») 1<i,mn<r.



ROM Closure Problem

Structure-dominated Regime

e the rate is fast,
e resolved regime,

e closure term is not needed, e.g., G-ROM
Convection-dominated Regime

e the rate is not fast,

e under-resolved regime,
e to increase the numerical accuracy

o rt ®
e add a closure ©®

(ur, ;) = (F(u,), ;) + Closure term. (10)
Closure term:

e models the interaction between the resolved and unresolved ROM modes,
e is not a closed term,

e is modeled with r-dimensional operators in an offline stage.



ROM Closure Modeling

Question: How do we model the closure term?

e Functional ROM closures
e physical insight,
e e.g., eddy viscosity.
e Structural ROM closures
e mathematical arguments,
e e.g., approximate deconvolution, parameterized manifolds, data-driven.

Data-Driven Framework (D2):
e ansatz construction
Closure term(agq, a,) ~ Ansatz(a,), (11)

e least-squares problem

W 2
02 g;(irr;tm; HCIosure term((ad)J-FOM), (a,)JFOM) - Ansatz((ar J-FOM)H (12)

D2-VMS-ROM: (d,, ;) = (f(u,), ;) + Ansatz(a,) (13)
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Coefficient-based D2-VMS-ROM

Ref: Mou C., Koc B., San O., Rebholz L.G., and lliescu T. (2021). Data-driven variational multiscale reduced
order models. Computer Methods in Applied Mechanics and Engineering, 373:11347.

25-D2-VMS-ROM

o using hierarchical structure of ROM space and basis
e resolved ROM scales X1 :=span{p,...,p,}

e unresolved ROM scales X :=span{e, 1,---,Pq}
e two-scale decomposition

e u,€X; resolved ROM component of u
e u' € X, unresolved ROM component of u

d r d
ug = 3= (anjej+ 3 (a)jpj=ur+u
= s jErt

e VMS-ROM closure term

(u.r,np,-) = (F(ur),pi)+ [(f(ud),np,-) - (f(u,),cp,-)] Vi=1,...,r

VMS-ROM closure term

11



25-D2-VMS-ROM

25-D2-VMS-ROM Algorithm:

e use the FOM data (snapshots)
e offline stage
e low-dimensional D2 operators

e coefficient-based ansatz:

VMS-ROM Closure term ~ Aa, + a, Ba, (14)

M
min 3" [ Closure term((a4); ™), (a,)[*") - [A(af™"); + ((af*");) " B(a™"),] H2
A,B j=1

(15)

25-D2.VMS-ROM: 4= (A+A)a, +a/(B+B)a,

(16)

12



35-D2-VMS-ROM

e large resolved ROM scales X1 :=span{p;,..., ¢, }
e small resolved ROM scales Xz :=span{p, .1;---, P, }
e unresolved ROM scales X3 :=span{®,,1,..., @4}

three-scale decomposition:

e u; € X; large resolved ROM component of u
e us e X, small resolved ROM component of u
e u' € X3 unresolved ROM component of u

d n g d
ug=Y ajpi=>(a)jei+ » (as)je; . (a)jej=u +us+u =u +u
i= =1 j j=r1

Jj=r1+1 Jj=r+

VMS-ROM closure terms
e large-small VMS-ROM closure term:

(L, i) = (F(ur),0) + [(F(ua) ,01) - (F(ur) )] Vi=1,...,n,

e small-unresolved VMS-ROM closure term:

(';5790"):(f(u')vsoi)+[(f(ud)’(pi)_(f(u')vsoi)] Vi:rl"']-a"',r’

13



continued

e two different least squares problems:

e 1st one: large and small resolved scales; produces A; and B;
e 2nd one: small resolved and unresolved scales; produces As and Bs

a AL a; + az BL a
= Aa+a Ba-+ , (17)
as A5a5+a; Bs as

e 2 truncated SVD
e more flexibility in choosing the VMS-ROM closure operators A, As, By,
and Bg in the least squares problems.

14



Numerical Results

Numerical results are obtained by using the Burgers and NSE equations
considering the reconstructive and predictive regimes.

U —vux +uuy =0, xe€[0,1], te[0,1], (18)
u(0,t) =u(1,t)=0, te[0,1],
with the initial condition
1, xe(0,1/2],
up(x) = (0.172] (19)
0, xe(1/2,1],
Snapshot Generation: v = 107%, h = 1/2048, At = 107>, linear FE, CN.
r G-ROM 25-D2-VMS-ROM 35-D2-VMS-ROM
E(L?) E(L?) n | tols E(L?)
3 1.181e-01 7.278e-02 1 | 1e+00 | 1.322e-02
7 1.828e-01 1.755e-01 2 1le-03 3.915e-03
11 | 1.258e-01 1.229e-01 1 1le-03 1.787e-03
17 | 6.551e-02 6.456e-02 1 le-02 2.310e-03

Table 1: Reconstructive regime, tol = tol; = 101, and optimal tols.
15



continued

Predictive regime: training set = [0,0.7] and testing set = [0.7,1].

r | G-ROM | 25-D2-VMS-ROM 35-D2-VMS-ROM

E(L?) tol E(L?) n | tols tol; E(L?)

