AEROELASTIC MODELLING OF LARGE TRANSFORMATIONS USING PARTITIONED COUPLING: APPLICATION TO LARGE WIND TURBINES.

Caroline Le Guern

6th of December 2024

THESIS DIRECTOR:	MICHEL BERGMANN	REVIEWERS :	JORIS DEGROOTE
			NIELS NØRMARK SØRENSEN
SUPERVISORS:	FRÉDÉRIC BLONDEL	EXAMINERS :	AXELLE VIRÉ
	JEAN-LOU PFISTER		MATTEO CAPALDO
	NICOLAS GUY		ANGELO IOLLO

CURRENT DESIGN TOOL: DEEPLINES WIND™

Complexity of wind power modelling -> Offshore wind turbines involve multi-physics interaction

- Aerodynamics
- Structural dynamics
- Hydrodynamics
- Control systems

Focus on **aero-elasticity** in this work.

Current design tool at IFPEN -> DeepLines Wind[™] [2]

- Developed by Principia
- Purpose: multi-physics simulations for wind turbines
- Capabilities: aero-hydro-servo-elastic modelling with various aerodynamic methods of differing fidelity
- Limitations: high computational costs

if *Cnergies nouvelles*

© 2024 IFPEN [2] C. Le Cunff, J.-M. Heurtier, L. Piriou, C. Berhault, T. Perdrizet, D. Teixeira, G. Ferrer, and J.-C. Gilloteaux, "Fully coupled Boating wind turbine simulator based on nonlinear finite element method: Part i—methodology," in International Conference on OBshore Mechanics and Arctic Engineering, vol. 55423, p. V008T09A050, American Society of Mechanical Engineers, 2013

THESIS OBJECTIVES AND CHALLENGES

Objectives:

Aeroelastic modelling of large wind turbine under operational conditions:

- Transition from low-fidelity Blade Element Momentum (BEM) to higher-fidelity Free Vortex Wake (FVW) methods.
- Develop alternative coupling techniques for aeroelastic computations.
- Implement partitioned coupling in the DeepLines Wind framework.
- Reduce computational costs of aeroelastic modelling with FVW methods

Main challenges:

- Time-scale difference: Fluid and structural problems may require different resolution orders.
- Over-resolved aerodynamics: FVW methods significantly increase computational coss.
- Coupling techniques: Can alternative methods reduce computational cost while maintaining numerical stability and accuracy?

3. Partitioned coupling in wind turbine aeroelastic problem

AERODYNAMIC MODELLING TECHNIQUES FOR WIND TURBINE SIMULATION

© | 2024 IFPEN [3] T. Burton, N.

PITCHOU AND CASTOR: TWO GPU ACCELERATED FVW CODES

Feature	Pitchou	CASTOR [5]
Language	Python	C++
Development Context	Developed during this thesis as a training tool	Pre-existing at IFPEN
Acceleration	GPU-accelerated	GPU-accelerated
Primary Application	Simplified studies and testing	More complex aerodynamic and aeroelastic simulations
Integration	Standalone testing framework for aerodynamic simulations	Integrated with DeepLines Wind™
Specifications	Filament wake discretisation	Filament discretisation + merging methods

6

Focus on the underlying theory and development process

2024 IFPEN [5] F. Blondel, P.-A. Joulin, and C. Le Guern, "Towards vortex-based wind turbine design using gpus and wake accommodation," in Journal of Physics: Conference Series, vol. 2767, p. 052016, IOP Publishing, 2024.

FREE VORTEX WAKE METHODS: NAVIER STOKES EQUATION VELOCITY-VORTICITY FORM

<u>Navier Stokes equation in $(u - \omega)$ formulation</u>

$$\vec{\nabla} \cdot \vec{u} = 0$$

$$\frac{\partial \vec{\omega}}{\partial t} + \left(\vec{u} \cdot \vec{\nabla}\right) \vec{\omega} = \left(\vec{\omega} \cdot \vec{\nabla}\right) \vec{u} + \nu \Delta \vec{\omega}$$

Convection

Diffusion

Vorticity sheet

Lagrangian framework formulation for an inviscid flow:

$$\frac{D\vec{\omega}}{Dt} = \left(\vec{\omega}\cdot\vec{\nabla}\right)\vec{u}$$

Volume of integration

Biot-Savart law [6] -> compute the vorticity induced velocity:

$$\vec{u}^{\Psi}(\vec{x},t) = \iiint_{\vec{y} \in \mathbb{R}^3} \vec{K}(\vec{x}-\vec{y}) \times \vec{\omega}(\vec{y},t) \langle dv(\vec{y}) \rangle$$

