# Rare events sampling methods and machine learning techniques for the simulation of catalytic reactions

Tony Lelièvre

CERMICS Ecole des Ponts, Institut Polytechnique de Paris & MATHERIALS team INRIA Co-authors: T. Pigeon (IFPEN), P. Raybaud (IFPEN) and G. Stoltz (ENPC, INRIA) In collaboration with M. Corral Valero, A. Anciaux-Sedrakian, and M. Moreaud

Journée IFPEN-Inria, Paris, 9 décembre 2024









# Catalytic reactions

Motivation: simulation of catalytic reactions involved in the conversion of biomass, in order to uncover the molecular mechanisms and quantify the reaction rates

Objective: optimization and control of catalytic reactions:

- Ranking of existing catalysts for a given target
- Design of new efficient catalysts (without experiments)



Example: dissociation of water molecules on the (100)-surface of  $\gamma$  alumina

### Modelling

System of *N* atoms with:

- Positions:  $\mathbf{q} \in \Omega$  where  $\Omega = \mathbb{R}^{3N}$  or  $\mathbb{T}^{3N}$
- Momenta:  $\mathbf{p} \in \mathbb{R}^{3N}$
- Hamiltonian:  $H(\mathbf{q}, \mathbf{p}) = \frac{1}{2} \mathbf{p}^T M^{-1} \mathbf{p} + V(\mathbf{q})$

The function V models the interactions between atoms. For catalytic processes (chemical reactions), computationally expensive methods must be used to evaluate V: ab initio molecular dynamics (AIMD)

At temperature  $\beta^{-1} = k_B T$ , positions and momenta are distributed according to the Boltzmann–Gibbs measure:

$$\rho(d\mathbf{q}, d\mathbf{p}) = Z^{-1} \mathrm{e}^{-\beta H(\mathbf{q}, \mathbf{p})} d\mathbf{q} d\mathbf{p}$$

# Modelling

Evolution in time of the system modelled by Langevin dynamics (friction  $\gamma > 0$ )

$$\begin{cases} d\mathbf{q}_t = M^{-1}\mathbf{p}_t dt \\ d\mathbf{p}_t = -\nabla V(\mathbf{q}_t) dt - \gamma \mathbf{p}_t dt + \sqrt{\frac{2\gamma}{\beta}} M^{\frac{1}{2}} d\mathbf{W}_t \end{cases}$$

This dynamics is ergodic w.r.t.  $\rho$ 

Questions we would like to address:

- What are the main modes (reactants, intermediates, products) of the Boltzmann–Gibbs measure?
- How much time does it take for the Langevin dynamics to go from one mode (metastable state) to another?
- What is (are) the path(s) followed during these transitions?

Fundamental problem: a naive simulation is too costly (discretization timestep  $\simeq 10^{-15} s \ll$  timescale of transitions  $\simeq 10^{-6} - 10^3 s$ )

 $\longrightarrow$  The dynamics are metastable, and observing a transition is a rare event

# Table of Contents

Calculation of rates and sampling of transition path

2 Application to water dissociation

3 Learning the committor function

# Table of Contents

Calculation of rates and sampling of transition path

Application to water dissociation

Learning the committor function

# Equilibrium transition time





The transition time from A to B is:

$$T_{A \to B} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} (\tau_B^k - \tau_A^k)$$

with:

$$\tau_A^k = \inf \left\{ t > \tau_B^{k-1} \mid \mathbf{q}_t \in A \right\}$$
$$\tau_B^k = \inf \left\{ t > \tau_A^k \mid \mathbf{q}_t \in B \right\}$$

The reaction rate is defined by  $k_{A \rightarrow B} = T_{A \rightarrow B}^{-1}$ 

Computing the reaction rate is difficult:

(i) One needs to sample the equilibrium first entrance distribution in A

(ii) The typical transition time  $(\tau^k_B - \tau^k_A)$  is large

# Hill relation



The reaction rate satisfies the Hill relation:

$$k_{A o B} = \Phi_A \mathbb{P}_{\partial A}(\tau_B < \tau_A)$$

where

$$au_X = \inf \left\{ t \in (0; +\infty) \mid \mathbf{q}_t \in X 
ight\}$$

- $\Phi_A$  is the frequency of exits from A (easy to compute)
- $\mathbb{P}_{\partial A}(\tau_B < \tau_A)$  is the probability of reaching *B* before *A* starting at the equilibrium distribution  $\rho$  restricted to  $\partial A$

