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Numerical optimization problem (1/2)

Original and penalized problem
Original problem

min
c(x)≤0

f(x)

Penalized problem
min
x
f(x)−ϵ log(−c(x))

4/46



Numerical optimization problem (2/2)

Primal penalized problem
The primal problem consists in solving for x the following first order
conditions

f ′(x)− c′(x). ϵ

c(x)
= 0

Primal dual penalized problem
The primal-dual problem consists in solving for x and λ the following first
order conditions

f ′(x) + c′(x).λ = 0

λc(x) + ϵ = 0⇔ λ− c(x)−
√
λ2 + c(x)2 + 2ϵ = 0
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Objective of the paper

Objective of the paper
Adapt primal-dual interior point methods from numerical optimization to
pure state and input constrained optimal control.

State of the art
M. Weiser. Interior Point Methods in Function Space, SIAM Journal
on Control and Optimization, 2005.
J.F. Bonnans, Th. Guilbaud. Using logarithmic penalties in the
shooting algorithm for optimal control problems, Optimal Control
Applications and Methods, 2003.
P. Malisani, F. Chaplais, N. Petit, An interior penalty method for
optimal control problems with state and input constraints of nonlinear
systems, Optimal Control Applications and Methods, 2014.
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State and Input constrained optimal control problem

Problem Statement

min
u∈U

J(u) =

∫ T

0
ℓ(xu(t), u(t))dt+ φ(xu(T ))

ẋu(t) = f(xu(t), u(t))

xu(0) = x0

U := L∞([0, T ];Uad ⊂ Rm)

g(xu(t)) ≤ 0

Where T > 0, x0 are fixed and xu is the solution of the ODE with control
u. And we define the classical pre-Hamiltonian function
H : Rn ×Rm ×Rn 7→ R as follows

H(x, u, p) := ℓ(x, u) + p.f(x, u)
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Main assumptions

Assumptions
(A1) The functions ℓ : Rn ×Rm 7→ R, f : Rn ×Rm 7→ Rn and

gi : R
n 7→ R are at least twice continuously differentiable.

(A2) The dynamics f : Rn ×Rm from satisfies a sublinear growth property

∃D < +∞, ∀x ∈ Rn, ∀u ∈ [−1, 1]m s.t. ‖ f(x, u) ‖≤ D(1+ ‖ x ‖)

(A3) Interior accessibility

{u s.t. g(xu) ≤ 0} ⊆ clL1({u s.t. g(xu) < 0})

(A4) The OCP has a unique solution u∗ and ∃β ≥ 0 and r > 0 such that

J(u)− J(u∗) ≥ β ‖u− u∗‖2L2 , ∀u ∈ BL2(u∗, r) ∩ U
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First order optimality conditions

State constrained Pontryagin Maximum Principle
Any optimal solution (x̄u, ū) of the presented COCP is a Pontryagin
extremal, i.e. (x̄u, ū, p̄, µ̄) is solution of

˙̄xu(t) = f(x̄u(t), ū(t))

−dp̄(t) = H ′
x(x̄u(t), ū(t), p̄(t))dt+ g′(x̄u(t))dµ̄(t)

x̄u(0) = x0

p̄(T ) = φ′(x̄u(T ))

H(x̄u(t), ū(t), p̄(t)) = inf
v∈Uad

H(x̄u(t), v, p̄(t))

dµ̄ ≥ 0∫ T

0
g(x̄u(t))dµ̄(t) = 0

14/46
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Penalized problem

Log-barrier OCP
Let ϵ > 0, the penalized optimal control problem writes

min
u∈U

Jϵ(u) =

∫ T

0
ℓ(xu(t), u(t))− ϵ log(−g(xu(t)))dt+ φ(xu(T ))

ẋu(t) = f(xu(t), u(t))

xu(0) = x0

U := L∞([0, T ];Uad)

and the corresponding penalized pre-Hamiltonian is

H[ϵ](x, u, p) = H(x, u, p)− ϵ log(−g(x))
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Statement of main result

Main result (1/2)
Any Pontryagin extremal (xu,ϵ, uϵ, pϵ) of the penalized problem, i.e.
solution of

ẋu,ϵ(t) = f(xu,ϵ(t), uϵ(t))

ṗϵ(t) = −H[ϵ]′x(xu,ϵ(t), uϵ(t), pϵ(t))

xu,ϵ(0) = x0

pϵ(T ) = φ′(xu,ϵ(T ))

