Optimizing simulations by exploring design space with **CORHPEX**

December 9, 2024

Lana Scravaglieri

supervised by Ani Anciaux-Sedrakian, Thomas Guignon, Olivier Aumage, and Mihail Popov

IFPEN, R11 - Inria STORM

[Context](#page-1-0) Simulators

UNIVERSITÉ
"BORDEAUX

INP

LaBRI (if Presented

[Context](#page-1-0) Complex systems

[Context](#page-1-0) Complex systems

- **Number of threads**
- Memory hierarchy : memory, L3, L2, L1
- **Non-Uniform Memory Access (NUMA) effects**
- **Simultaneous Multithreading (SMT)**
- **Thread placement (binding policy)**
- **Prefetchers (may require root privileges)**
- **Figure** Frequency (may require root privileges)
- **Instruction set**
- **E** Accuracy (simple or double precision, compliance with IEEE standard)
- Compiler optimizations

[Context](#page-1-0) Complex systems

- **Number of threads**
- Memory hierarchy : memory, L3, L2, L1
- **Non-Uniform Memory Access (NUMA) effects**
- **Simultaneous Multithreading (SMT)**
- **Thread placement (binding policy)**
- **Prefetchers (may require root privileges)**
- **Figure** Frequency (may require root privileges)
- **Instruction set**

BORDFAUX

- **Accuracy (simple or double precision, compliance with IEEE standard)**
- Compiler optimizations

Values can improve or reduce execution time and/or energy consumption. Parameters influence each other.

Simulators are often memory-bound

- Simulators are often memory-bound
	- computation could go faster

Simulators are often memory-bound

- computation could go faster
- data doesn't travel fast enough in the memory hierarchy

Simulators are often memory-bound

- computation could go faster
- data doesn't travel fast enough in the memory hierarchy
- Simulators are not always vectorizable (data layout, branches)

- Simulators are often memory-bound
	- computation could go faster
	- data doesn't travel fast enough in the memory hierarchy
- Simulators are not always vectorizable (data layout, branches)
- Different behaviors

- Simulators are often memory-bound
	- computation could go faster
	- data doesn't travel fast enough in the memory hierarchy
- Simulators are not always vectorizable (data layout, branches)
- Different behaviors
	- For different simulators

- Simulators are often memory-bound
	- computation could go faster
	- data doesn't travel fast enough in the memory hierarchy
- **Simulators are not always vectorizable (data layout, branches)**
- Different behaviors
	- For different simulators
		- For different phases in a simulator

- Simulators are often memory-bound
	- computation could go faster
	- data doesn't travel fast enough in the memory hierarchy
- **Simulators are not always vectorizable (data layout, branches)**
- Different behaviors
	- For different simulators
		- For different phases in a simulator
	- On different architectures

- Simulators are often memory-bound
	- computation could go faster
	- data doesn't travel fast enough in the memory hierarchy
- **Simulators are not always vectorizable (data layout, branches)**
- Different behaviors
	- For different simulators
		- For different phases in a simulator
	- On different architectures
	- **Notable 11 With different inputs (size and nature)**

- Simulators are often memory-bound
	- computation could go faster
	- data doesn't travel fast enough in the memory hierarchy
- **Simulators are not always vectorizable (data layout, branches)**
- Different behaviors
	- For different simulators
		- For different phases in a simulator
	- On different architectures
	- **Notable 11 With different inputs (size and nature)**

- Simulators are often memory-bound
	- computation could go faster
	- data doesn't travel fast enough in the memory hierarchy
- Simulators are not always vectorizable (data layout, branches)
- Different behaviors
	- For different simulators
		- For different phases in a simulator
	- On different architectures
	- **Notable 11 With different inputs (size and nature)**

There is no recipe to get the best performance and energy consumption on every machine for every application.

[Optimization space exploration](#page-16-0)

A framework for optimization space exploration: CORHPEX

INP

Energies

[Optimization space exploration](#page-16-0)

A framework for optimization space exploration: CORHPEX

 \blacksquare Few points can be tested manually

- \blacksquare Few points can be tested manually
- **Manual exploration may be** biased

- \blacksquare Few points can be tested manually
- **Manual exploration may be** biased
- An assumption may be valid at some point but that can change overtime

- \blacksquare Few points can be tested manually
- **Manual exploration may be** biased
- An assumption may be valid at some point but that can change overtime

- \blacksquare Few points can be tested manually
- **Manual exploration may be** biased
- An assumption may be valid at some point but that can change overtime

We need a faster, portable and unbiased way to find optimizations.

[Optimization space exploration](#page-16-0)

A framework for optimization space exploration: CORHPEX

- \blacksquare Few points can be tested manually
- **Manual exploration may be** biased
- An assumption may be valid at some point but that can change overtime

We need a faster, portable and unbiased way to find optimizations.

