NUMERICAL MODELING OF THE IMPACT OF HYDRATE FORMATION DURING GEOLOGICAL CARBON STORAGE (GCS)

ERIC FLAURAUD, ANTHONY MICHEL ISABELLE FAILLE, VÉRONIQUE LACHET, YUFEI WANG

OUTLINE

Introduction

General context

• CO2 storage in depleted gas reservoir

• CO2 storage in deep ocean sediments

Mathematical model

Non-isothermal reactive compositional multiphase flow in porous media

Hydrate kinetic reaction

Joule-Thomson effect

Numerical simulation

INTRODUCTION

CONTEXT

- In the last decades, the CO2 concentration in the atmosphere has dramatically increased due to excessive burning of fossil fuels.
- This greenhouse gas has an important impact on climate change.
- A solution to reduce the concentration of CO2 in the atmosphere is the *storage in geological formations*:
 - In deep saline aquifers
 - In unmineable coal seams
 - In depleted oil or gas reservoirs
 - In deep ocean sediments

CO2 STORAGE IN DEPLETED GAS RESERVOIR

water molecules

Energies nouvelles

CO2 STORAGE IN DEEP OCEAN SEDIMENTS

High pressure and low temperature in deep ocean environnement

• Hydrate Cap: Hydrate formation may block the CO2 plume

• Gravitational Trapping : Negative buoyancy may seal the CO2 plume

 $\rho_{CO_2} > \rho_{H_2O} \iff \rho_{H_2O} - \rho_{CO_2} < 0$

A more detailed study can be found in [1]

[1] A numerical model for offshore Geological Carbon Storage (GCS) undergoing hydrate formation Yufei Wang Eric Flauraud, Anthony Michel, Véronique Lachet and Clémentine Meiller, Computational Geosciences, July 2024

Figure: Injecting and storing CO2 in the deep ocean sediment

MATHEMATICAL MODEL

NON-ISOTHERMAL REACTIVE COMPOSITIONAL MULTIPHASE FLOW IN POROUS MEDIA

• Example of multiphase compositional system formulation

NON-ISOTHERMAL REACTIVE COMPOSITIONAL MULTIPHASE FLOW **IN POROUS MEDIA**

Conservation equations

$$\begin{aligned} \frac{\partial}{\partial t} \left(\phi_f S_g \rho_g X_{CO2}^g \right) + div \left(\rho_g X_{CO2}^g \vec{v}_g \right) + Q_{CO_2} + R_{CO_2} &= 0 \qquad (CO_2) \\ \frac{\partial}{\partial t} \left(\phi_f S_g \rho_g X_{CH_4}^g \right) + div \left(\rho_g X_{CH_4}^g \vec{v}_g \right) + Q_{CH_4} &= 0 \qquad (CH_4) \\ \frac{\partial}{\partial t} \left(\phi_f S_w \rho_w X_{H_2O}^w \right) + div \left(\rho_w X_{H_2O}^w \vec{v}_w \right) + Q_{H_2O} + R_{H_2O} &= 0 \qquad (H_2O) \\ \frac{\partial}{\partial t} \left(\phi_s S_r \rho_r X_{ROC}^r \right) &= 0 \qquad (ROC) \\ \frac{\partial}{\partial t} \left(\phi_s S_h \rho_h X_{HYD}^h \right) + R_{HYD} &= 0 \qquad (HYD) \end{aligned}$$

• Closure equations

$\phi_f + \phi_s = 1$		
$S_w + S_g = 1$	$S_r + S_h$	= 1
$X_{H_2O}^w = 1$	$X_{CO2}^{g} + $	$X^g_{CH_4} = 1$
$X_{ROC}^r = 1$	X^h_{HYD} =	= 1
Oarcy law		
$\vec{v}_{\alpha} = -K \frac{kr_{\alpha}}{\mu_{\alpha}} \big(\vec{\nabla} P_{\alpha}$	$- ho_{lpha}^{m}ec{g}ig)$	lpha=w , g
Permeability law	V	
$K(\phi_f) = K_0 e^{\binom{c}{c}}$	$\left(\frac{\phi_f}{\phi_0}-1\right)$	

