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Richards equation: flow in unsaturated porous media

Figure: CIGÉO facility1

I Porous medium is a material containing pores (small regular voids)
I Safety certification of nuclear waste storage (flow of contaminants)

Motivation: PDE models are highly nonlinear and nonsmooth =⇒
difficult to solve numerically
1Image courtesy of andra.fr
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Richards equation: derivation and data

Conservation of Mass (water)

φ∂ts +∇ · q = f (x, t)

I Water saturation s
I φ porosity, f external source
I q so-called Darcy flux

Darcy’s Law for Flow

q = −Kκ(s)(∇p + g)

I Fluid pressure p
I K absolute permeability tensor, κ relative permeability, g gravity
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Putting it all together

Find a pressure p and saturation s such that

φ∂ts −∇ · [Kκ(s)(∇p + g)] = f (x, t), (x, t) ∈ Ω× (0,T)
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Figure: Brooks–Corey constituitive laws

I Capillary pressure relation: s = S(p)
I Choose “pressure formulation” p: always defined
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Degeneracies and low differentiability

φ∂ts −∇ · [Kκ(s)(∇p + g)] = f (x, t), (x, t) ∈ Ω× (0,T)
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Figure: Brooks–Corey constitutive laws

I Elliptic: ∂ts = 0
I Hyperbolic (ODE): κ(s) = 0
I Kink at p = pM for Brooks–Corey constitutive law
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Regularized sequence
Use solution with εj as initial guess for solving εj+1
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Discretization

Method of lines
I Mesh Th of Ω, fixed conforming P1-FEM in space

Vh :=
{

uh ∈ H 1
0 (Ω), uh|K ∈ P1(K) ∀K ∈ Th

}
I backward Euler in time: uniform time step τ = 1/NT , for each

n ∈ {1, . . . ,N} and a given pn−1,h ∈ Vh, pn,h ∈ Vh satisfying

1
τ (φ(S(pn,h)− S(pn−1,h)), ϕh) + (F(pn,h),∇ϕh)

= (f (·, tn), ϕh) + (qN, ϕh)ΓN ∀ϕh ∈ Vh

The flux function is defined as

F(q) := Kκ(S(q))[∇q + g].
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Regularized and linearized problems

Regularized problem (index j)
1
τ (Sεj(p

j
n,h)− Sεj(p

j̄
n−1,h), ϕh) + (Fεj(p

j
n,h),∇ϕh)

= (f (·, tn), ϕh) + (qN, ϕh)ΓN ∀ϕh ∈ Vh,

I Fεj(q) := Kκεj(Sεj(q))[∇q + g].

Regularized/linearized problem (index k)
1
τ (φSεj(p

j,k−1
n,h )− Sεj(p

j̄,k̄
n−1,h), ϕh) +

1
τ (φL(pj,k

n,h − pj,k−1
n,h ), ϕh)

+(Fk
εj ,∇ϕh) + (qN, ϕh)ΓN

= (f (·, tn), ϕh) ∀ϕh ∈ Vh,

I Fk
εj := Kκεj(Sεj(p

j,k−1
n,h ))[∇pj,k

n,h + g] + ξ(pj,k
n,h − pj,k−1

n,h )

I (L, ξ) ∈ L∞(Ω;Rd+1) depend on the specific linearization used.
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A posteriori error estimators

Averaging in H (div,Ω)

I Lowest order Raviart-Thomas space
RT0(Th) := {vh ∈ [L2(Ω)]d : vh|K ∈ [P(K)]d + xP0(K),∀K ∈ Th}

I Reconstruction σj,k
n,h ∈ RT0(Th) ∩ H (div,Ω) of −Fk

εj based on
averaging with connection to equilibrated flux [Vlasák 2020; Ern,
Nicaise, and Vohralík 2007]

Component estimators
For an approximate solution pj,k

n,h,

η`,j,kdis := ‖Fk
εj + σj,k

n,h‖ (discretization)

η`,j,klin := ‖Fεj(p
j,k
n,h)− Fk

εj‖ (linearization)

η`,j,kreg := ‖F(pj,k
n,h)− Fεj(p

j,k
n,h)‖ (regularization)
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Adaptive algorithm for Richards based on a posteriori error
estimators

Timestepping Regularization Linearization

until η`,j,klin < γlinη
`,j,k
reg

Loop

if η`,j,k̄reg < γregη
`,j,k̄
disif η`,j,k̄reg < γregη
`,j,k̄
dis

ElseElse
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Free and open source library
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https://github.com/aerappa/EquilibratedFlux.jl


Methods tested for comparision

Linearizations
I Newton’s method:

