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Context

Complex systems

Number of threads

Memory hierarchy : memory, L3, L2, L1

Non-Uniform Memory Access (NUMA) effects

Simultaneous Multithreading (SMT)

Thread placement (binding policy)

Prefetchers (may require root privileges)

Frequency (may require root privileges)

Instruction set

Accuracy (simple or double precision, compliance with IEEE standard)

Compiler optimizations
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Thread placement (binding policy)
Prefetchers (may require root privileges)
Frequency (may require root privileges)
Instruction set

Accuracy (simple or double precision, compliance with IEEE standard)

Compiler optimizations

Values can improve or reduce execution time and/or energy consumption.
Parameters influence each other.
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Impact on simulator codes

m Simulators are often memory-bound
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Context

Impact on simulator codes

m Simulators are often memory-bound
m computation could go faster
m data doesn't travel fast enough in the memory hierarchy
m Simulators are not always vectorizable (data layout, branches)
m Different behaviors
m For different simulators
m For different phases in a simulator

m On different architectures
m With different inputs (size and nature)

There is no recipe to get the best performance and energy consumption on
every machine for every application.
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Optimization space exploration

A framework for optimization space exploration: CORHPEX

m Few points can be tested
manually

CORHPEX

m Manual exploration may be
biased

m An assumption may be valid
at some point but that can
change overtime

We need a faster, portable and
unbiased way to find
optimizations.

Machine Learning  Visualization
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Optimization target

m Time (performance)
m Energy (energy savings)
m EDP (time x energy)
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Optimization space exploration

Target and constraints

Optimization target

m Time (performance)
m Energy (energy savings)
m EDP (time x energy)

m Accuracy (simple, double, mixed precision)

m Micro-architecture (the machine used for the execution)
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Optimization space exploration

The space

Dimension Sub-dimension Options Size
Number of threads* 1,4,8,16,32,64 6
package First,Last 2

C die First,Last 2

Thread binding L3 First.Last 5
smt First,Last 2

DCU IP-correlated On,Off 2

Prefetchers DCU . . On,Off 2
L2 Adj. Cache Line  On,Off 2

L2 Streamer On,Off 2

o -02,-03,

Optimization flags -0O3 without vectorization 3

Compiler flags Vecto cost model very cheap, cheap, dynamic 3
fast-maths On, Off 2

Instruction set* -msse4,-mavx2,-march=native 3

Precision’ Storage float, double 2
Computing float, double 2
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Optimization space exploration

The space
Dimension Sub-dimension Size | IFPEN | [1] [2] [3]
Number of threads* 6 | X X X
package 2 partial partial partial
- die 2 with with with
Thread binding L3 2 data data data
smt 2 mapping | mapping | mapping
DCU IP-correlated 2 X
DCU 2
Prefetchers L2 Adj. Cache Line 2
L2 Streamer 2
Optimization flags 3 | partial
Compiler flags Vecto cost model 3
mprier rag fast-maths 2
Instruction set* 3
.. Storage 2| X
T
Precision Computing 5

. M. Diener et. al. “Characterizing communication and page usage of parallel applications for thread and data mapping,” 2015,
doi: 10.1016/j.peva.2015.03.001.

. M. Popov et. al., “Efficient thread/page/parallelism autotuning for numa systems,” 2019, doi: 10.1145/3330345.3330376.

. I. Sdnchez Barrera et. al., “Modeling and optimizing numa effects and prefetching with machine learning,” 2020. doi:
10.1145/3392717.3392765.
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m From IFPEN
m Physics : CapillaryPressure, RelativePermeability. . .

Optimization space exploration

The applications to learn from

m Carbon capture: ShArc and Geoxim
m Basic linear algebra kernels used in linear solvers
m MCGSolver

m Benchmarks

NAS (NPB)
Rodinia
LULESH
PARSEC
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Optimization space exploration

Experimental results: small exhaustive exploration

m CapillaryPressureLaw

= AMD EPYC 7301 (Zen), 2
CPUs, 16 cores/CPU
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Optimization space exploration

Experimental results: small exhaustive exploration
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m CapillaryPressureLaw

= AMD EPYC 7301 (Zen), 2
CPUs, 16 cores/CPU
(Grid5000)

m Space

m Number of threads
= Binding policy

4 configurations in Pareto set:
m 3 with 16 th on 1 CPU,
m 1 with 32 th on 2 CPUs.
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Optimization space exploration

Experimental results: small exhaustive exploration
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m CapillaryPressureLaw

= AMD EPYC 7301 (Zen), 2
CPUs, 16 cores/CPU
(Grid5000)

m Space

m Number of threads
= Binding policy

4 configurations in Pareto set:
m 3 with 16 th on 1 CPU,
m 1 with 32 th on 2 CPUs.