3

Biot-Savart kernel:
$$\vec{K}(\vec{x}) = \vec{\nabla}G(\vec{x}) = -\frac{1}{4\pi} \frac{\vec{x}}{\|\vec{x}\|}$$

C 2024 IFPEN [6] E. S. P. Branlard, "Flexible multibody dynamics using joint coordinates and the rayleigh-ritz approximation: The general framework behind and beyond 🕮 x," Wind Energy, vol. 22, no. 7, pp. 877–893, 2019.

FREE VORTEX WAKE METHODS: FILAMENT DISCRETISATION AND LIFTING LINE METHOD

Overall discretisation

Wake discretisation

 $\frac{\partial \vec{\omega}}{\partial t} + \left(\vec{u} \cdot \vec{\nabla} \right) \vec{\omega} = \left(\vec{\omega} \cdot \vec{\nabla} \right) \vec{u}$

Blade discretisation and litfting line [7]

- Wake node
- Blade node
- Evaluation point

Stretching term:
numerically challenging
$$\begin{aligned}
\hline
 Eilament based approach: solving Kelvin's circulation theorem
\end{aligned}
\qquad

$$\begin{aligned}
 \underline{D\Gamma} &= 0 \\
 \underline{Dt} &= 0
\end{aligned}$$
Biot-Savart law using circulation
$$\vec{u}_{induced}(\vec{x}_p) = \frac{\Gamma}{4\pi} \frac{(|\vec{r_1}| + |\vec{r_2}|)(\vec{r_1} \times \vec{r_2})}{|\vec{r_1}||\vec{r_2}|(|\vec{r_1}||\vec{r_2}| + \vec{r_1} \cdot \vec{r_2})}
\end{aligned}$$$$

Trail and shed filaments defined by circulation via Kelvin's theorem

$$\Gamma_{trail}(r,t) = \Gamma_{bound}(r,t) - \Gamma_{bound}(r-\Delta r,t)$$

$$\Gamma_{shed}(r,t) = \Gamma_{bound}(r,t) - \Gamma_{bound}(r,t-\Delta t)$$

CHALLENGES IN FVW METHODS: WAKE DISCRETIZATION AND **DESINGULARIZATION METHODS**

Offset method

Offset method

Vatistas method

$$\vec{u}_{induced}(\vec{x}_p) = \frac{\Gamma}{4\pi} \frac{(|\vec{r_1}| + |\vec{r_2}|)(\vec{r_1} \times \vec{r_2})}{|\vec{r_1}||\vec{r_2}|(|\vec{r_1}||\vec{r_2}| + \vec{r_1} \cdot \vec{r_2})}$$

Desingularisation methods [8]

FVW CODE – ALGORITHM OVERVIEW

 $\vec{x}(t + \Delta t) = \vec{x}(t) + \vec{u}_{eff}(t)\Delta t$

Shed filaments Trailing filaments

Bound filaments

Wake node Blade node

PITCHOU VALIDATION: ELLIPTICAL WING CASE – COMPARISON TO WINDS FVW CODE

Elliptical wing subject to pitch change

- AR = 18
- Initial blade pitch = 2°
- Final blade pitch = 8°
- Pitch rate= 8°/s
- Total time = 20s
- Pitching start time = 10s
- Offset method : $\delta^2 = 0.1$

PITCHOU VALIDATION: NEW MEXICO TURBINE – COMPARISON TO CASTOR CODE

NewMexico [9] wind turbine:

- $U_{\infty} = 15.06 \text{ m/s}$
- Azimuthal time step: 10°
- Total rotations: 15
- Offset method: $\delta^2 = 0.01$

[9] H. Snel, J. Schepers, and B. Montgomerie, "The mexico project (model experiments in controlled conditions): The database and first results of data processing and interpretation," in Journal of Physics: Conference Series, vol. 75, p. 012014, IOP Publishing, 2007.

PITCHOU VALIDATION: EFFECTS OF GPU ACCELERATION

•

SENSITIVITY ANALYSIS USING CASTOR: EFFECTS OF AZIMUTHAL WAKE DISCRETISATION AND DESINGULARISATION METHODS

[10] R. Corniglion, aero-elastic modeling of floating wind turbines with vortex methods. PhD thesis, Marne-la-vallée, ENPC, 2022.

