Primal-dual interior point methods for state and input constrained optimal control

Paul Malisani

IFP Energies nouvelles, Applied Mathematics department, Rueil-Malmaison, France

29/11/2022
Overview

1. Introduction and motivations
2. Problem presentation and main assumptions
3. First order optimality conditions and main result
4. Preliminary results
5. Interiority Analysis
6. Convergence analysis
7. Primal dual Algorithm
8. Conclusion and perspectives
1. Introduction and motivations
2. Problem presentation and main assumptions
 - Objective of the paper
 - Problem presentation and main assumptions
3. First order optimality conditions and main result
 - First order optimality conditions
 - Main result
4. Preliminary results
5. Interiority Analysis
6. Convergence analysis
7. Primal dual Algorithm
 - Primal dual TPBVP
 - Algorithm presentation
 - Numerical Example: Battery management
8. Conclusion and perspectives
Original problem
\[\min_{c(x) \leq 0} f(x) \]

Penalized problem
\[\min_x f(x) - \epsilon \log(-c(x)) \]
Primal penalized problem

The primal problem consists in solving for x the following first order conditions

$$f'(x) - c'(x) \cdot \frac{\epsilon}{c(x)} = 0$$

Primal dual penalized problem

The primal-dual problem consists in solving for x and λ the following first order conditions

$$f'(x) + c'(x) \cdot \lambda = 0$$

$$\lambda c(x) + \epsilon = 0 \iff \lambda - c(x) - \sqrt{\lambda^2 + c(x)^2 + 2\epsilon} = 0$$
1. Introduction and motivations

2. Problem presentation and main assumptions
 - Objective of the paper
 - Problem presentation and main assumptions

3. First order optimality conditions and main result
 - First order optimality conditions
 - Main result

4. Preliminary results

5. Interiority Analysis

6. Convergence analysis

7. Primal dual Algorithm
 - Primal dual TPBVP
 - Algorithm presentation
 - Numerical Example: Battery management

8. Conclusion and perspectives
Outline

1. Introduction and motivations
2. Problem presentation and main assumptions
 - Objective of the paper
 - Problem presentation and main assumptions
3. First order optimality conditions and main result
 - First order optimality conditions
 - Main result
4. Preliminary results
5. Interiority Analysis
6. Convergence analysis
7. Primal dual Algorithm
 - Primal dual TPBVP
 - Algorithm presentation
 - Numerical Example: Battery management
8. Conclusion and perspectives
Objective of the paper

Adapt primal-dual interior point methods from numerical optimization to pure state and input constrained optimal control.

State of the art

1 Introduction and motivations

2 Problem presentation and main assumptions
 - Objective of the paper
 - Problem presentation and main assumptions

3 First order optimality conditions and main result
 - First order optimality conditions
 - Main result

4 Preliminary results

5 Interiority Analysis

6 Convergence analysis

7 Primal dual Algorithm
 - Primal dual TPBVP
 - Algorithm presentation
 - Numerical Example: Battery management

8 Conclusion and perspectives
Problem Statement

\[\min_{u \in \mathcal{U}} J(u) = \int_{0}^{T} \ell(x_u(t), u(t)) dt + \varphi(x_u(T)) \]
\[\dot{x}_u(t) = f(x_u(t), u(t)) \]
\[x_u(0) = x^0 \]
\[\mathcal{U} := L^\infty([0, T]; U_{ad} \subset \mathbb{R}^m) \]
\[g(x_u(t)) \leq 0 \]

Where \(T > 0, \) \(x^0 \) are fixed and \(x_u \) is the solution of the ODE with control \(u. \) And we define the classical pre-Hamiltonian function \(H : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R} \) as follows

\[H(x, u, p) := \ell(x, u) + p.f(x, u) \]
Main assumptions

Assumptions

(A1) The functions $\ell : \mathbb{R}^n \times \mathbb{R}^m \mapsto \mathbb{R}$, $f : \mathbb{R}^n \times \mathbb{R}^m \mapsto \mathbb{R}^n$ and $g_i : \mathbb{R}^n \mapsto \mathbb{R}$ are at least twice continuously differentiable.

