NUMERICAL MODELING OF THE IMPACT OF HYDRATE FORMATION DURING GEOLOGICAL CARBON STORAGE (GCS)

ERIC FLAURAUD, ANTHONY MICHEL ISABELLE FAILLE, VÉRONIQUE LACHET, YUFEI WANG

1

OUTLINE

OIntroduction

● General context ● CO2 storage in depleted gas reservoir ● CO2 storage in deep ocean sediments

Mathematical model

Non-isothermal reactive compositional multiphase flow in porous media

- **O** Hydrate kinetic reaction
- Joule-Thomson effect

Numerical simulation

INTRODUCTION

CONTEXT

- OIn the last decades, the CO2 concentration in the atmosphere has dramatically increased due to excessive burning of fossil fuels.
- O This greenhouse gas has an important impact on climate change.
- A solution to reduce the concentration of CO2 in the atmosphere is the *storage in geological formations*:
	- **O** In deep saline aquifers
	- O In unmineable coal seams
	- **In depleted oil or gas reservoirs**
	- **In deep ocean sediments**

Gas hydrate

Joule-Thomson

$CO₂$ STORAGE IN DEEP OCEAN SEDIMENTS

High pressure and **low temperature** in deep ocean environnement

Hydrate Cap: Hydrate formation may block the CO2 plume

Gravitational Trapping : Negative buoyancy may seal the CO2 plume

 $\rho_{CO_2} > \rho_{H_2O} \Leftrightarrow \rho_{H_2O} \cdot \rho_{CO_2} < 0$

● A more detailed study can be found in [1]

[1] A numerical model for offshore Geological Carbon Storage (GCS) undergoing hydrate formation Yufei Wang Eric Flauraud, Anthony Michel, Véronique Lachet and Clémentine Meiller, Computational Geosciences, July 2024

Figure: Injecting and storing CO2 in the deep ocean sediment

MATHEMATICAL MODEL

NON-ISOTHERMAL REACTIVE COMPOSITIONAL MULTIPHASE FLOW IN POROUS MEDIA

Example of multiphase compositional system formulation

NON-ISOTHERMAL REACTIVE COMPOSITIONAL MULTIPHASE FLOW IN POROUS MEDIA

O Conservation equations

$$
\frac{\partial}{\partial t} (\phi_f S_g \rho_g X_{CO2}^g) + div(\rho_g X_{CO2}^g \vec{v}_g) + Q_{CO_2} + R_{CO_2} = 0 \qquad (CO_2)
$$
\n
$$
\frac{\partial}{\partial t} (\phi_f S_g \rho_g X_{CH_4}^g) + div(\rho_g X_{CH_4}^g \vec{v}_g) + Q_{CH_4} = 0 \qquad (CH_4)
$$
\n
$$
\frac{\partial}{\partial t} (\phi_f S_w \rho_w X_{H_2O}^w) + div(\rho_w X_{H_2O}^w \vec{v}_w) + Q_{H_2O} + R_{H_2O} = 0 \qquad (H_2O)
$$
\n
$$
\frac{\partial}{\partial t} (\phi_s S_r \rho_r X_{ROC}^r) = 0 \qquad (ROC)
$$
\n
$$
\frac{\partial}{\partial t} (\phi_s S_h \rho_h X_{HYD}^h) + R_{HYD} = 0 \qquad (HYD)
$$

OClosure equations

² HYDRATE KINETIC FORMATION/DISSOCIATION

O Chemical reaction: $n_h H_2 O(w) + CO_2(g) \leftrightarrow HYD$

where n_h is the hydrate number $n_h \approx 6$

 \bigcirc Reaction rate τ :