3 | 2.185e-01 | 1e-01 | 3.623¢-02 | 2 | 1e-01 | 1e+00 | 3.029¢-02
7 | 2.054e-01 | 3e-02 | 2.004e-02 | 6 | 5e-02 | 3e-02 | 1.428e-02
11 | 1.620e-01 | 3e-02 | 1.608e-02 | 10 | 5e-02 | 3e-02 | 1.418e-02
17 | 1.103e-01 | 1e-02 | 1.524e-02 | 6 | 1e-02 | 1e-01 | 1.506e-02

Table 2: Predictive regime, optimal tol, tols, and tol;.

Conclusions:

e 35-D2-VMS-ROM has more flexibility in choosing the VMS-ROM closure
operators.

e 35-D2-VMS-ROM is significantly more accurate than the
25-D2-VMS-ROM for reconstructive regime.

e 35-D2-VMS-ROM is more accurate than the 25-D2-VMS-ROM for
predictive regime.
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Flow Past a Cylinder

0.2 0.05

-—D 0.41
i

Figure 2: Geometry of the flow past a circular cylinder numerical experiment.

We prescribe no-slip boundary conditions on the walls and cylinder, and the following inflow and outflow profiles:

ur(0,y,t) =u1(2.2,y,1t) = (0.41-y), (20)

0.412”
n(0,y,t) =u(2.2,y,t) =0, (21)

where u = (uy, up).

e DOF: 103K (102962) velocity and 76K (76725) pressure
e linearized BDF2 temporal discretization with At = 0.002
e Re = 1000

ROM Construction:

e use 10s of the FOM data, e.g., [13, 23] (one period=[13, 13.268])
e reconstructive regime: ROM basis=[13, 23], D2 operators=[13, 13.268]
e predictive regime: ROM basis=[13, 23], D2 operators=[13, 13.134] (half period)
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Flow Past A Cylinder, Re = 1000
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Figure 1: Flow past a cylinder, Re = 1000, reconstructive regime. Time evolution of
the kinetic energy for G-ROM, 25-DD-VMS-ROM, and 35-DD-VMS-ROM for
different r values.

18



Flow Past A Cylinder, Re = 1000

Kinetic Energy (rr — 4)
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Figure 2: Flow past a cylinder, Re = 1000, predictive regime. Time evolution of the
kinetic energy for G-ROM, 25-DD-VMS-ROM, and 3S-DD-VMS-ROM for different r
values.

19



Residual-based Data-Driven Variational Multiscale (R-D2-VMS-ROM)

Ref: Koc, B., Rebollo, T. C., lliescu, T. (2022). Residual Data-Driven Variational Multiscale Reduced Order
Models for Parameter Dependent Problems. arXiv preprint arXiv:2208.00059.

Aim: Create a ROM closure model depends on the ROM residual

For a given bilinear-linear form:

a(u?,v?) =< f,v?> (22)

Decompose (22) into two problems as:
a(ug,vy) +a(us,vy) =(f,vy) (23a)
a(us,vs) +a(ug,vs) =(f,vs) (23b)
The matrix-vector form of (23a)-(23b) is as follows:

Ajra +Asas=b; (24a)
As; a; + Ass as = bs (24b)

’ Closure(as) ~ Ansatz(Res(a;)) ‘

20



R-D2-VMS-ROM with one ansatz

R-D2-VMS-ROM with one ansatz
as ~ ARess(aL), (25)

where Ress(a;) = bs — As ay.

To construct the D2 operator in (25), we need to solve the following

generalized minimization problem:

M P .
min 3 &% - ARess(a}) 2. (26)
j=1

R].-ROM : (AL[_ = A[_s Z\ASL) ap = b[_ a A[_s Z\bs (27)

21



R-D2-VMS-ROM with two ansatzes

R-D2-VMS-ROM with two ansatzes

as ~ 2\1 Ress(aL), (28)
Resl_(as) ~ 2\2 ReSL(aaspme)’ (29)

where Res,(as) = b, — A;s as.

By using (26) and the following minimization problems to obtain the D2

operators 2\1 and 2\2, respectively.

M L
rr}‘in > || Resc(u’s) — Az Resi(a2™™) Hiz . (30)
=

2

R2-ROM : (ALL - Az ALS lal A5L) a, = Az (bL - ALS lal bs) (31)
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Numerical Results

We present numerical results for the parameter-dependent CD problem

—pOtu + cOxu =1f for x € [0,1],
[10:cu u x€[0,1] (32)
u(0)=0 and u(l)=0,
with the following exact solution
u(x, ) = exp(ex/p) -1 _x, (33)

exp(c/p) -1

where p is a parameter. The force term is f = —c = —400.

Snapshot Generation € [1,10], Ap =1, linear FE, h=1/4096.

ROM Construction Use 1" =1 2 ... 9,10 to generate the ROM basis
functions and operators and train the D2-VMS-ROM operators. We test all the
ROMs for ;'™ = 0.5,0.1,0.05, 15, which fall outside the training range.