H[ϵ](xu,ϵ(t), uϵ(t), pϵ(t)) = inf
v∈Uad

H[ϵ](xu,ϵ(t), v, pϵ(t))
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Statement of main result

Main result (2/2)
converges to (x̄u, ū, p̄, µ̄) to a Pontryagin extremal of the original problem
as follows

lim
ϵ↓0
‖uϵ − ū‖L2 = 0

lim
ϵ↓0
‖xu,ϵ − x̄u‖L∞ = 0

lim
ϵ↓0
‖pϵ − p̄‖L1 = 0

lim
ϵ↓0

−ϵ
g(xu,ϵ)

dt
∗
⇀ dµ̄

18/46



Outline
1 Introduction and motivations
2 Problem presentation and main assumptions

Objective of the paper
Problem presentation and main assumptions

3 First order optimality conditions and main result
First order optimality conditions
Main result

4 Preliminary results
5 Interiority Analysis
6 Convergence analysis
7 Primal dual Algorithm

Primal dual TPBVP
Algorithm presentation
Numerical Example : Battery management

8 Conclusion and perspectives

19/46



Preliminary Results (1/3)

State Lipschitz continuity
From the sublinear growth property, ∀u1, u2 ∈ U , ∃const(f) < +∞ such
that

‖ xu1 − xu2 ‖L∞≤ const(f) ‖ u1 − u2 ‖L1

State-constraint measure
For all u ∈ U and For all E ⊆ g ◦ x[u]([0, T ]) we note m[u, g] the
push-forward g-measure of E defined as follows

m[u, g](E) := meas
(
(g ◦ xu)−1 (E)

)
Proposition
For all u ∈ U , let E ⊆ g ◦ xu([0, T ]) ⊂ R be a Lebesgue-measurable set,
the g-measure is lower bounded as follows

m[u, g](E) ≥ const(f, g)meas(E) 20/46



Preliminary results (2/3)

Set of state saturated control
Let us define the set of saturated-state control U0

g as follows

U0
g := {u ∈ U s.t. sup

t
g(xu(t)) = 0}

Set of near state-saturated times
For all u s.t. g(xu) ≤ 0 and ∀δ ≥ 0 we define the set of near
state-saturated times, noted Su(δ) as follows

Su(δ) := (g ◦ xu)−1 ([−δ,+∞))
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Preliminary results (3/3)

Proposition
There exists Γg > 0 and v ∈ U satisfying

sup
t
g(xv(t)) ≤ −2Γg (1)

Thus, for all u ∈ U0
g this yields

g(xv(t)) ≤ g(xu(t))− Γg, ∀t ∈ Su(Γg) (2)

Proof
Let δ > 0

Γg = −
1

2
sup
u∈U0

g

{
inf

v∈BL1 (u,δ)∩U

{
sup
t
g(x[v](t))

}}

22/46



Outline
1 Introduction and motivations
2 Problem presentation and main assumptions

Objective of the paper
Problem presentation and main assumptions

3 First order optimality conditions and main result
First order optimality conditions
Main result

4 Preliminary results
5 Interiority Analysis
6 Convergence analysis
7 Primal dual Algorithm

Primal dual TPBVP
Algorithm presentation
Numerical Example : Battery management

8 Conclusion and perspectives

23/46



State penalized optimal control

State-penalized problem

min
u
Gϵ(u) =

∫ T

0
ℓ(xu(t), u(t))− ϵ log(−g(xu(t)))dt

ẋu(t) = f(xu(t), u(t))

xu(0) = x0

u ∈ U

24/46



State Interiority

Lemma
Any optimal solution of state penalized problem uϵ satisfies

g(xuϵ(t)) < 0, ∀t ∈ [0, T ]

and ∃Kψ < +∞ such that ∀ϵ ∈ (0, ϵ0) one has∥∥∥∥ ϵ

g(xuϵ)

∥∥∥∥
L1

≤ Kψ

25/46



State Interiority proof (1/6)

Gϵ(v)−Gϵ(uϵ) = ∆ℓ(uϵ, v) + ϵ∆log(uϵ, v)

with

∆ℓ(uϵ, v) =

∫
ℓ(xv, v)− ℓ(xuϵ , uϵ)dt

∆log(uϵ, v) =

∫
− log(−g(xv)) + log(−g(xuϵ))dt

26/46



State Interiority proof (2/6)