The Hill relation is exact for the overdamped Langevin and Langevin dynamics [Hill, 2005] [Baudel, Guyader, TL, Stoch. Proc. Appl. 2020] [TL, Ramil, Reygner, Ann. IHP 2022]

Problem (i) is solved, and problem (ii) has been replaced by the estimation of a rare event probability

### Sampling a rare event: splitting algorithms

Initialization: a surface  $\Sigma_A = \Sigma_0$  (such that  $\mathbb{P}(\tau_{\Sigma_A} < \tau_A)$  is not too small) is introduced to capture "actual exits" from AA В  $\mathbb{P}(\tau_B < \tau_A) = \mathbb{P}(\tau_{\Sigma_A} < \tau_A) \left( \prod_{i=0}^{6} \mathbb{P}(\tau_{\Sigma_{i+1}} < \tau_A | \tau_{\Sigma_i} < \tau_A) \right) \mathbb{P}(\tau_B < \tau_A | \tau_{\Sigma_7} < \tau_A)$ 

By the Markov property, given an ensemble of trajectories such that  $\tau_{\Sigma_i} < \tau_A$ , one can estimate the probability  $\mathbb{P}(\tau_{\Sigma_{i+1}} < \tau_A | \tau_{\Sigma_i} < \tau_A)$  by spawning trajectories from the first hitting points of  $\Sigma_i$ 

How to choose the surfaces  $\Sigma_i$  ?

AMS is a multiple replicas approach designed to place the  $\Sigma_i$ 's automatically so that  $\mathbb{P}(\tau_{\Sigma_{i+1}} < \tau_A | \tau_{\Sigma_i} < \tau_A)$  is independent of *i* (to get minimal variance) [Cérou, Guyader, Stoch. Anal. Appl. 2007]

1. Initial conditions for replicas are sampled on  $\Sigma_A$  by running MD (discretized Langevin dynamics)



2. Run  $N_{rep}$  replicas starting from the hitting points on  $\Sigma_A$  until A or B is reached



Rank the replicas using a 1D collective variable (CV)  $\xi : \Omega \to \mathbb{R}$ The surfaces  $\Sigma_i$  will be level sets of  $\xi$ 

Defining  $\Sigma_1 = \left\{ \mathbf{q} \in \Omega | \xi(\mathbf{q}) = z_{\max}^{1,0} \right\}$ , we have:  $\mathbb{P}(\tau_{\Sigma_1} < \tau_A | \tau_{\Sigma_0} < \tau_A) \simeq \frac{N_{\mathrm{rep}} - 1}{N_{\mathrm{rep}}}$ 



3. Delete the first replica, and replace it by branching randomly any of the remaining replicas from the killing level  $z_{\text{max}}^{1,0}$ 

Repeat step 3 until all replicas reach a level  $\{q, \xi(q) > \xi_{max}\} \supset B$ 

The estimator of

$$\mathbb{P}(\tau_B < \tau_A) = \mathbb{P}(\tau_{\Sigma_A} < \tau_A) \left( \prod_{i=0}^{j-1} \mathbb{P}(\tau_{\Sigma_{i+1}} < \tau_A | \tau_{\Sigma_i} < \tau_A) \right) \mathbb{P}(\tau_B < \tau_A | \tau_{\Sigma_j} < \tau_A)$$

is given by:

$$\hat{p}_{A \to \Sigma_A} \left( \frac{N_{\mathrm{rep}} - 1}{N_{\mathrm{rep}}} \right)^J \hat{p}_{\xi_{max} \to B}$$

where

- J is the (random) number of iterations to reach  $\{q, \xi(q) > \xi_{max}\}$
- $\hat{p}_{A \to \Sigma_A}$  (resp.  $\hat{p}_{\xi_{max} \to B}$ ) is a naive Monte Carlo estimator of  $\mathbb{P}(\tau_{\Sigma_A} < \tau_A)$  (resp.  $\mathbb{P}(\tau_B < \tau_A | \tau_{\xi_{max}} < \tau_A)$ )