Need to cooptimize the 2
dimensions.
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NAS Parallel benchmark, Rodinia, PARSEC benchmark, LULESH, CLOMP

Experimental results: optimization algorithms

Optimization space exploration

Intel Xeon Gold 6130 (Skylake)

Space

m Number of threads
m Binding policy
m Page mapping

m Prefetchers

m Multithreading

Algorithms

m Genetic Algorithm
m Bayesian Optimization
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Optimization space exploration

Experimental results: optimization algorithms

Best scores

TY

Energy GA
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Experimental results: optimization algorithms

Best scores

TY

0.0 4

Performance easier to optimize
than energy.

perf BO

Energy GA Energy 80 Perf GA
Number of evaluations
10?
10t
perf BO

Energy GA Energy BO perf GA
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Optimization space exploration

Experimental results: optimization algorithms

Best scores

01 ! , I Performance easier to optimize
than energy.
Eneréy GA Eneréy BO

PSFf‘GA PEF%HO
Number of evaluations GA achieves better scores but

i: BO is faster.
ininats d o

Perf GA perf BO

Energy GA Energy BO
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Optimization space exploration

Experimental results: optimization algorithms

Best scores

Performance easier to optimize
than energy.

Energy 80 Perf GA

Number of evaluations for 97.5% of best score

Energy GA Energy BO Perf GA Perf BO
Number of evaluations
Energy GA Perf BO

Energy GA

Energy BO Perf GA

Number of evaluations for 95% of best score

*ro=m

GA achieves better scores but
BO is faster.

Energy GA
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Optimization space exploration

Experimental results: optimization algorithms

Best scores

+

Energy GA Energy BO Perf GA Perf BO

Number of evaluations

L e

Performance easier to optimize
than energy.

Energy GA Energy BO Perf GA Perf BO

Number of evaluations for 97.5% of best score

®» <

Energy GA Energy BO Perf GA Perf BO

Number of evaluations for 95% of best score

GA achieves better scores but
BO is faster.

Achieving 97.5% or 95% of
optimal score is faster.

®

Energy GA Energy BO Perf GA Perf BO
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Optimization space exploration

Experimental results:

optimization algorithms

Ratio of configurations

For most codes less than 5% of

Y P

the configurations achieve at
least 95% of the gains.

Energy 95%
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Y P

For most codes less than 5% of
the configurations achieve at
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Less configurations achieve it
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Experimental results: optimization algorithms

Ratio of configurations

Y P

For most codes less than 5% of
the configurations achieve at
least 95% of the gains.

Less configurations achieve it
for energy than for time.

Energy 95%

Energy 97.5% Perf 95% Perf 97.5%
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It is difficult.
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Experimental results: Surrogate models
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Optimization space exploration

Experimental results: Surrogate models

= What 7

m predictive model of kernel performance/energy
= How ?

m BO trains a predictive model
m Why 7

m faster than execution
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Optimization space exploration

Experimental results: Surrogate models

Speedup prediction accuracy of streamcluster
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Experimental results: Surrogate models

Speedup prediction accuracy of streamcluster
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Predictions are usually below the measures but trend is captured with 9% of
the space explored.
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Optimization space exploration

Experimental results: Surrogate models

Energy savings prediction accuracy for streamcluster
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Optimization space exploration

Conclusion

m complex hardware-software interactions with many parameters at play
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Conclusion

m complex hardware-software interactions with many parameters at play

m CORHPEX: framework to explore large and complex parameter space to optimize
codes execution

m draw conclusions on good practices for developers and users

m train surrogate models (full space virtual exploration, cooptimize multiple kernels. . .)
m CORHPEX current status

m parameters: compiler flags, runtime flags, environement variable, commands

m including GPU

m 3 exploration algorithms: GA, BO, exhaustive (extendable)
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Future work

m use code embeddings to find similarities between kernels
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Optimization space exploration

Future work

m use code embeddings to find similarities between kernels
m optimize with CORHPEX

m GPU applications
m software-defined radio applications (internship)

m add features

m support for PAPI metrics collection
m automatic visualization
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