(A2) The dynamics $f : \mathbb{R}^n \times \mathbb{R}^m$ from satisfies a sublinear growth property

$$\exists D < +\infty, \forall x \in \mathbb{R}^n, \forall u \in [-1, 1]^m \text{ s.t. } \| f(x, u) \| \leq D(1 + \| x \|)$$

(A3) Interior accessibility

$$\{ u \text{ s.t. } g(x_u) \leq 0 \} \subseteq \text{cl}_{L^1}(\{ u \text{ s.t. } g(x_u) < 0 \})$$

(A4) The OCP has a unique solution u^* and $\exists \beta \geq 0$ and $r > 0$ such that

$$J(u) - J(u^*) \geq \beta \| u - u^* \|_{L^2}^2, \quad \forall u \in B_{L^2}(u^*, r) \cap \mathcal{U}$$
Outline

1. Introduction and motivations
2. Problem presentation and main assumptions
 - Objective of the paper
 - Problem presentation and main assumptions
3. First order optimality conditions and main result
 - First order optimality conditions
 - Main result
4. Preliminary results
5. Interiority Analysis
6. Convergence analysis
7. Primal dual Algorithm
 - Primal dual TPBVP
 - Algorithm presentation
 - Numerical Example: Battery management
8. Conclusion and perspectives
First order optimality conditions

State constrained Pontryagin Maximum Principle

Any optimal solution \((\bar{x}_u, \bar{u})\) of the presented COCP is a Pontryagin extremal, i.e. \((\bar{x}_u, \bar{u}, \bar{p}, \bar{\mu})\) is solution of

\[
\begin{align*}
\dot{\bar{x}}_u(t) &= f(\bar{x}_u(t), \bar{u}(t)) \\
-d\bar{p}(t) &= H_x'(%(\bar{x}_u(t), \bar{u}(t), \bar{p}(t))dt + g'(\bar{x}_u(t))d\bar{\mu}(t) \\
\bar{x}_u(0) &= x^0 \\
\bar{p}(T) &= \varphi'(\bar{x}_u(T)) \\
H(\bar{x}_u(t), \bar{u}(t), \bar{p}(t)) &= \inf_{v \in \mathcal{U}_{ad}} H(\bar{x}_u(t), v, \bar{p}(t)) \\
d\bar{\mu} &\geq 0 \\
\int_0^T g(\bar{x}_u(t))d\bar{\mu}(t) &= 0
\end{align*}
\]
Outline

1. Introduction and motivations
2. Problem presentation and main assumptions
 - Objective of the paper
 - Problem presentation and main assumptions
3. First order optimality conditions and main result
 - First order optimality conditions
 - Main result
4. Preliminary results
5. Interiority Analysis
6. Convergence analysis
7. Primal dual Algorithm
 - Primal dual TPBVP
 - Algorithm presentation
 - Numerical Example: Battery management
8. Conclusion and perspectives
Let $\epsilon > 0$, the penalized optimal control problem writes

$$
\min_{u \in U} J_\epsilon(u) = \int_0^T \ell(x_u(t), u(t)) - \epsilon \log(-g(x_u(t))) dt + \varphi(x_u(T))
$$

$$
\dot{x}_u(t) = f(x_u(t), u(t))
$$

$$
x_u(0) = x^0
$$

$$
U := L^\infty([0, T]; U_{ad})
$$

and the corresponding penalized pre-Hamiltonian is

$$
H[\epsilon](x, u, p) = H(x, u, p) - \epsilon \log(-g(x))
$$
Any Pontryagin extremal \((x_{u,\epsilon}, u_\epsilon, p_\epsilon)\) of the penalized problem, i.e. solution of

\[
\begin{align*}
\dot{x}_{u,\epsilon}(t) &= f(x_{u,\epsilon}(t), u_\epsilon(t)) \\
\dot{p}_\epsilon(t) &= -H[\epsilon]'(x_{u,\epsilon}(t), u_\epsilon(t), p_\epsilon(t)) \\
x_{u,\epsilon}(0) &= x^0 \\
p_\epsilon(T) &= \varphi'(x_{u,\epsilon}(T)) \\
H[\epsilon](x_{u,\epsilon}(t), u_\epsilon(t), p_\epsilon(t)) &= \inf_{v \in U_{ad}} H[\epsilon](x_{u,\epsilon}(t), v, p_\epsilon(t))
\end{align*}
\]
converges to \((\bar{x}_u, \bar{u}, \bar{p}, \bar{\mu})\) to a Pontryagin extremal of the original problem as follows

\[
\begin{align*}
\lim_{\epsilon \downarrow 0} \|u_\epsilon - \bar{u}\|_{L^2} &= 0 \\
\lim_{\epsilon \downarrow 0} \|x_{u,\epsilon} - \bar{x}_u\|_{L^\infty} &= 0 \\
\lim_{\epsilon \downarrow 0} \|p_\epsilon - \bar{p}\|_{L^1} &= 0 \\
\lim_{\epsilon \downarrow 0} \frac{-\epsilon}{g(x_{u,\epsilon})} dt &\overset{*}{\rightharpoonup} d\bar{\mu}
\end{align*}
\]
State Lipschitz continuity