INP

LaBRI

université

BORDFAUX

lnúa-

[Optimization space exploration](#page-16-0) Target and constraints

[Optimization space exploration](#page-16-0) Target and constraints

Optimization target

- Time (performance)
- **Energy (energy savings)**
- **EDP** (time \times energy)

[Optimization space exploration](#page-16-0) Target and constraints

Optimization target

- Time (performance)
- **Energy (energy savings)**
- **EDP** (time \times energy)

Constraints

- Accuracy (simple, double, mixed precision)
- **Micro-architecture (the machine used for the execution)**

université
BORDEAUX

[Optimization space exploration](#page-16-0)

The space

[Optimization space exploration](#page-16-0)

The space

1 M. Diener et. al. "Characterizing communication and page usage of parallel applications for thread and data mapping," 2015, doi: 10.1016/j.peva.2015.03.001.

2 M. Popov et. al., "Efficient thread/page/parallelism autotuning for numa systems," 2019, doi: 10.1145/3330345.3330376.

3 I. Sánchez Barrera et. al., "Modeling and optimizing numa effects and prefetching with machine learning," 2020. doi: 10.1145/3392717.3392765.

Cnrs

université
BORDEAUX

From IFPEN

Physics : CapillaryPressure, RelativePermeability...

INP

(in Energies

From IFPEN

- **Physics : CapillaryPressure, RelativePermeability...**
	- Carbon capture: ShArc and Geoxim

From IFPFN

- **Physics : CapillaryPressure, RelativePermeability...**
	- Carbon capture: ShArc and Geoxim
- **Basic linear algebra kernels used in linear solvers**

From IFPFN

- **Physics : CapillaryPressure, RelativePermeability...**
	- Carbon capture: ShArc and Geoxim
- **Basic linear algebra kernels used in linear solvers**
	- **MCGSolver**

From IFPFN

- **Physics : CapillaryPressure, RelativePermeability...**
	- Carbon capture: ShArc and Geoxim
- Basic linear algebra kernels used in linear solvers

(iiP_{nouvelles}

- **MCGSolver**
- **Benchmarks**

From IFPFN

- **Physics : CapillaryPressure, RelativePermeability...**
	- Carbon capture: ShArc and Geoxim
- Basic linear algebra kernels used in linear solvers
	- MCGSolver
- **Benchmarks**
	- **NAS** (NPB)

[Optimization space exploration](#page-16-0) The applications to learn from

From IFPFN

- **Physics : CapillaryPressure, RelativePermeability...**
	- Carbon capture: ShArc and Geoxim
- Basic linear algebra kernels used in linear solvers
	- MCGSolver

- **Benchmarks**
	- **NAS (NPB)**
	- **■** Rodinia

[Optimization space exploration](#page-16-0) The applications to learn from

From IFPFN

- **Physics : CapillaryPressure, RelativePermeability...**
	- Carbon capture: ShArc and Geoxim
- Basic linear algebra kernels used in linear solvers
	- MCGSolver
- **Benchmarks**
	- **NAS (NPB)**
	- **Rodinia**
	- **LULESH**

[Optimization space exploration](#page-16-0) The applications to learn from

From IFPFN

- **Physics : CapillaryPressure, RelativePermeability...**
	- Carbon capture: ShArc and Geoxim
- Basic linear algebra kernels used in linear solvers
	- MCGSolver

- **Benchmarks**
	- **NAS (NPB)**
	- **Rodinia**
	- LULESH m.
	- **PARSEC**

[Optimization space exploration](#page-16-0) Experimental results: small exhaustive exploration

lnría

- CapillaryPressureLaw
- **AMD EPYC 7301 (Zen), 2** CPUs, 16 cores/CPU (Grid5000)
- Space \blacksquare
	- **Number of threads**
	- **Binding policy**

[Optimization space exploration](#page-16-0) Experimental results: small exhaustive exploration

lnúa

[Optimization space exploration](#page-16-0) Experimental results: small exhaustive exploration

lnúa

- NAS Parallel benchmark, Rodinia, PARSEC benchmark, LULESH, CLOMP
- Intel Xeon Gold 6130 (Skylake)
- **Space**
	- **Number of threads**
	- **Binding policy**
	- **Page mapping**
	- **Prefetchers**
	- **Multithreading**
- **Algorithms**
	- Genetic Algorithm
	- **Bayesian Optimization**

Performance easier to optimize than energy.

Performance easier to optimize than energy.

 $\prod_{\text{nonvalues}}$

Performance easier to optimize than energy.

GA achieves better scores but BO is faster.

Ínrío-

Performance easier to optimize than energy. GA achieves better scores but BO is faster.

lnúa-

Performance easier to optimize than energy.

GA achieves better scores but BO is faster.