Cnergies nouvelles

CO2 HYDRATE KINETIC FORMATION/DISSOCIATION

• Chemical reaction:

 $n_h H_2 O(w) + CO_2(g) \leftrightarrow HYD$

where n_h is the hydrate number $n_h \approx 6$

• Reaction rate τ :

$$= -\frac{k_r A_r}{P_h}(P_h(T,C_s) - P)$$

• k_r is the kinetic rate constant: $k_r = k_{r0}e^{-\frac{E_a}{RT}}$

τ

- A_r is the reaction surface: $A_r = A_0 \Gamma_r$
 - A_0 is the pore surface area
 - Γ_r is the active fraction of the pore surface area $\Gamma_r = S_w S_g X_{H_2O}^w X_{CO_2}^g$ (hydrate formation) $\Gamma_r = S_h$ (hydrate dissociation)
- $P_h(T, C_s)$ is the equilibrium pressure of hydrate • $P_h(T, C_s) - P$ measures the deviation from equilibrium • if $P_h(T, C_s) < P \implies \tau > 0$: Formation • if $P_h(T, C_s) > P \implies \tau < 0$: Dissociation • if $P_h(T, C_s) = P \implies \tau = 0$: Equilibrium

$$R_{HYD} = -\tau, R_{CO_2} = \tau \text{ and } R_{H_2O} = n_h \tau$$

 $P_h(T, C_s)$

NON-ISOTHERMAL REACTIVE COMPOSITIONAL MULTIPHASE FLOW IN POROUS MEDIA

• Energy balance equation:

$$\frac{\partial}{\partial t} \left(\phi_f \sum_{\alpha \in \{w,g\}} S_\alpha \rho_\alpha u_\alpha + \phi_s \sum_{\beta \in \{r,h\}} S_\beta \rho_\beta u_\beta \right) + div \left(\sum_{\alpha \in \{w,g\}} \rho_\alpha h_\alpha \, \vec{v}_\alpha - \Lambda_E \vec{\nabla}T \right) + Q_E = 0$$

• Specific internal energy:

$$u_{\alpha} = h_{\alpha} - \frac{P}{\rho_{\alpha}}$$
 $\alpha \in \{w, g\}$ $u_{\beta} = h_{\beta}$ $\beta \in \{r, h\}$

• Specific enthalpy:

Simple linear law :
$$h_{\alpha}(T,P) = h_{ref,\alpha} + C_{p,\alpha} \left(\left(T - T_{ref} \right) - \mu_{JT,\alpha} \left(P - P_{ref} \right) \right)$$

• $h_{\alpha,ref}$, T_{ref} and P_{ref} are the reference enthalpy, the reference temperature and the reference pressure. $C_{\alpha,p}$ is the heat capacity factor and $\mu_{JT,\alpha}$ is the Joule-Thomson coefficient.

• Equation of state (EOS) : $h_{\alpha}(T, P, X) = h_{id,\alpha}(T, X) + h_{res,\alpha}(T, P, X)$

• Ideal enthalpy: $h_{id,\alpha}(T,X) = \sum_i X_i^{\alpha} h_{id}^i(T)$

11 | © 2020 IFPEN • Residual enthalpy (EOS): $h_{res,\alpha}(T,P,X) = \sum_i X_i^{\alpha} h_{res}^i(T,P,X)$

Joule-Thomson coefficient

$$\mu_{JT} = \frac{dT}{dP} = \frac{1}{C_p} \left(T \left(\frac{\partial V_g}{\partial T} \right)_P - V_g \right) = -\frac{1}{Cp.\rho_g} \left(\frac{T}{\rho_g} \left(\frac{\partial \rho_g}{\partial T} \right)_P + 1 \right)$$

Joule-Thomson effect

• For a gas expansion: dP < 0

• If $\mu_{IT} > 0 \Rightarrow dT < 0$: The gas expansion leads to a cooling.