23



continued

To compare the numerical accuracy of the methods, we use the following
metric to compute the ROM errors:

. L .
uL(Mtestmg) B Z (UFOM (Mtest:lng)7 LP,) @,

2
i=1 L

€2L2 S (34)

12

For a fair comparison, we also consider the coefficient-based D2-VMS-ROM:

Asas ~ Aay, (35a)

C-ROM: (A +A)a, = b;. (36)

24



Testing the ROMs for 1 =0.5

G C R1 R2
4.38e+00 | 5.72e+00 | 5.45e-04 | 3.04e-04
3.71e-01 3.66e-01 | 1.04e-04 | 8.88e-03
4.26e-01 4.19e-01 | 7.64e-05 | 3.14e-03
1.68e-01 1.68e-01 | 8.19e-05 | 1.78e-03
1.61e-01 1.61e-01 | 2.46e-04 | 1.22e-03
9.92e-02 9.92e-02 | 1.72e-04 | 8.84e-04
9.48e-02 9.48e-02 | 1.18e-04 | 6.80e-04

~N O 0 0N -~

Table 3: L2 error (34) for G-ROM, C-ROM, R1-ROM, and R2-ROM for various L
values.

L ALS as C L ALS as C
1 | 3.06e+02 | 7.10e+02 6 | 5.90e+02 | 2.40e-02
2 | 1.21e+03 | 1.77e+401 7 | 4.18e+02 | 9.31e-05
3 | 1.21e4+03 | 1.90e+01 8 | 2.64e+02 | 7.84e-05
4 | 1.00e+4-03 | 7.06e-01 9 | 1.26e+02 | 1.02e-02
5 | 7.85e4+02 | 3.76e-01 10 0 0

Table 4: Consistency error comparison for C-D2-VMS-ROM with various L values. 25



continued

In Tables 4, 5, and 6, to investigate the ROM consistency, we list the norm of
the closure term and its ansatz.

L as R1 L as R1
1 | 6.37e-02 | 7.01e-02 6 | 2.95e-03 | 6.03e-03
2 | 2.48e-02 | 2.67e-02 7 | 2.13e-03 | 5.12e-03
3 | 1.14e-02 | 1.28e-02 8 1.50e-03 | 7.41e-04
4 | 6.36e-03 | 8.77e-03 9 | 9.35e-04 | 4.23e-04
5 | 4.17e-03 | 7.11e-03 10 0 0

Table 5: Consistency error comparison for R1-D2-VMS-ROM with various L values.

L | Res.(as) R2 L | Res.(as) R2
1 | 4.24e+01 | 4.07e+401 6 | 6.86e+02 | 9.31e+402
2 | 1.24e+03 | 1.32e+03 7 | 5.31e+02 | 8.24e+02
3 | 1.21e+03 | 1.23e+03 8 | 4.43e+02 | 6.97e+403
4 | 1.06e+03 | 1.16e4-03 9 | 3.74e+02 | 3.57e+402
5 | 8.34e4+02 | 1.00e+03 || 10 0 0

Table 6: Consistency error comparison for R2-D2-VMS-ROM with various L values. 26



Testing for All 1 Values

Instead of further investigating different 1'*"¢ values that are out of the

training set, we use the average L? error (37) to measure the ROM consistency

for p*"€ = 0.5,0.1,0.05, 15.
M

1l stin, - estin,
(‘:avg = MJZ; UL(N;S ’ g) - ; (UFOM(N‘; ‘ g)?‘loi)L2 Pi ’
L | G-ROM C-ROM | R1-ROM | R2-ROM
1 | 1.95e+01 | 3.99e-03 | 8.98e-04 | 1.14e-03
2 | 4.17e-01 | 5.76e-03 | 2.11e-04 | 1.13e-02
3 | 3.31e4+00 | 5.06e-03 | 2.92e-04 | 6.24e-03
4 | 3.07e-01 | 4.68e-03 | 3.36e-04 | 5.36e-03
5 | 1.93e+00 | 4.43e-03 | 1.03e-03 | 4.91e-03
6 | 2.64e-01 | 4.17e-03 | 8.30e-04 | 4.53e-03
7 | 1.49e+400 | 3.95e-03 | 6.54e-04 | 4.25e-03

Table 7: Average L? error (37) for G-ROM, C-ROM, R1-ROM, and R2-ROM for

various L values.

(37)
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Conclusions

e The errors in Table 3, the G-ROM and C1-ROM yield the worst results
among all the ROMs.

e Furthermore, R1-ROM give the lowest errors among all the ROMs.

e The order of magnitude of the C-ROM error quickly diminishes than the
norm of the closure term.

e In Tables 5-6, we observe that the order of magnitude of the R1-ROM and
R2-ROM are the same as their closure terms, and as L goes to d. Thus,
we conclude that R1I-ROM and R2-ROM are equally consistent models.

e Based on the errors in Table 7, G-ROM and R1-ROM are the worst and
most accurate, respectively.

e Although R2-ROM involves more information from the sub-scale equation,
R1-ROM is more accurate than R2-ROM.
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