$$
= -k_r A_r (P_h(T, C_s) - P)
$$

- k_r is the kinetic rate constant: $k_r = k_{r0} e^{-\frac{E_a}{RT}}$ RT
- $A_{\bm r}$ is the reaction surface: $A_{\bm r} = A_{\bm 0} \, \Gamma_{\! \bm r}$
	- \bullet A₀ is the pore surface area
	- Γ_r is the active fraction of the pore surface area $\Gamma_r = S_w S_g X_{H_2O}^w X_{CO_2}^g$ (hydrate formation) $\Gamma_r = S_h$ (hydrate dissociation)
- $P_h(T,\mathcal{C}_{\pmb{s}})$ is the equilibrium pressure of hydrate \bullet $P_h(T, C_s) - P$ measures the deviation from equilibrium \bigcirc if $P_h(T, C_s) < P \implies \tau > 0$: Formation \bigcirc if $P_h(T, C_s) > P \implies \tau < 0$: Dissociation \bullet if $P_h(T, C_s) = P \implies \tau = 0$: **Equilibrium**

$$
\bullet \boxed{R_{HYD} = -\tau, R_{CO_2} = \tau \text{ and } R_{H_2O} = n_h \tau}
$$

 $P_h(T, C_s)$

NON-ISOTHERMAL REACTIVE COMPOSITIONAL MULTIPHASE FLOW IN POROUS MEDIA

O Energy balance equation:

$$
\frac{\partial}{\partial t} \left(\phi_f \sum_{\alpha \in \{w,g\}} S_{\alpha} \rho_{\alpha} u_{\alpha} + \phi_s \sum_{\beta \in \{r,h\}} S_{\beta} \rho_{\beta} u_{\beta} \right) + div \left(\sum_{\alpha \in \{w,g\}} \rho_{\alpha} h_{\alpha} \vec{v}_{\alpha} - \Lambda_E \vec{v} T \right) + Q_E = 0
$$

O Specific internal energy:

$$
u_{\alpha} = h_{\alpha} - \frac{P}{\rho_{\alpha}} \qquad \alpha \in \{w, g\} \qquad u_{\beta} = h_{\beta} \qquad \beta \in \{r, h\}
$$

O Specific enthalpy:

D Simple linear law :
$$
h_{\alpha}(T, P) = h_{ref, \alpha} + C_{p, \alpha} \left((T - T_{ref}) - \mu_{JT, \alpha} (P - P_{ref}) \right)
$$

 \bullet $h_{\alpha,ref}$, T_{ref} and P_{ref} are the reference enthalpy, the reference temperature and the reference pressure. $C_{\alpha,p}$ is the heat capacity factor and $\mu_{IT,\alpha}$ is the Joule-Thomson coefficent.

O Equation of state (EOS) : $h_{\alpha}(T, P, X) = h_{id,\alpha}(T, X) + h_{res,\alpha}(T, P, X)$

Ideal enthalpy: $h_{id,\alpha}(T,X) = \sum_i X_i^{\alpha} h_{id}^i(T)$

11 **|** © 2020 IFPEN C Residual enthalpy (EOS): $h_{res,\alpha}(T, P, X) = \sum_i X_i^{\alpha} h_{res}^i(T, P, X)$

Joule-Thomson coefficient

$$
\mu_{JT} = \frac{dT}{dP} = \frac{1}{C_p} \left(T \left(\frac{\partial V_g}{\partial T} \right)_P - V_g \right) = -\frac{1}{Cp \cdot \rho_g} \left(\frac{T}{\rho_g} \left(\frac{\partial \rho_g}{\partial T} \right)_P + 1 \right)
$$

O Joule-Thomson effect

 \bullet For a gas expansion: $dP < 0$

If $\mu_{IT} > 0 \Rightarrow dT < 0$: The gas expansion leads to a cooling.

If $\mu_{IT} < 0 \Rightarrow dT > 0$: The gas expansion leads to a warming up.

 \bullet For a gas compression: $dP > 0$

If $\mu_{IT} > 0 \Rightarrow dT > 0$: The gas compression leads to a warming up.

If $\mu_{IT} < 0 \Rightarrow dT < 0$: The gas compression leads to a cooling.

