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BEM - FVW

CURRENT DESIGN TOOL: DEEPLINES WIND

Complexity of wind power modelling -> Offshore wind turbines involve multi-physics interaction

• Aerodynamics

• Structural dynamics

• Hydrodynamics

• Control systems

Current design tool at IFPEN -> DeepLines Wind [2] 

• Developed by Principia

• Purpose: multi-physics simulations for wind turbines

• Capabilities: aero-hydro-servo-elastic modelling
with various aerodynamic methods of differing fidelity

• Limitations: high computational costs

Focus on aero-elasticity in this work. 

[2] C. Le Cunff, J.-M. Heurtier, L. Piriou, C. Berhault, T. Perdrizet, D. Teixeira, G. Ferrer, and J.-C. Gilloteaux, “Fully coupled oating wind turbine simulator based on nonlinear finite element
method: Part i—methodology,” in International Conference on O shore Mechanics and Arctic Engineering, vol. 55423, p. V008T09A050, American Society of Mechanical Engineers, 2013
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THESIS OBJECTIVES AND CHALLENGES

Objectives :

Aeroelastic modelling of large wind turbine under operational conditions:
• Transition from low-fidelity Blade Element Momentum (BEM) to higher-fidelity Free Vortex 

Wake (FVW) methods.

• Develop alternative coupling techniques for aeroelastic computations.

• Implement partitioned coupling in the DeepLines Wind framework.

• Reduce computational costs of aeroelastic modelling with FVW methods

Main challenges:

• Time-scale difference: Fluid and structural problems may require different resolution
orders.

• Over-resolved aerodynamics: FVW methods significantly increase computational coss.

• Coupling techniques: Can alternative methods reduce computational cost while
maintaining numerical stability and accuracy?

3
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AERODYNAMIC MODELLING TECHNIQUES FOR WIND TURBINE SIMULATION 

Focus of 
this part

BEM - Vortex

Blade Element Momentum method [3]:

• Low fidelity and computationnaly efficient: 
widely used in design applications.

• Assumes axisymmetric, steady inflow.

• Relies on empirical corrections: tip-loss, dynamic
inflow.

• Limited accuracy for unsteady or non-uniform
inflow conditions

Free Vortex Wake methods [4]:

• Intermediate-fidelity, physics-based approach.

• Models wake as discrete vortical structures evolving
over time.

• Captures unsteady effects, wake interactions and non-
uniform inflow.

• More computationally intensive, especially for 
aeroelastic simulations.

[3] T. Burton, N. Jenkins, D. Sharpe, and E. Bossanyi, Wind energy handbook. John Wiley & Sons, 2011.

[4] E. Branlard, “Wind turbine aerodynamics and vorticity-based methods,” 2020.
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PITCHOU AND CASTOR: TWO GPU ACCELERATED FVW CODES

Feature Pitchou CASTOR [5]

Language Python C++

Development Context Developed during this thesis
as a training tool

Pre-existing at IFPEN

Acceleration GPU-accelerated GPU-accelerated

Primary Application Simplified studies and 
testing

More complex aerodynamic
and aeroelastic simulations

Integration Standalone testing
framework for aerodynamic
simulations

Integrated with DeepLines
Wind

Specifications Filament wake discretisation Filament discretisation + 
merging methods

Focus on the underlying theory and development process

[5] F. Blondel, P.-A. Joulin, and C. Le Guern, “Towards vortex-based wind turbine design using gpus and wake accommodation,” in Journal of Physics: Conference Series, vol. 
2767, p. 052016, IOP Publishing, 2024.



7 ©  |  2 0 2 4  I F P E N

FREE VORTEX WAKE METHODS: NAVIER STOKES EQUATION VELOCITY-
VORTICITY FORM

Navier Stokes equation in (𝐮 − 𝝎) formulation

Convection Diffusion

Lagrangian framework formulation for an inviscid flow: 

Biot-Savart law [6] -> compute the vorticity induced velocity:

Biot-Savart kernel: 

Volume of integration

[6] E. S. P. Branlard, “Flexible multibody dynamics using joint coordinates and the rayleigh-ritz approximation: The general framework behind and beyond ex,” Wind Energy, vol. 22, 
no. 7, pp. 877–893, 2019.