From the sublinear growth property, \(\forall u_1, u_2 \in \mathcal{U}, \exists \text{const}(f) < +\infty \) such that
\[
\| x_{u_1} - x_{u_2} \|_{L^\infty} \leq \text{const}(f) \| u_1 - u_2 \|_{L^1}
\]

State-constraint measure

For all \(u \in \mathcal{U} \) and for all \(E \subseteq g \circ x[u]([0, T]) \) we note \(m[u, g] \) the push-forward \(g \)-measure of \(E \) defined as follows
\[
m[u, g](E) := \text{meas}\left((g \circ x_u)^{-1}(E) \right)
\]

Proposition

For all \(u \in \mathcal{U} \), let \(E \subseteq g \circ x_u([0, T]) \subseteq \mathbb{R} \) be a Lebesgue-measurable set, the \(g \)-measure is lower bounded as follows
\[
m[u, g](E) \geq \text{const}(f, g) \text{meas}(E)
\]
Set of state saturated control

Let us define the set of saturated-state control \mathcal{U}_g^0 as follows

$$\mathcal{U}_g^0 := \{u \in \mathcal{U} \text{ s.t. } \sup_t g(x_u(t)) = 0\}$$

Set of near state-saturated times

For all u s.t. $g(x_u) \leq 0$ and $\forall \delta \geq 0$ we define the set of near state-saturated times, noted $S_u(\delta)$ as follows

$$S_u(\delta) := (g \circ x_u)^{-1} \left([-\delta, +\infty)\right)$$
Preliminary results (3/3)

Proposition

There exists $\Gamma_g > 0$ and $v \in \mathcal{U}$ satisfying

$$\sup_t g(x_v(t)) \leq -2\Gamma_g$$ (1)

Thus, for all $u \in \mathcal{U}_g^0$ this yields

$$g(x_v(t)) \leq g(x_u(t)) - \Gamma_g, \ \forall t \in S_u(\Gamma_g)$$ (2)

Proof

Let $\delta > 0$

$$\Gamma_g = -\frac{1}{2} \sup_{u \in \mathcal{U}_g^0} \left\{ \inf_{v \in B_{L^1}^1(u, \delta) \cap \mathcal{U}} \left\{ \sup_t g(x[v](t)) \right\} \right\}$$
Outline

1 Introduction and motivations
2 Problem presentation and main assumptions
 - Objective of the paper
 - Problem presentation and main assumptions
3 First order optimality conditions and main result
 - First order optimality conditions
 - Main result
4 Preliminary results
5 Interiority Analysis
6 Convergence analysis
7 Primal dual Algorithm
 - Primal dual TPBVP
 - Algorithm presentation
 - Numerical Example: Battery management
8 Conclusion and perspectives
State penalized optimal control

State-penalized problem

\[
\min_u G_\epsilon(u) = \int_0^T \ell(x_u(t), u(t)) - \epsilon \log(-g(x_u(t))) \, dt
\]

\[
\dot{x}_u(t) = f(x_u(t), u(t))
\]

\[
x_u(0) = x^0
\]

\[
u \in \mathcal{U}
\]
Lemma

Any optimal solution of state penalized problem u_ϵ satisfies

$$g(x_{u_\epsilon}(t)) < 0, \forall t \in [0, T]$$

and $\exists K_\psi < +\infty$ such that $\forall \epsilon \in (0, \epsilon_0)$ one has

$$\left\| \frac{\epsilon}{g(x_{u_\epsilon})} \right\|_{L^1} \leq K_\psi$$
State Interiority proof (1/6)

\[G_\varepsilon(v) - G_\varepsilon(u_\varepsilon) = \Delta_\ell(u_\varepsilon, v) + \varepsilon \Delta_{\log}(u_\varepsilon, v) \]