KEY TAKEAWAYS AND UPCOMING FOCUS

Takeaways:

- FVW methods:
 - Higher fidelity than BEM, captures unsteady effects (wake interactions, inflow).
 - Potential as design tool for offshore wind turbines.
- Pitchou FVW code:
 - Python-based, designed for testing (single blades/full rotors).
 - Quadratic scaling with filament count.
 - **GPU:** ~100x faster than CPU.
- Sensitivity of FVW methods:
 - Key parameters: wake discretization, desingularization.
 - Poor parameter choices -> non-smooth forces -> aeroelastic challenges.

Upcoming focus:

- Adressing time scale differences (structural vs. aerodynamic solvers).
- Exploring alternative coupling techniques: **simplified linear model**.

1. Aerodynamic simulation methods

2. Aeroelastic modeling

3. Partitioned coupling in wind turbine aeroelastic problem

4. Conclusion and perspectives

Current aeroelastic partitioned coupling technique in DeepLines Wind[™]

Coupling schemes for aeroelastic modelling

Aim: study the effects of partitioned schemes on numerical

properties using a simplified linear coupled oscillator model first.

18 C | 2024 IFPEN [11] S. Piperno, C. Farhat, and B. Larrouturou, "Partitioned procedures for the transient solution of coupled aroelastic problems part i: Model problem, theory and two-dimensional application," Computer methods in applied mechanics and engineering, vol. 124, no. 1-2, pp. 79–112, 1995.

TWO COUPLED LINEAR OSCILLATOR MODEL: PHYSICAL DESCRIPTION

• Structural linear oscillator equation

$$\ddot{y} + d_s \dot{y} + \delta^2 y = Mq$$

y structural displacement
 d_s structural damping term
 δ oscillation frequency
 M added coupling stiffness

• Fluid Van der Pol linear equation

$$\ddot{q} + d_a \dot{q} + q = A_0 y + A_1 \dot{y}$$

q fluid force
d_a fluid damping term
A₀ added coupling stiffness
A₁ added coupling damping

Van der Pol equation used for VIV studies [12]: an aeroelastic instability modeled in large wind turbines.

Coupled matrix compact form

$$\begin{bmatrix} \dot{Q} \\ \delta \dot{W} \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} Q \\ \delta W \end{bmatrix} \quad \delta W = \begin{bmatrix} X_f \\ \dot{X}_f \end{bmatrix} = \begin{bmatrix} y \\ \dot{y} \end{bmatrix} \quad Q = \begin{bmatrix} X_s \\ \dot{X}_s \end{bmatrix} = \begin{bmatrix} q \\ \dot{q} \end{bmatrix}$$

TWO COUPLED LINEAR OSCILLATOR MODEL: NUMERICAL PROPERTIES

Method used for numerical stability study: for CSS and subcycling comparison.

NUMERICAL STABILITY: COUPLING CASE WITH DAMPING EFFECTS

Subcycling using constant regression

Weak coupling

Medium coupling

Strong coupling

Extended stability region when using subcycling compared to CSS.

ACCURACY ANALYSIS

Order of the coupling scheme:

- Error computation with respect to reference monolithic solution.
- The CSS coupling scheme using FE/Newmark is of order 1.
- Subcycling doesn't affect the order.
- The error seems to be less using subcycling in comparison to CSS.

KEY TAKEAWAYS AND UPCOMING FOCUS

Takeaways

- Comparison of **CSS** and **Subcycling** schemes in a **linear coupled oscillator model**:
 - Insights into effects of partitioned schemes in coupled problems.
 - Subcycling **extends stability** in damping-dominated cases.
 - Order of accuracy preserved in subcycling.

Upcoming focus

- Partitioned schemes for realistic **aeroelastic problems**:
 - Implementing **subcycling** in **DeepLines Wind™**.
 - Aeroelastic effects: **damping** vs natural **frequency.**
 - Comparing subcycling vs. CSS results.

1. Aerodynamic simulation methods

2. Aeroelastic modeling

3. Partitioned coupling in wind turbine aeroelastic problem

4. Conclusion and perspectives

IMPLEMENTATION OF PARTITIONED COUPLING IN DEEPLINES WIND FRAMEWORK

Architecture with coupler module that connects structural solver to two aerodynamic libraries:

- « High-fidelity solver » (e.g., CASTOR, AeroDeep): compute precise aerodynamic forces.
- « Low-fidelity meta model »: provide approximate aerodynamic forces for faster computations at intermediate time steps.