∆ℓ(uϵ, v) =

∫
ℓ(xv, v)− ℓ(xuϵ , uϵ)dt

≤
∫

const(ℓ)(‖xv(t)− xuϵ(t)‖+ ‖v(t)− uϵ(t)‖)dt

≤ const(ℓ, f, T,Γg)

ϵ∆log(uϵ, v) =ϵ

∫
Suϵ (Γg)

− log(−g(xv)) + log(−g(xuϵ))dt

+ ϵ

∫
[0,T ]\Suϵ (Γg)

− log(−g(xv)) + log(−g(xuϵ))dt

:=ϵ∆S + ϵ∆Sc
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State Interiority proof (3/6)

ϵ∆Sc ≤const(g, f, T,Γg, ϵ0, ψ)

ϵ∆S =ϵ

∫
Suϵ (Γg)

− log(−g(xv)) + log(−g(xuϵ))dt

=ϵ

∫
Suϵ (Γg)

− 1

g(x[uϵ]))
(g(x[v])− g(x[uϵ])) dt

≤−ϵΓg
∫
Suϵ (Γg)

− 1

g(x[uϵ]))
dt
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State Interiority proof (4/6)

Now, let us prove interiority of uϵ by contradiction. Assume uϵ an optimal
solution such that ∀ρ ∈ (0,Γg), (g ◦ xuϵ)−1((−Γg,−ρ]) ⊂ [0, T ]

ϵ

∫
Suϵ (Γg)

− 1

g(x[uϵ]))
dt ≥ ϵ

∫
(g◦x[uϵ])−1((−Γg ,−ρ))

− 1

g(x[uϵ]))
dt

= ϵ

∫ −ρ

−Γg

−1

s
m[uϵ, g](ds)

Using the lower bound on the state-constraint measure

ϵ

∫
Suϵ (Γg)

− 1

g(x[uϵ]))
dt ≥ ϵconst(f, g)

∫ −ρ

−Γg

−1

s
ds

≥ ϵconst(f, g) (− log(ρ) + log(Γg))
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State Interiority proof (5/6)

For ρ small enough

Gϵ(v)−Gϵ(uϵ) ≤ const(ℓ, f, g, T,Γg, ϵ0, ψ)+ϵconst(f, g,Γg) log(ρ) < 0

which contradicts the optimality of uϵ and proves interiority.
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State Interiority proof (6/6)

Let us prove the L1-boundedness by contradiction. Assume uϵ optimal
such that ∀Kψ > 0, ∃ϵ > 0, ‖ϵψ′ ◦ g(x[uϵ])‖L1 ≥ Kψ. First, we have

(g ◦ x[uϵ]))−1 ({0}) = ∅

thus ∥∥∥∥ ϵ

g(x[uϵ]))

∥∥∥∥
L1

:= lim
ρ→0

∫ −ρ

−∞

ϵ

g(x[uϵ]))
m[uϵ, g](ds) > Kψ +

ϵ0T

Γg

Finally, we have:

Gϵ(v)−Gϵ(uϵ) ≤ const(ℓ, f, g, T,Γg, ψ, ϵ0)− ΓgKψ

Then ∃Kψ > 0, such that Gϵ(v)−Gϵ(uϵ) < 0, which contradicts the
optimality of uϵ.
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Primal variables convergence

Primal variables
Primal variables convergence is a well established result

lim
ϵ↓0
‖u∗ − uϵ‖L2 = 0

lim
ϵ↓0
‖xu∗ − xuϵ‖L∞ = 0

33/46



Convergence of state penalties (1/2)

Convergence of state penalties
The sequence ( ϵn

g(xuϵn ))n is uniformly L1-bounded by Kψ. Thus

∀ϕ ∈ L∞, |Tuϵn (ϕ)| ≤ Kψ ‖ϕ‖L∞

hence
∥∥Tuϵn∥∥M ≤ Kψ. By weak ∗ compacity of the unit ball of

M([0, T ]), ∃µ ∈M([0, T ]) such that

lim
k→+∞

− ϵnk

g(xuϵnk
)
dt

∗
⇀ dµ
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Convergence of state penalties (2/2)

Complementarity conditions
Positivity of µ

− ϵn
g(xuϵn )

