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Context

Complex systems

Number of threads
Memory hierarchy : memory, L3, L2, L1
Non-Uniform Memory Access (NUMA) effects
Simultaneous Multithreading (SMT)
Thread placement (binding policy)
Prefetchers (may require root privileges)
Frequency (may require root privileges)
Instruction set
Accuracy (simple or double precision, compliance with IEEE standard)
Compiler optimizations

Values can improve or reduce execution time and/or energy consumption.
Parameters influence each other.
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Context

Impact on simulator codes

Simulators are often memory-bound

computation could go faster
data doesn’t travel fast enough in the memory hierarchy

Simulators are not always vectorizable (data layout, branches)
Different behaviors

For different simulators

For different phases in a simulator

On different architectures
With different inputs (size and nature)

There is no recipe to get the best performance and energy consumption on
every machine for every application.
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Optimization space exploration

A framework for optimization space exploration: CORHPEX

Few points can be tested
manually
Manual exploration may be
biased
An assumption may be valid
at some point but that can
change overtime

We need a faster, portable and
unbiased way to find

optimizations.
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Optimization space exploration

Target and constraints

Optimization target

Time (performance)

Energy (energy savings)

EDP (time x energy)

Constraints

Accuracy (simple, double, mixed precision)

Micro-architecture (the machine used for the execution)
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Optimization space exploration

The space

Dimension Sub-dimension Options Size
Number of threads* 1,4,8,16,32,64 6

Thread binding

package First,Last 2
die First,Last 2
L3 First,Last 2
smt First,Last 2

Prefetchers

DCU IP-correlated On,Off 2
DCU On,Off 2
L2 Adj. Cache Line On,Off 2
L2 Streamer On,Off 2

Compiler flags

Optimization flags -O2,-O3, 3-O3 without vectorization
Vecto cost model very cheap, cheap, dynamic 3
fast-maths On, Off 2
Instruction set* -msse4,-mavx2,-march=native 3

Precision† Storage float, double 2
Computing float, double 2
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Optimization space exploration

The space

Dimension Sub-dimension Size IFPEN [1] [2] [3]
Number of threads* 6 X X X

Thread binding

package 2 partial partial partial
die 2 with with with
L3 2 data data data
smt 2 mapping mapping mapping

Prefetchers

DCU IP-correlated 2 X
DCU 2
L2 Adj. Cache Line 2
L2 Streamer 2

Compiler flags

Optimization flags 3 partial
Vecto cost model 3
fast-maths 2
Instruction set* 3

Precision† Storage 2 X
Computing 2

1 M. Diener et. al. “Characterizing communication and page usage of parallel applications for thread and data mapping,” 2015,
doi: 10.1016/j.peva.2015.03.001.

2 M. Popov et. al., “Efficient thread/page/parallelism autotuning for numa systems,” 2019, doi: 10.1145/3330345.3330376.
3 I. Sánchez Barrera et. al., “Modeling and optimizing numa effects and prefetching with machine learning,” 2020. doi:

10.1145/3392717.3392765.
9 / 21



Optimization space exploration

The applications to learn from

From IFPEN

Physics : CapillaryPressure, RelativePermeability. . .

Carbon capture: ShArc and Geoxim

Basic linear algebra kernels used in linear solvers

MCGSolver

Benchmarks

NAS (NPB)
Rodinia
LULESH
PARSEC
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Optimization space exploration

Experimental results: small exhaustive exploration

CapillaryPressureLaw
AMD EPYC 7301 (Zen), 2
CPUs, 16 cores/CPU
(Grid5000)
Space

Number of threads
Binding policy

4 configurations in Pareto set:
3 with 16 th on 1 CPU,
1 with 32 th on 2 CPUs.

Need to cooptimize the 2
dimensions.
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Optimization space exploration

Experimental results: optimization algorithms

NAS Parallel benchmark, Rodinia, PARSEC benchmark, LULESH, CLOMP
Intel Xeon Gold 6130 (Skylake)
Space

Number of threads
Binding policy
Page mapping
Prefetchers
Multithreading

Algorithms
Genetic Algorithm
Bayesian Optimization
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Optimization space exploration

Experimental results: optimization algorithms

Performance easier to optimize
than energy.
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Optimization space exploration

Experimental results: optimization algorithms

For most codes less than 5% of
the configurations achieve at

least 95% of the gains.

Less configurations achieve it
for energy than for time.

It is difficult.
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Optimization space exploration

Experimental results: Surrogate models

What ?

predictive model of kernel performance/energy
How ?

BO trains a predictive model

Why ?

faster than execution
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Optimization space exploration

Experimental results: Surrogate models

Predictions are usually below the measures but trend is captured with 9% of
the space explored.
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Optimization space exploration

Experimental results: Surrogate models
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Optimization space exploration

Conclusion

complex hardware-software interactions with many parameters at play

CORHPEX: framework to explore large and complex parameter space to optimize
codes execution

draw conclusions on good practices for developers and users
train surrogate models (full space virtual exploration, cooptimize multiple kernels. . . )

CORHPEX current status

parameters: compiler flags, runtime flags, environement variable, commands
including GPU
3 exploration algorithms: GA, BO, exhaustive (extendable)
metrics collected with likwid (extendable)
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Optimization space exploration

Future work

use code embeddings to find similarities between kernels

optimize with CORHPEX

GPU applications
software-defined radio applications (internship)

add features

support for PAPI metrics collection
automatic visualization
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