The coupling scheme uses two distinct time steps:

- Structural solver time step Δt_s : higher frequency updates for the structure using meta model outputs
- Fluid solver time step Δt_f : lower rate aerodynamic resolution to reduce computational costs.

EFFECTS OF PARTITIONED COUPLING SCHEMES ON WIND TURBINE PROBLEM

- IEA 15MW turbine, constant wind $U_{\infty} = 10.6$ m/s, TSR $\lambda = 8.5$
- 200 s simulation using DeepLines and CASTOR with constant regression
- CSS reference case: time step $\Delta t_c = 0.01$ s

Results:

٠

- Subcycling scheme:
 - Stable up to 9 sub-iterations ($\Delta t_f = 0.1$ s).
 - Slight amplitude/phase differences compared to CSS.

Efficiency gains:

•

- Subcycling: 400x faster
- Reduced wake filament emissions and meta-model use.

Method	CSS	1 sub-it	2 sub-it	4 sub-it	7 sub-it	9 sub-it
Total comp. time	10d16h	35h06min	11h24min	2h55min	$57 \mathrm{min}$	36min

EFFECTS OF PARTITIONED COUPLING SCHEMES ON WIND TURBINE PROBLEM

Objective: Assess subcycling scheme impact on aeroelastic simulations.

Setup:

- IEA 15MW turbine, constant wind $U_{\infty} = 10.6$ m/s, TSR $\lambda = 8.5$
- 200 s simulation using DeepLines and CASTOR with **linear and polynomial** regression
- CSS reference case: time step $\Delta t_c = 0.01$ s

Results:

- Subcycling stability:
 - Linear: 4 subcycles max.
 - Polynomial: 2 subcycles max.
- Relative errors:
 - All schemes: slightly underestimate force amplitude.
 - Constant regression: lowest error Polynomial regression: highest error.

Sub-it number	1	2	4	7	9
Constant regr err (%)	0.78	0.77	0.75	0.79	0.72
Linear regr err $(\%)$	1.09	1.33	1.30	-	-
Polynomial regr err $(\%)$	1.72	1.55	-	-	-

EFFECTS OF PARTITIONED COUPLING SCHEMES ON WIND TURBINE PROBLEM

Objective: Assess the impact of subcycling scheme on aeroelastic wind turbine problem with **turbulent wind**.

Simulation setup:

- IEA 15MW wind turbine subjected to turbulent wind conditions.
- TubSim generated.
- Mean wind speed: 8 m/s, turbulence intensity: 8%.

Performance

Constant, linear, and polynomial regressions -> Comparable to constant wind case.

Error analysis:

• Relative amplitude errors ≤ 6% (constant regression with maximum of subiterations).

Sub-it number	1	2	4	6	10
Constant regr err (%)	1.01	0.16	1.23	2.09	6.75
Linear regr err $(\%)$	0.11	0.63	0.52	-	-
Polynomial regr err $(\%)$	1.2	1.2	-	-	-

1. Aerodynamic simulation methods

2. Aeroelastic modeling

3. Partitioned coupling in wind turbine aeroelastic problem

4. Conclusion and perspectives

CONCLUSIONS

Aerolastic modelling

- Offshore turbine size/complexity -> Need for accuracte aeroelastic models.
- Challenge: Balance computational cost vs. accuracy.

FVW method

- Higher fidelity than BEM, capturing unsteady effects.
- Feasible alternative to CFD but still resource-intensive.
- GPU acceleration: essential to manage large wake structures.
- Python-based solver enables flexible aerodynamic analysis.

Solver coupling

- Subcycling schemes reduce costs while maintaining accuracy.
- 400x speed-up in DeepLines Wind (vs. CSS).

PERSPECTIVES

Extending coupled simulations

• Apply subcycling/partitioned schemes for fully coupled offshore simulations.

Optimizing FVW method in aeroelastic simulations

- Investigate wake coarsening to further reduce computational costs.
- Transition vortex methods to practical design tools.

Refining Python-based FVW tool

- Integrate advanced wake coarsening/desingularization techniques.
- Expand usability for fully coupled aeroelastic simulations.

Enhancing meta-model forecasting

• Use machine learning (e.g., LSTM) for meta-model forecasting.

Thank you for you attention !

Innovating for energy

Find us on:

- www.ifpenergiesnouvelles.com
- **@IFPENinnovation**