with

\[\Delta_\ell(u_\varepsilon, v) = \int \ell(x_v, v) - \ell(x_{u_\varepsilon}, u_\varepsilon) dt \]

\[\Delta_{\log}(u_\varepsilon, v) = \int -\log(-g(x_v)) + \log(-g(x_{u_\varepsilon})) dt \]
\[\Delta_\ell(u_\epsilon, v) = \int \ell(x_v, v) - \ell(x_{u_\epsilon}, u_\epsilon)dt \]
\[\leq \int \text{const}(\ell)(\|x_v(t) - x_{u_\epsilon}(t)\| + \|v(t) - u_\epsilon(t)\|)dt \]
\[\leq \text{const}(\ell, f, T, \Gamma_g) \]

\[\epsilon \Delta_{\log}(u_\epsilon, v) = \epsilon \int_{S_{u_\epsilon}(\Gamma_g)} - \log(-g(x_v)) + \log(-g(x_{u_\epsilon}))dt \]
\[+ \epsilon \int_{[0,T] \setminus S_{u_\epsilon}(\Gamma_g)} - \log(-g(x_v)) + \log(-g(x_{u_\epsilon}))dt \]
\[:= \epsilon \Delta_S + \epsilon \Delta_{S^c} \]
\(\epsilon \Delta_{S_c} \leq \text{const}(g, f, T, \Gamma_g, \epsilon_0, \psi) \)

\[
\epsilon \Delta_S = \epsilon \int_{S_{u\epsilon}(\Gamma_g)} - \log(-g(x_v)) + \log(-g(x_{u\epsilon})) \, dt
\]

\[
= \epsilon \int_{S_{u\epsilon}(\Gamma_g)} - \frac{1}{g(x[u\epsilon])} (g(x[v]) - g(x[u\epsilon])) \, dt
\]

\[
\leq -\epsilon \Gamma_g \int_{S_{u\epsilon}(\Gamma_g)} - \frac{1}{g(x[u\epsilon])} \, dt
\]
Now, let us prove interiority of u_ϵ by contradiction. Assume u_ϵ an optimal solution such that $\forall \rho \in (0, \Gamma_g)$, $(g \circ x_{u_\epsilon})^{-1}((-\Gamma_g, -\rho)) \subset [0, T]$

$$\epsilon \int_{S_{u_\epsilon}(\Gamma_g)} -\frac{1}{g(x[u_\epsilon])} dt \geq \epsilon \int_{(g \circ x[u_\epsilon])^{-1}((-\Gamma_g, -\rho))} -\frac{1}{g(x[u_\epsilon])} dt$$

$$= \epsilon \int_{-\Gamma_g}^{-\rho} -\frac{1}{s} m[u_\epsilon, g](ds)$$

Using the lower bound on the state-constraint measure

$$\epsilon \int_{S_{u_\epsilon}(\Gamma_g)} -\frac{1}{g(x[u_\epsilon])} dt \geq \epsilon \text{const}(f, g) \int_{-\Gamma_g}^{-\rho} -\frac{1}{s} ds$$

$$\geq \epsilon \text{const}(f, g) (-\log(\rho) + \log(\Gamma_g))$$
For ρ small enough

$$G_\epsilon(v) - G_\epsilon(u_\epsilon) \leq \text{const}(\ell, f, g, T, \Gamma_g, \epsilon_0, \psi) + \epsilon \text{const}(f, g, \Gamma_g) \log(\rho) < 0$$

which contradicts the optimality of u_ϵ and proves interiority.
Let us prove the L^1-boundedness by contradiction. Assume u_ϵ optimal such that $\forall K_\psi > 0, \exists \epsilon > 0, \|\epsilon \psi' \circ g(x[u_\epsilon])\|_{L^1} \geq K_\psi$. First, we have

$$(g \circ x[u_\epsilon])^{-1}(\{0\}) = \emptyset$$

thus

$$\left\| \frac{\epsilon}{g(x[u_\epsilon])} \right\|_{L^1} := \lim_{\rho \to 0} \int_{-\infty}^{-\rho} \frac{\epsilon}{g(x[u_\epsilon])} m[u_\epsilon, g](ds) > K_\psi + \frac{\epsilon_0 T}{\Gamma_g}$$

Finally, we have:

$$G_\epsilon(v) - G_\epsilon(u_\epsilon) \leq \text{const}(\ell, f, g, T, \Gamma_g, \psi, \epsilon_0) - \Gamma_g K_\psi$$