#### Unbiasedness

Theorem [Brehier, Gazeau, Goudenège, TL, Rousset, J. Appl. Probab. 2016] The AMS estimator is unbiased whatever the choices of  $\xi$  and  $N_{rep}$ 

Practical counterparts: the algorithm is easy to parallelize; one can check the results by changing  $\boldsymbol{\xi}$ 

#### Variance

The variance of the estimator depends on  $N_{rep}$  (asymptotically,  $\propto N_{rep}^{-1}$ ) and on  $\xi$ . The optimal  $\xi$  is the committor function  $p_{A \to B}$  defined by:

$$\forall \mathbf{q} \in \Omega, p_{A \to B}(\mathbf{q}) = \mathbb{P}_{\mathbf{q}}(\tau_B < \tau_A)$$

How to choose the collective variable  $\xi$  in practice? Can it be learnt "on the fly"?

# Table of Contents

Calculation of rates and sampling of transition path

2 Application to water dissociation

Learning the committor function

# Dissociation of water on (100) surface

Metastable states of  $H_2O$  on the (100) surface of  $\gamma$ -alumina



This is a multistate problem

AMS can be used to analyze the transitions:

- Start from A<sub>1</sub>, choose R = A<sub>1</sub> and P = A<sub>2</sub>A<sub>3</sub> ∪ A<sub>4</sub> ∪ D<sub>1</sub>D<sub>3</sub> ∪ D<sub>2</sub>D<sub>4</sub>: What is the most probable exit from A<sub>1</sub>?
- Start from  $A_1$ , choose  $R = A_1 \cup A_2A_3 \cup A_4 \cup D_2D_4$  and  $P = D_1D_3$ : Focus on the  $A_1 \rightarrow D_1D_3$  transition

Construction of the SOAP-SVM collective variable

Two ingredients to build the CV:

- Smooth Overlap of Atomic Positions (SOAP) atom centered descriptors [Bartok, Kondor, Csanyi, Phys. Rev. B, 2013]
- Support-Vector Machine (SVM) to build a classifier decision function to separate the states (using short dynamics in each state)



### Comparison with harmonic Transition State Theory

Here are the results obtained on two specific transitions (dissociation and rotation) [ $\sim 2.10^6$  CPU hours for the whole reaction network]



hTST rates are larger (entropy estimation, recrossing)

[Pigeon, Stoltz, Corral-Valero, Anciaux-Sedrakian, Moreaud, TL, Raybaud, J. Chem. Theory Comput., 2023]

# Table of Contents

Calculation of rates and sampling of transition path

Application to water dissociation

3 Learning the committor function

### Committor function

We consider for simplicity the overdamped Langevin dynamics  $(\gamma \rightarrow +\infty)$ 

$$d\mathbf{q}_t = -\nabla V(\mathbf{q}_t) dt + \sqrt{\frac{2}{\beta}} d\mathbf{W} t$$

with infinitesimal generator:

$$\mathcal{L} = -
abla V \cdot 
abla + rac{1}{eta} \Delta$$

The committor function

$$p_{A 
ightarrow B}(\mathbf{q}) = \mathbb{P}_{\mathbf{q}}\left( au_B < au_A
ight)$$

satisfies the PDE:

$$\begin{aligned} \forall \mathbf{q} \in \Omega \setminus (\overline{A} \cup \overline{B}), \quad \mathcal{L}p_{A \to B}(\mathbf{q}) &= 0 \\ \forall \mathbf{q} \in \overline{A}, \ p_{A \to B}(\mathbf{q}) &= 0 \\ \forall \mathbf{q} \in \overline{B}, \ p_{A \to B}(\mathbf{q}) &= 1 \end{aligned}$$

### Methods to learn the committor with neural networks

- Pointwise approximations [Frassek, Arjun, Bolhuis, J. Chem. Phys. 2021] [Lopes, TL, J. Comput. Chem., 2019]
- Variational formulation [Khoo, Lu, Ying, arXiv:1802.10275 2018] [Li, Lin, Ren, J. Chem. Phys. 2019] [Rotskoff, Vanden-Eijnden, arXiv:2008.06334, 2020]
- Fixed point on the transition operator [Strahan, Finkel, Dinner, Weare, J. Comput. Phys. 2023] [Li, Khoo, Ren, Ying, MSML 2022] [He, Chipot, Roux, J. Phys. Chem. Lett. 2022]