• If $\mu_{IT} < 0 \Rightarrow dT > 0$: The gas expansion leads to a warming up.

• For a gas compression: dP > 0

• If $\mu_{IT} > 0 \Rightarrow dT > 0$: The gas compression leads to a warming up.

• If $\mu_{IT} < 0 \Rightarrow dT < 0$: The gas compression leads to a cooling.

MATHEMATICAL FORMULATION: COATS FORMULATION

• The unknowns are:

 $P, T, \quad S_w, S_g, S_h, S_r, \phi_f, \phi_s, \quad X^w_{H_{2O}}, X^g_{CO_2}, X^g_{CH_4}, X^r_{Roc}, X^h_{HYD}.$

• The equations are discretized with a fully implicit two-point flux finite volume scheme.

• The resulting nonlinear system is solved using the Newton method.

• The size of the system is reduced by pre-eliminating all local equations.

- The set of unknowns is subdivided into a set of primary and secondary unknowns whose definition depends on the local context (variable switching).
- The context is defined at each Newton iteration by using a flash calculation to predict the appearance of a phase and by using the sign of the saturations to predict the disappearance of a phase.

NUMERICAL SIMULATION

INJECTION OF CO_2 IN A GAS (CH_4) DEPLETED RESERVOIR

 $CO_2(g)$

R = 1000mID radial geometry K = 20 mDH = 90m• Radial mesh ($\Delta r, \Delta \theta$): $X^g_{CH_4} = 1$ $\phi_f = 0.11$ $0,002m < \Delta r < 48m, \ \Delta \theta = 5^{\circ}, Ncells = 100$ $S_w = 0.2$ $S_g = 0.8$ $X_{H_2O}^w = 1$ • Using EOS for fluid properties • Initial conditions: $P_{res} = 20 bar, T_{res} = 105^{\circ}C, C_s = (0 g/l, 30 g/l)$ $\Delta\theta = 5^{\circ}$ Injection conditions for 5 years: $Q_{CO_2} = 0.35 Kg. s^{-1} (0.8 Mt/year), T_{inj} = 12^{\circ}C$ Geoxim radial mesh

10⁰

r (m)

----- $(C_s = 0g/l)$ ----- $(C_s = 30g/l)$

r (m)

NUMERICAL RESULTS WITH SALINITY ($C_s = 30 g/l$)

18

NUMERICAL RESULTS - CONCLUSION

• These numerical simulations of CO_2 injection into a depleted reservoir have verified that:

- EOS can well reproduce the Joule-Thomson cooling effect close to the well
- JT cooling effect $\Rightarrow CO_2$ hydrate formation
- CO_2 hydrate formation \Rightarrow decrease in porosity and permeability \Rightarrow loss of injectivity
- But increasing salinity reduces the formation of hydrates

• Future works:

- Porosity and permeability sensitivity analysis
- Tacking into account the dissolution of CO_2 and CH_4 in water and water vaporization
- **O**...

Energies nouvelles

NUMERICAL RESULTS WITH $Z_{top} = -3500m$

• Initial Hydrate Formation Zone (HFZ) and initial Negative Buoyancy Zone (NBZ)

NUMERICAL RESULTS WITH $Z_{top} = -3500m$

NUMERICAL RESULTS WITH $Z_{top} = -4000m$

• Initial Hydrate Formation Zone (HFZ) and initial Negative Buoyancy Zone (NBZ)

NUMERICAL RESULTS WITH $Z_{top} = -4000m$

NUMERICAL RESULTS - CONCLUSION

• Storing CO2 in deep ocean sediments is not safe:

- An amount of CO_2 leaks out of the sediments.
- The amount of hydrate formation is too small to block the CO_2 plume.
- The Negative Buoyancy zone decreases due to rising temperatures and dissolution of CO₂ in water.

• Permanent CO_2 storage can exist in super deep ocean high permeability sediments which may bring high costs.

THANK YOU FOR YOUR ATTENTION

Innovating for energy

Find us on:

www.ifpenergiesnouvelles.com

@IFPENinnovation