Then $\exists K_\psi > 0$, such that $G_\epsilon(v) - G_\epsilon(u_\epsilon) < 0$, which contradicts the optimality of u_ϵ.
Outline

1 Introduction and motivations
2 Problem presentation and main assumptions
 - Objective of the paper
 - Problem presentation and main assumptions
3 First order optimality conditions and main result
 - First order optimality conditions
 - Main result
4 Preliminary results
5 Interiority Analysis
6 Convergence analysis
7 Primal dual Algorithm
 - Primal dual TPBVP
 - Algorithm presentation
 - Numerical Example: Battery management
8 Conclusion and perspectives
Primal variables convergence

Primal variables convergence is a well established result

\[
\lim_{\epsilon \downarrow 0} \| u^* - u_\epsilon \|_{L^2} = 0
\]

\[
\lim_{\epsilon \downarrow 0} \| x_{u^*} - x_{u_\epsilon} \|_{L^\infty} = 0
\]
The sequence \(\left(\frac{\epsilon_n}{g(x_{u\epsilon_n})} \right)_n \) is uniformly \(L^1 \)-bounded by \(K_\psi \). Thus

\[
\forall \phi \in L^\infty, |T_{u_{\epsilon_n}}(\phi)| \leq K_\psi \|\phi\|_{L^\infty}
\]

hence \(\|T_{u_{\epsilon_n}}\|_{\mathcal{M}} \leq K_\psi \). By weak \(\star \) compactness of the unit ball of \(\mathcal{M}([0, T]) \), \(\exists \mu \in \mathcal{M}([0, T]) \) such that

\[
\lim_{k \to +\infty} -\frac{\epsilon_{n_k}}{g(x_{u_{\epsilon_n_k}})} dt \star d\mu
\]
Convergence of state penalties (2/2)

Complementarity conditions

Positivity of μ

$$- \frac{\epsilon_n}{g(x_{u\epsilon_n})} \geq 0 \Rightarrow d\mu \geq 0$$

Complementarity conditions

$$\langle \mu, g(x[u^*]) \rangle = \lim_{n \to +\infty} \int - \frac{\epsilon_n}{g(x_{u\epsilon_n})} g(x_{u^*}) dt$$

$$= \lim_{n \to +\infty} \int - \frac{\epsilon_n}{g(x_{u\epsilon_n})} g(x_{u\epsilon_n}) dt$$

$$= \lim_{n \to +\infty} -\epsilon_n T$$

$$= 0$$
The optimal adjoint state satisfies the following ODE

\[-dp^* = (\ell'_x(x[u^*], u^*) - f'_x(x[u^*], u^*) \cdot p^*) \, dt + g'(x[u^*]) \, d\mu\]

with \(p^*(T) = 0\) and the penalized adjoint state is solution of

\[\dot{p}[u_{\epsilon_n}] = -\ell'_x(x[u_{\epsilon_n}], u_{\epsilon_n}) - f'_x(x[u_{\epsilon_n}], u_{\epsilon_n}) \cdot p[u_{\epsilon_n}] + \frac{1}{\epsilon g'(x[u_{\epsilon_n}](t))} \frac{1}{g(x[u_{\epsilon_n}])(t))} \]

\[p[u_{\epsilon_n}](T) = 0\]

Then \(p[u_{\epsilon_n}]\) converges pointwise to \(p^*\), and the boundedness of both \(p[u_{\epsilon_n}]\) and \(p^*\) proves \(\lim_{n \to +\infty} \|p[u_{\epsilon_n}] - p^*\|_{L^1}\)
Outline

1. Introduction and motivations
2. Problem presentation and main assumptions
 - Objective of the paper
 - Problem presentation and main assumptions
3. First order optimality conditions and main result
 - First order optimality conditions
 - Main result
4. Preliminary results
5. Interiority Analysis
6. Convergence analysis
7. Primal dual Algorithm
 - Primal dual TPBVP
 - Algorithm presentation
 - Numerical Example: Battery management
8. Conclusion and perspectives
Any solution \((x_{u^*}, u^*, p^*, \lambda^*)\) of the following Primal Dual TPBVP