L := S ′
εj(p

j,k−1
n,h ), ξ := K(κεj ◦ Sεj)

′(pj,k−1
n,h )[∇pj,k−1

n,h + g]
I modified Picard [Celia, Bouloutas, and Zarba 1990]:

L := S ′
εj(p

j,k−1
n,h ), ξ := 0

Timestepping/regularization
For Newton’s method we consider
I No regularization and simple timestep cutting algorithm
I No regularization and uniform timestepping
I With regularization and uniform timestepping

For modified Picard only uniform timestepping and no regularization
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Injection test: setup

I Ω = (0, 1)2

I T = 1.0
I τ = 2.82 · 10−2

I Quasi uniform mesh with
h = 2.82 · 10−2

I ΓD = {(x1, x2)|x1 ∈
(0, 0.3), x2 = 1}

I ΓN = ∂Ω \ ΓD
I g = (0,−1)T

I f = 0
I p0 = −1, s0 = S(p0)

I pD = 1

ΓD : p = pD

Γ
N
:
N
o
F
lu
x

Γ
N
:
N
o
F
lu
x

ΓN : No Flux

ΓN : No Flux

Inspired by test case in [Brenner and Cancès 2017]
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Injection test: saturation comparision

I With (left) and without (right) regularization
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Injection test: performance
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Realistic test: setup

I Ω = (0, 1)2

I quasi uniform mesh with h = 2.02 · 10−2

I T = 1
I τ0 = 2.02 · 10−2

I g = (−1, 0)T

I Q =

(
cos θ − sin θ
sin θ cos θ

)
I Kφ = 0.1
I pL(x) =

(pout−pin
0.5

)
x

I pout = −2.0
I pin = −0.2
I φ = 1

Inspired by test case in [Mitra and Vohralík 2024]
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Realistic test: saturation comparison

I With (left) and without (right) regularization
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Realistic test: performance

0 0.2 0.4 0.6 0.8 1

0

1,000

2,000

3,000

t (seconds)

N
um

be
r

of
ite

ra
tio

ns

Cumulative

Newton (adapt. reg., ε = 0.1)
Modified Picard (no reg.)

Newton (no reg., timestep cut)
Newton (no reg.)

0 0.2 0.4 0.6 0.8 1

0

100

200

300

t (seconds)

N
um

be
r

of
ite

ra
tio

ns

Stepwise

Newton (adapt. reg., ε = 0.1)
Modified Picard (no reg.)

Newton (no reg., timestep cut)
Newton (no reg.)

19/23



Perched water table: setup

Material κc φ SR SV λ2 α

Sand 6.262 × 10−5 0.368 0.07818 1 0.553 2.8
Clay 1.516 × 10−6 0.4686 0.2262 1 0.2835 1.04

I Adapted from [Kirkland, Hills, and Wierenga 1992]
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Perched water table: saturation profile

I Evolution of the saturation at time
t ∈ {0 s, 21 · 103 s, 41 · 103 s, 86.1 · 103 s = 1 day}.
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Perched water table: performance
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Summary

I Introduce regularization of common constitutive laws for Richards
equation

I Error estimation based on flux reconstruction
I Adaptive algorithm based on balancing error components
I Tested on benchmark problems from the literature

Févotte, F., Rappaport, A., and Vohralík, M. Adaptive regularization for the
Richards equation. Comput. Geosci. (2024).

Perspectives

I Combine with existing techniques like variable switching
I Extension to two phase flow (variational inequalities)

Thank you for your attention!
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Regularization of the relative permeability for
Van-Genuchten

Follow the approach in [Bassetto, Cancès, Enchéry, and Tran 2020] where
the relative permeability κ is replaced by a second degree polynomial near
the critical point s = 1:

κε(s) =

{
κ(s) + ε, if s ≤ 1 − ε,

κ̃(s) + ε, otherwise,

κ̃(s) = κ′′(1 − ε)

2
(s − (1 − ε))2

+ κ′(1 − ε)(s − (1 − ε)) + κ(1 − ε),
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Hermite interpolation for the Brooks–Corey Saturation

Sε(pM − ε) = S(pM − ε), Sε(pM + ε) = S(pM + ε)

S ′
ε(pM − ε) = S ′(pM − ε), S ′

ε(pM + ε) = S ′(pM + ε),

...
...

S(r)
ε (pM − ε) = S(r)(pM − ε), S(r)

ε (pM + ε) = S(r)(pM + ε).

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

p

S
ε
(p
)

ε = 0.0
ε = 1.0
ε = 0.1
ε = 0.01
ε = 0.001

2/2


	Introduction
	Regularization and adaptive algorithm
	Numerical results
	Conclusions and perspectives
	Appendix