Achieving 97.5% or 95% of optimal score is faster.

LaBRI

if P Energies

For most codes less than 5% of the configurations achieve at least 95% of the gains.

For most codes less than 5% of the configurations achieve at least 95% of the gains.

Less configurations achieve it for energy than for time.

For most codes less than 5% of the configurations achieve at least 95% of the gains.

Less configurations achieve it for energy than for time.

It is difficult.

LaBRI

predictive model of kernel performance/energy

predictive model of kernel performance/energy

 \blacksquare How ?

predictive model of kernel performance/energy

 How ?

BO trains a predictive model

predictive model of kernel performance/energy

 How ?

BO trains a predictive model

 \blacksquare Why ?

predictive model of kernel performance/energy

in Energies

 How ?

BO trains a predictive model

 \blacksquare Why ?

faster than execution

LaBRI

<u>iP</u>foreples

Predictions are usually below the measures but trend is captured with 9% of the space explored.

 $\prod_{\text{nonvalues}}$

iÑp

BORDFAUX

[Optimization space exploration](#page-16-0) **Conclusion**

n complex hardware-software interactions with many parameters at play

(in Energies

- **n** complex hardware-software interactions with many parameters at play
- CORHPEX: framework to explore large and complex parameter space to optimize codes execution

- **E** complex hardware-software interactions with many parameters at play
- CORHPEX: framework to explore large and complex parameter space to optimize codes execution
	- **n** draw conclusions on good practices for developers and users

- **EXCOMPLER** complex hardware-software interactions with many parameters at play
- CORHPEX: framework to explore large and complex parameter space to optimize codes execution
	- **n** draw conclusions on good practices for developers and users
	- \blacksquare train surrogate models (full space virtual exploration, cooptimize multiple kernels...)

- **E** complex hardware-software interactions with many parameters at play
- CORHPEX: framework to explore large and complex parameter space to optimize codes execution
	- **n** draw conclusions on good practices for developers and users
	- **The train surrogate models (full space virtual exploration, cooptimize multiple kernels...)**
- **CORHPEX** current status

- **E** complex hardware-software interactions with many parameters at play
- CORHPEX: framework to explore large and complex parameter space to optimize codes execution
	- **n** draw conclusions on good practices for developers and users
	- **train surrogate models (full space virtual exploration, cooptimize multiple kernels...)**
- **CORHPEX** current status
	- **parameters: compiler flags, runtime flags, environement variable, commands**

- **E** complex hardware-software interactions with many parameters at play
- CORHPEX: framework to explore large and complex parameter space to optimize codes execution
	- **n** draw conclusions on good practices for developers and users
	- **train surrogate models (full space virtual exploration, cooptimize multiple kernels...)**
- **CORHPEX** current status
	- **parameters: compiler flags, runtime flags, environement variable, commands**
	- **n** including GPU

- **E** complex hardware-software interactions with many parameters at play
- CORHPEX: framework to explore large and complex parameter space to optimize codes execution
	- **n** draw conclusions on good practices for developers and users
	- **train surrogate models (full space virtual exploration, cooptimize multiple kernels...)**
- **CORHPEX** current status
	- **parameters: compiler flags, runtime flags, environement variable, commands**
	- **n** including GPU
	- 3 exploration algorithms: GA, BO, exhaustive (extendable)

- **E** complex hardware-software interactions with many parameters at play
- CORHPEX: framework to explore large and complex parameter space to optimize codes execution
	- **n** draw conclusions on good practices for developers and users
	- **train surrogate models (full space virtual exploration, cooptimize multiple kernels...)**
- **CORHPEX** current status
	- **parameters: compiler flags, runtime flags, environement variable, commands**
	- **n** including GPU

BORDFAID

- 3 exploration algorithms: GA, BO, exhaustive (extendable)
- **n** metrics collected with likwid (extendable)

[Optimization space exploration](#page-16-0) Future work

use code embeddings to find similarities between kernels

[Optimization space exploration](#page-16-0) Future work

use code embeddings to find similarities between kernels optimize with CORHPEX

INP

(in Energies
[Optimization space exploration](#page-16-0) Future work

use code embeddings to find similarities between kernels optimize with CORHPEX

GPU applications

use code embeddings to find similarities between kernels optimize with CORHPEX

- GPU applications
- software-defined radio applications (internship)

INP

use code embeddings to find similarities between kernels

optimize with CORHPEX

- GPU applications
- software-defined radio applications (internship)
- add features

use code embeddings to find similarities between kernels

optimize with CORHPEX

- GPU applications
- software-defined radio applications (internship)
- add features
	- support for PAPI metrics collection

use code embeddings to find similarities between kernels

optimize with CORHPEX

- GPU applications
- software-defined radio applications (internship)
- add features
	- support for PAPI metrics collection
	- **automatic visualization**