Vorticity sheet
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FREE VORTEX WAKE METHODS: FILAMENT DISCRETISATION AND LIFTING 
LINE METHOD

Overall discretisation

Stretching term: 
numerically challenging

Filament based approach: solving
Kelvin’s circulation theorem

Biot-Savart law
using circulation

Trail and shed filaments defined by circulation via Kelvin’s
theorem

Wake discretisation Blade discretisation and litfting line [7]

Source of bound circulation generating lift

Kutta-
Joukowski

Blade-element
theory

[7] A. van Garrel, “Development of a wind turbine aerodynamics simulation module,” 2003.
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CHALLENGES IN FVW METHODS: WAKE DISCRETIZATION AND 
DESINGULARIZATION METHODS

Desingularisation methods [8] 

Offset method

Vatistas method

Offset method

Vatistas method

[8] G. H. Vatistas, V. Kozel, and W. Mih, “A simpler model for concentrated vortices,” Experiments in Fluids, vol. 11, pp. 73–76, 1991.
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FVW CODE – ALGORITHM OVERVIEW
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PITCHOU VALIDATION: ELLIPTICAL WING CASE – COMPARISON TO WINDS FVW 
CODE

Static elliptical wing

• 40 spanwise nodes
• Blade pitch = 5°
• AR = 6
• 𝑈∞ = 1𝑚/𝑠
• Total time = 10s
• Δt = 0.1s
• Offset method (𝑟𝑐

2 = 𝛿2)

Elliptical wing subject to pitch change

• AR = 18

• Initial blade pitch = 2°
• Final blade pitch = 8°
• Pitch rate= 8°/s
• Total time = 20s
• Pitching start time = 10s
• Offset method : 𝛿2 = 0.1
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PITCHOU VALIDATION: NEW MEXICO TURBINE – COMPARISON TO CASTOR CODE 

NewMexico [9] wind turbine:

• 𝑈∞ = 15.06 m/s

• Azimuthal time step: 10°
• Total rotations: 15
• Offset method: 𝛿2 = 0.01

[9] H. Snel, J. Schepers, and B. Montgomerie, “The mexico project (model experiments in controlled conditions): The database and first results of data processing and interpretation,” 
in Journal of Physics: Conference Series, vol. 75, p. 012014, IOP Publishing, 2007.
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PITCHOU VALIDATION: EFFECTS OF GPU ACCELERATION

Static elliptical wing -> wake length equivalent to that required
for convergeed induced velocity in wind turbine simulations.

• 105 spanwise nodes
• Blade pitch = 5°
• AR = 6

• The total simulation time scales quadratically with the 
number of filaments.

• Achieves a speedup of two orders of magnitude with
GPU acceleration compared to CPU simulations.

• 𝑈∞ = 1 𝑚/𝑠
• Total time = 54s
• Δt = 0.1s
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SENSITIVITY ANALYSIS USING CASTOR: EFFECTS OF AZIMUTHAL WAKE 
DISCRETISATION AND DESINGULARISATION METHODS

Offset method

Vatistas method

Azimuthal discretization in litterature:

• Recommended range: 5° to 10° per time step [10]

𝛿𝐴𝑧𝑖 = 1° 𝛿𝐴𝑧𝑖 = 10°

Finer wake discretization: 

• Combined with small core radii
• Results in non-smooth time evolution of 

aerodynamic forces
Impact on aeroelastic simulations: 

• Potentially detrimental due to force irregularities

[10] R. Corniglion, aero-elastic modeling of floating wind turbines with vortex methods. PhD thesis, Marne-la-vallée, ENPC, 2022.
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KEY TAKEAWAYS AND UPCOMING FOCUS

Takeaways:
• FVW methods:

• Higher fidelity than BEM, captures unsteady effects (wake interactions, inflow).

• Potential as design tool for offshore wind turbines.

• Pitchou FVW code: 

• Python-based, designed for testing (single blades/full rotors).

• Quadratic scaling with filament count.

• GPU: ~100x faster than CPU.