\[
\begin{align*}
\dot{x}_{u^*} &= f(x_{u^*}, u^*) \\
\dot{p}^* &= -H'_x(x_{u^*}, u^*, p^*) - \lambda^* g'(x_{u^*}) \\
H(x_u, x_{u^*}, p^*) &= \inf_{v \in U_{ad}} H(x_u, v, p^*) \\
0 &= \lambda^* - g(x_{u^*}) - \sqrt{\lambda^*_2 + g(x_{u^*})^2 + 2\epsilon} \\
x[u^*](0) &= x^0; \quad p^*(T) = \varphi'(x_{u^*}(T))
\end{align*}
\]

converges to \((x^*, u^*, p^*)\) as follows

\[
\begin{align*}
\lim_{\epsilon \downarrow 0} \|u_{\epsilon}^* - u^*\|_{L^2} &= 0; \quad \lim_{\epsilon \downarrow 0} \|x_{u^*} - x[u^*]\|_{L^\infty} = 0; \quad \lim_{\epsilon \downarrow 0} \|p_{\epsilon}^* - p^*\|_{L^1} = 0 \\
\lim_{\epsilon \downarrow 0} \lambda^*_\epsilon dt &\to d\mu
\end{align*}
\]
Outline

1. Introduction and motivations
2. Problem presentation and main assumptions
 - Objective of the paper
 - Problem presentation and main assumptions
3. First order optimality conditions and main result
 - First order optimality conditions
 - Main result
4. Preliminary results
5. Interiority Analysis
6. Convergence analysis
7. Primal dual Algorithm
 - Primal dual TPBVP
 - Algorithm presentation
 - Numerical Example: Battery management
8. Conclusion and perspectives
We note

\[S(\epsilon) = (x_{\epsilon^*}, u_{\epsilon^*}, p_{\epsilon^*}, \lambda_{\epsilon^*}) \]

a solution of the primal-dual TPBVP.

Primal dual Algorithm

1. Define \(\epsilon_0 > 0, \alpha \in (0, 1), \text{tol} = o(1), k = 0 \)
2. **while** \(\epsilon_k > \text{tol} \) **do**
3. \(S(\epsilon_{k+1}) \leftarrow \) solution of primal-dual TPBVP initialized with \(S(\epsilon_k) \)
4. \(\epsilon_{k+1} \leftarrow \alpha \epsilon_k \)
5. \(k \leftarrow k + 1 \)
6. **end while**
7. **return** \(S(\epsilon_k) \)
Outline

1. Introduction and motivations
2. Problem presentation and main assumptions
 - Objective of the paper
 - Problem presentation and main assumptions
3. First order optimality conditions and main result
 - First order optimality conditions
 - Main result
4. Preliminary results
5. Interiority Analysis
6. Convergence analysis
7. Primal dual Algorithm
 - Primal dual TPBVP
 - Algorithm presentation
 - Numerical Example: Battery management
8. Conclusion and perspectives
Battery management problem

Optimal control problem

\[
\min_u \int_0^T \text{spot}(t) \left(\max\{p_{\text{compteur}}(t); 0\} - \min\{p_{\text{compteur}}(t); 0\} \right) dt
\]

under the following constraints

\[
p_{\text{compteur}} := \text{cons} - PV + \frac{1}{\rho_c} \max\{u; 0\} + \rho_d \min\{u; 0\}
\]

\[
\dot{x}(t) = u(t)
\]

\[
x(0) = \frac{x^+}{2}
\]

\[
x(t) \in [0; x^+]
\]

\[
u(t) \in [u^-; \rho_c u^+]
\]

\[
T := 8760h
\]
Comparison with discretize then optimize approach

<table>
<thead>
<tr>
<th>Discretize and optimize</th>
<th>Primal dual OCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical scheme: Lobatto IIIa</td>
<td>Numerical scheme: Lobatto IIIa</td>
</tr>
<tr>
<td>Solver: IPOPT + MUMPS</td>
<td>Residual error on ODEs: 10^{-3}</td>
</tr>
<tr>
<td>Gradients and jacobians provided and vectorized</td>
<td>Linear solver: SPLU + umfpack</td>
</tr>
<tr>
<td>Computation time $\approx 9500s$</td>
<td>Gradients and jacobians provided and vectorized</td>
</tr>
<tr>
<td></td>
<td>Computation time $\approx 25s$</td>
</tr>
</tbody>
</table>
Conclusion and perspectives

- Extend theoretical results to mixed state and input constraints and to more general input constraints.
- Provide a predictor-corrector in function space type algorithm to automatically adapt the weighting parameter of IPMs.