MATHEMATICAL FORMULATION: COATS FORMULATION

O The unknowns are:

 $P, T, S_w, S_g, S_h, S_r, \phi_f, \phi_s, X_{H_{2O}}^w, X_{C O_2}^g, X_{CH_4}^g, X_{Roc}^r, X_{HYD}^h$

O The equations are discretized with a fully implicit two-point flux finite volume scheme.

O The resulting nonlinear system is solved using the Newton method.

O The size of the system is reduced by pre-eliminating all local equations.

- The set of unknowns is subdivided into a set of primary and secondary unknowns whose definition depends on the local context (variable switching).
- O The context is defined at each Newton iteration by using a flash calculation to predict the appearance of a phase and by using the sign of the saturations to predict the disappearance of a phase.

NUMERICAL SIMULATION

INJECTION OF CO_2 IN A GAS (CH_4) DEPLETED RESERVOIR

 $CO₂(g)$ $R = 1000m$ ● 1D radial geometry $K = 20$ mD $H = 90m$ \bigcirc Radial mesh (Δr , $\Delta \theta$): $X_{CH_4}^g = 1$ $\phi_f = 0.11$ $0.002 \text{m} < \Delta r < 48m$, $\Delta \theta = 5^{\circ}$, Neells = 100 $S_{W} = 0.2$ $X_{H_2O}^{W} = 1$ $S_g = 0.8$ **O** Using EOS for fluid properties **Olnitial conditions:** $P_{res} = 20bar$, $T_{res} = 105^{\circ}C$, $C_s = (0 g/l)$, 30 g/l **Olnjection conditions for 5 years:** $\Delta\theta = 5^{\circ}$ $Q_{CO_2} = 0.35 Kg. s^{-1} (0.8 Mt/year), T_{inj} = 12°C$ $\overline{\Delta r}$ **NEWSBEATING** Geoxim radial mesh

 $10⁰$

 $r(m)$

($C_s = 0g/l$) ----- $(C_s = 30g/l)$

 10^0

 $r(m)$

18 **[|]**© 2 0 2 0 I F P E N

NUMERICAL RESULTS WITH SALINITY ($C_s = 30 g/l$)

NUMERICAL RESULTS - CONCLUSION

O These numerical simulations of $CO₂$ injection into a depleted reservoir have verified that:

- EOS can well reproduce the Joule-Thomson cooling effect close to the well
- \bigcirc JT cooling effect \Rightarrow $CO₂$ hydrate formation
- \odot CO_{2} hydrate formation \Rightarrow decrease in porosity and permeability \Rightarrow loss of injectivity
- But increasing salinity reduces the formation of hydrates

O Future works:

- Porosity and permeability sensitivity analysis
- \bullet Tacking into account the dissolution of $CO₂$ and $CH₄$ in water and water vaporization

…

Geoxim 2D radial mesh

NUMERICAL RESULTS WITH $Z_{top} = -3500m$

● Initial Hydrate Formation Zone (HFZ) and initial Negative Buoyancy Zone (NBZ)

21 **| © 2020 IFPEN**

NUMERICAL RESULTS WITH $Z_{top} = -3500m$

NUMERICAL RESULTS WITH $Z_{top} = -4000m$

● Initial Hydrate Formation Zone (HFZ) and initial Negative Buoyancy Zone (NBZ)

NUMERICAL RESULTS WITH $Z_{top} = -4000m$

NUMERICAL RESULTS - CONCLUSION

● Storing CO2 in deep ocean sediments is not safe:

- \bullet An amount of $CO₂$ leaks out of the sediments.
- \bullet The amount of hydrate formation is too small to block the CO_2 plume.
- \bullet The Negative Buoyancy zone decreases due to rising temperatures and dissolution of $CO₂$ in water.

O Permanent CO_2 storage can exist in super deep ocean high permeability sediments which may bring high costs.

THANK YOU FOR YOUR ATTENTION

Innovating for energy

Find us on:

www.ifpenergiesnouvelles.com

S @IFPENinnovation