• Sensitivity of FVW methods:
• Key parameters: wake discretization, desingularization.

• Poor parameter choices -> non-smooth forces -> aeroelastic challenges.

Upcoming focus: 
• Adressing time scale differences (structural vs. aerodynamic solvers).

• Exploring alternative coupling techniques: simplified linear model.
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Current aeroelastic partitioned coupling technique in DeepLines Wind

Structural solver Aerodynamic Solvers

AeroDeep
BEM Method

CASTOR 
Free Vortex 

Wake Method

DeepLines

Finite Element method

Fluid/structure coupling : 

Conventional serial 
staggered partitioned

scheme

Current numerical tool

IEA 15MW

First blade mode’s frequency

• ̴ 0.5 Hz       T=2s

• Δ𝑡𝑠 ≈ 0.02𝑠

Constant wind simulation U=10 m/s:

• Steady-state rotation speed: 

45deg/s

• For a coupling time step Δ𝑡𝑐= 0.01s      

Δ𝑡𝑓 = 0.45 deg per time step

Wake using FVW method

Over-resolved aerodynamic problem
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« Conventional Serial Staggered (CSS) » Subcycling scheme [11] Adapted subcycling

Structural solver Aerodynamic Solvers

CASTOR
Free Vortex 

Wake Method

META 
Model

DeepLines

Finite Element method
Fluid/structure coupling : 

partitioned schemes

Current numerical tool

Coupling schemes for aeroelastic modelling

Aim: study the effects of partitioned schemes on numerical

properties using a simplified linear coupled oscillator model first.

[11] S. Piperno, C. Farhat, and B. Larrouturou, “Partitioned procedures for the transient solution of coupled aroelastic problems part i: Model problem, theory and two-dimensional application,” 
Computer methods in applied mechanics and engineering, vol. 124, no. 1-2, pp. 79–112, 1995.
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TWO COUPLED LINEAR OSCILLATOR MODEL: PHYSICAL DESCRIPTION

Structural linear oscillator equation

𝑦 structural displacement
𝑑𝑠 structural damping term
𝛿 oscillation frequency
𝑀 added coupling stiffness

Fluid Van der Pol linear equation

𝑞 fluid force
𝑑𝑎 fluid damping term
𝐴0 added coupling stiffness
𝐴1 added coupling damping

Coupled matrix compact form

Van der Pol equation used for VIV studies [12]: an aeroelastic instability

modeled in large wind turbines.

[12] E. De Langre, “Frequency lock-in is caused by coupled-mode flutter,” Journal of fluids and structures, vol. 22, no. 6-7, pp. 783–791, 2006.
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TWO COUPLED LINEAR OSCILLATOR MODEL: NUMERICAL PROPERTIES

Check physical stability

Time discretised problem: CSS

• Structural oscillator equation: 
inject Newmark scheme.

• Fluid oscillator equation: inject
Forward Euler scheme.

• Linear multi-step method [13]: 
separate states at n+1 from
states at n.Physical problem

Check numerical stability

Method used for numerical stability study: for CSS and subcycling comparison.

[13] J. C. Butcher, “General linear methods,” Acta Numerica, vol. 15, pp. 157–256, 2006.
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NUMERICAL STABILITY: COUPLING CASE WITH DAMPING EFFECTS

Weak coupling Medium coupling Strong coupling

Extended stability region when using subcycling compared to CSS.

Subcycling using constant regression
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ACCURACY ANALYSIS

Order of the coupling scheme:

• Error computation with respect to reference monolithic solution.

• The CSS coupling scheme using FE/Newmark is of order 1.

• Subcycling doesn’t affect the order. 

• The error seems to be less using subcycling in comparison to CSS.



23 ©  |  2 0 2 4  I F P E N

KEY TAKEAWAYS AND UPCOMING FOCUS

Takeaways

• Comparison of CSS and Subcycling schemes in a linear coupled oscillator model:

• Insights into effects of partitioned schemes in coupled problems.

• Subcycling extends stability in damping-dominated cases.

• Order of accuracy preserved in subcycling.

Upcoming focus

• Partitioned schemes for realistic aeroelastic problems:

• Implementing subcycling in DeepLines Wind .