≥ 0⇒ dµ ≥ 0

Complementarity conditions

〈µ, g(x[u∗])〉 = lim
n→+∞

∫
− ϵn
g(xuϵn )

g(xu∗)dt

= lim
n→+∞

∫
− ϵn
g(xuϵn )

g(xuϵn )dt

= lim
n→+∞

−ϵnT

= 0

35/46



Convergence of adjoint state

The optimal adjoint state satisfies the following ODE

−dp∗ =
(
ℓ′x(x[u

∗], u∗)− f ′x(x[u∗], u∗).p∗
)
dt+ g′(x[u∗])dµ

with p∗(T ) = 0 and the penalized adjoint state is solution of

ṗ[uϵn ] = − ℓ′x(x[uϵn ], uϵn)− f ′x(x[uϵn ], uϵn).p[uϵn ]

+ ϵg′(x[uϵn ](t))
1

g(x[uϵn ])

p[uϵn ](T ) = 0

Then p[uϵn ] converges pointwise to p∗, and the boundedness of both
p[uϵn ] and p∗ proves limn→+∞ ‖p[uϵn ]− p∗‖L1
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Primal Dual TPBVP

Primal Dual TPBVP
Any solution (xu∗ϵ , u

∗
ϵ , p

∗
ϵ , λ

∗
ϵ ) of the following Primal Dual TPBVP

ẋu∗ϵ =f(xu∗ϵ , u
∗
ϵ )

ṗ∗ϵ =−H ′
x(xu∗ϵ , u

∗
ϵ , p

∗
ϵ )− λ∗ϵg′(xu∗ϵ )

H(xu,ϵ, u
∗
ϵ , p

∗
ϵ ) = inf

v∈Uad

H(xu,ϵ, v, p
∗
ϵ )

0 =λ∗ϵ − g(xu∗ϵ )−
√
λ∗ϵ

2 + g(xu∗ϵ )
2 + 2ϵ

x[u∗ϵ ](0) =x
0 ; p∗ϵ (T ) = φ′(xu∗ϵ (T ))

converges to (xu∗ , u
∗, p∗) as follows

lim
ϵ↓0
‖u∗ϵ − u∗‖L2 = 0 ; lim

ϵ↓0

∥∥xu∗ϵ − x[u∗]∥∥L∞ = 0 ; lim
ϵ↓0
‖p∗ϵ − p∗‖L1 = 0

lim
ϵ↓0

λ∗ϵdt
∗
⇀ dµ
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Solving Algorithm

We note
S(ϵ) = (xu∗ϵ , u

∗
ϵ , p

∗
ϵ , λ

∗
ϵ )

a solution of the primal-dual TPBVP.

Primal dual Algorithm
1: Define ϵ0 > 0, α ∈ (0, 1), tol = o(1), k = 0
2: while ϵk > tol do
3: S(ϵk+1)←solution of primal-dual TPBVP initialized with S(ϵk)
4: ϵk+1 ← αϵk
5: k ← k + 1
6: end while
7: return S(ϵk)
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Battery management problem

Optimal control problem

min
u

∫ T

0
spot(t) (max{pcompteur(t); 0} −min{pcompteur(t); 0}) dt

under the following constraints

pcompteur := cons− PV +
1

ρc
max{u; 0}+ ρd min{u; 0}

ẋ(t) = u(t)

x(0) =
x+

2
x(t) ∈ [0;x+]

u(t) ∈ [u−; ρcu
+]

T := 8760h
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Comparison with discretize then optimize approach

Discretize and optimize
Numerical scheme : Lobatto IIIa
Solver : IPOPT+ MUMPS
Gradients and jacobians provided and vectorized
Computation time ≈ 9500s

Primal dual OCP
Numerical scheme: Lobatto IIIa
Residual error on ODEs: 10−3

Linear solver: SPLU + umfpack
Gradients and jacobians provided and vectorized
Computation time ≈ 25s
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Conclusion and perspectives

Extend theoritical results to mixed state and input constraints and to
more general input constraints
Provide a predictor-corrector in function space type algorithm to
automatically adapt the weighting parameter of IPMs.

46/46


	Introduction and motivations
	Problem presentation and main assumptions
	Objective of the paper
	Problem presentation and main assumptions

	First order optimality conditions and main result
	First order optimality conditions
	Main result

	Preliminary results
	Interiority Analysis
	Convergence analysis
	Primal dual Algorithm
	Primal dual TPBVP
	Algorithm presentation
	Numerical Example : Battery management

	Conclusion and perspectives