### A new loss function

Ito formula leads to:

$$dp_{A\to B}(\mathbf{q}_t) = \mathcal{L}p_{A\to B}(\mathbf{q}_t)dt + \sqrt{\frac{2}{\beta}}\nabla p_{A\to B}(\mathbf{q}_t) \cdot d\mathbf{W}_t$$

Then,  $\forall \mathbf{q}_0 \in \Omega \setminus (\overline{A} \cup \overline{B})$ :

$$p_{A\to B}(\mathbf{q}_t)\mathbb{1}_{t<\tau_{\overline{A}\cup\overline{B}}} + \mathbb{1}_{\overline{B}}(\mathbf{q}_{\tau_{\overline{A}\cup\overline{B}}})\mathbb{1}_{t\geq\tau_{\overline{A}\cup\overline{B}}} - p_{A\to B}(\mathbf{q}_0) = \int_0^{t\wedge\tau_{\overline{A}\cup\overline{B}}} \sqrt{\frac{2}{\beta}} \nabla p_{A\to B}(\mathbf{q}_s) \cdot d\mathbf{W}_s$$

Thus the committor is solution to (for all t > 0 and all  $\mu$ ):

$$\underset{f}{\operatorname{arginf}} \int_{\Omega \setminus (\overline{A} \cup \overline{B})} \mathbb{E} \left[ \left( f(\mathbf{q}_t) \mathbb{1}_{t < \tau_{\overline{A} \cup \overline{B}}} + \mathbb{1}_{\overline{B}} (\mathbf{q}_{\tau_{\overline{A} \cup \overline{B}}}) \mathbb{1}_{t \ge \tau_{\overline{A} \cup \overline{B}}} - f(\mathbf{q}_0) \right. \\ \left. - \int_0^{t \wedge \tau_{\overline{A} \cup \overline{B}}} \sqrt{\frac{2}{\beta}} \nabla f(\mathbf{q}_s) \cdot d\mathbf{W}_s \right)^2 \right] \mu(d\mathbf{q}_0)$$

The method consists in:

- Defining a first putative CV (approximation of the committor function)
- Running AMS (forward  $A \rightarrow B$  and backward  $B \rightarrow A$ ) with this CV  $(p_{B\rightarrow A} = 1 p_{A\rightarrow B})$
- Updating the CV by minimizing the loss: the function *f* is approximated by a neural network
- Iterating, and enriching the training dataset, until the CV converges

### Illustration of the method

The Z potential



Feedforward model with architecture: (2, 20, 20, 1) Optimizer: Adam, learning rate .001

### Illustration of the method



Isolevels of the logarithm of the obtained approximation of the committor function Results obtained after 5 iterations (left: forward, right: backward)

### Illustration of the method

| CV                                      | linear interpolant              | NN committor                    | FE committor                    |
|-----------------------------------------|---------------------------------|---------------------------------|---------------------------------|
| Forward                                 |                                 |                                 |                                 |
| $p \pm \frac{1.96}{\sqrt{10}} \sigma_p$ | $(3.39 \pm 6.58) 	imes 10^{-8}$ | $(4.41 \pm 1.07) 	imes 10^{-7}$ | $(5.58 \pm 1.02) 	imes 10^{-7}$ |
| Backward                                |                                 |                                 |                                 |
| $p \pm rac{1.96}{\sqrt{10}}\sigma_p$   | $(0.89 \pm 1.52) 	imes 10^{-8}$ | $(6.57 \pm 1.48) 	imes 10^{-7}$ | $(5.09 \pm 1.) 	imes 10^{-7}$   |

95% confidence interval of the transition probability obtained after 10 forward and backward AMS runs ( $N_{\rm rep} = 100$ ) using various reaction coordinates.

NN committor = Neural network committor

FE committor = committor obtained by a finite element approximation

[Pigeon, Stoltz, TL, in preparation]

### Conclusion & perspectives

- Promising approaches to use ML built CVs for rare event sampling methods
- On-going works to couple AMS sampling with active learning methods for ML built force-fields [T. Pigeon]
- Perspectives (PhD of P. Marmey, MAMABIO project of the PEPR B-BEST):
   (i) Applications to the dehydration of alcohols
   (ii) New algorithms combining importance sampling with AMS