• Aeroelastic effects: damping vs natural frequency.

• Comparing subcycling vs. CSS results.
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IMPLEMENTATION OF PARTITIONED COUPLING IN DEEPLINES WIND
FRAMEWORK

Architecture with coupler module that connects structural solver to two aerodynamic libraries:

• « High-fidelity solver » (e.g., CASTOR, AeroDeep): compute precise aerodynamic forces.

• « Low-fidelity meta model »: provide approximate aerodynamic forces for faster computations 
at intermediate time steps.

The coupling scheme uses two distinct time steps:

• Structural solver time step Δ𝑡𝑠 : higher frequency updates for the structure using meta model 
outputs

• Fluid solver time step Δ𝑡𝑓 : lower rate aerodynamic resolution to reduce computational costs. 
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EFFECTS OF PARTITIONED COUPLING SCHEMES ON WIND TURBINE PROBLEM

Objective: Assess subcycling scheme impact on aeroelastic simulations.

Setup:

• IEA 15MW turbine, constant wind 𝑈∞ = 10.6 m/s, TSR  𝜆 = 8.5

• 200 s simulation using DeepLines and CASTOR with constant regression
• CSS reference case: time step Δ𝑡𝑐 = 0.01s

Results: 

• Subcycling scheme:

• Stable up to 9 sub-iterations (Δ𝑡𝑓 = 0.1s).

• Slight amplitude/phase differences compared to CSS.

• Efficiency gains: 

• Subcycling: 400x faster

• Reduced wake filament emissions and meta-model use.

400x faster
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EFFECTS OF PARTITIONED COUPLING SCHEMES ON WIND TURBINE PROBLEM

Objective: Assess subcycling scheme impact on aeroelastic simulations.

Setup:

• IEA 15MW turbine, constant wind 𝑈∞ = 10.6 m/s, TSR  𝜆 = 8.5

• 200 s simulation using DeepLines and CASTOR with linear and polynomial 
regression

• CSS reference case: time step Δ𝑡𝑐 = 0.01s

Results: 

• Subcycling stability:

• Linear: 4 subcycles max.

• Polynomial: 2 subcycles max.

• Relative errors: 

• All schemes: slightly underestimate force amplitude. 

• Constant regression: lowest error – Polynomial regression: highest error.
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EFFECTS OF PARTITIONED COUPLING SCHEMES ON WIND TURBINE PROBLEM

Objective: Assess the impact of subcycling scheme on aeroelastic wind turbine 
problem with turbulent wind.

Simulation setup:

• IEA 15MW wind turbine subjected to turbulent wind conditions.
• TubSim generated.
• Mean wind speed: 8 m/s, turbulence intensity: 8%.

Performance

• Constant, linear, and polynomial regressions -> Comparable to constant wind
case.

Error analysis:

• Relative amplitude errors ≤ 6% (constant regression with maximum of sub-
iterations).
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CONCLUSIONS

Aerolastic modelling

• Offshore turbine size/complexity -> Need for accuracte aeroelastic models.

• Challenge: Balance computational cost vs. accuracy.

FVW method

• Higher fidelity than BEM, capturing unsteady effects.

• Feasible alternative to CFD but still resource-intensive.

• GPU acceleration: essential to manage large wake structures.

• Python-based solver enables flexible aerodynamic analysis.

Solver coupling

• Subcycling schemes reduce costs while maintaining accuracy.

• 400x speed-up in DeepLines Wind (vs. CSS).
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PERSPECTIVES

Extending coupled simulations

• Apply subcycling/partitioned schemes for fully coupled offshore simulations.

Optimizing FVW method in aeroelastic simulations

• Investigate wake coarsening to further reduce computational costs.

• Transition vortex methods to practical design tools.

Refining Python-based FVW tool

• Integrate advanced wake coarsening/desingularization techniques.

• Expand usability for fully coupled aeroelastic simulations.

Enhancing meta-model forecasting

• Use machine learning (e.g., LSTM) for meta-model forecasting.



32 ©  |  2 0 2 4  I F P E N

Thank you for you attention ! 
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