An adaptive regularization strategy for efficiently solving the Richards equation

François Févotte¹ Ari Rappaport⁴ Martin Vohralík^{2,3}

¹Triscale Innov. 7 rue de la Croix Martre, 91120 Palaiseau, France

2 Inria, 48 rue Barrault, Paris 75647, France

³Université Paris-Est, CERMICS (ENPC), 77455 Marne-la-Vallée, France

⁴ENSTA Paris, 828, Boulevard des Maréchaux, 91762 Palaiseau Cedex

Journée Inria/IFPEN, December 9, 2024

Outline

[Introduction](#page-1-0)

[Regularization and adaptive algorithm](#page-11-0)

- [Numerical results](#page-27-0)
- [Conclusions and perspectives](#page-39-0)

Richards equation: flow in unsaturated porous media

Figure: CIGÉO facility¹

I Porous medium is a material containing **pores** (small regular voids) \triangleright Safety certification of nuclear waste storage (flow of contaminants) **Motivation:** PDE models are **highly nonlinear** and **nonsmooth** \implies difficult to solve numerically 1 Image courtesy of <andra.fr>

Richards equation: derivation and data

Darcy's Law for Flow

$$
\boldsymbol{q} = -\boldsymbol{K}\kappa(s)(\nabla p + \boldsymbol{g})
$$

▶ Fluid pressure *p*

If *K* absolute permeability tensor, κ relative permeability, *g* gravity

Putting it all together

Find a pressure *p* and saturation *s* such that

$$
\phi \partial_t s - \nabla \cdot [\mathbf{K} \kappa(s) (\nabla p + \mathbf{g})] = f(\mathbf{x}, t), \quad (\mathbf{x}, t) \in \Omega \times (0, T)
$$

Figure: Brooks–Corey constituitive laws

 \blacktriangleright Capillary pressure relation: $s = S(p)$

▶ Choose "pressure formulation" *p*: always defined

Putting it all together

Find a pressure *p* and saturation *s* such that

 $\phi \partial_t S(p) - \nabla \cdot [\mathbf{K} \kappa(S(p))(\nabla p + \mathbf{g})] = f(\mathbf{x}, t), \quad (\mathbf{x}, t) \in \Omega \times (0, T)$

Figure: Brooks–Corey constituitive laws

I Capillary pressure relation: $s = S(p)$

I Choose "pressure formulation" *p*: always defined

$$
\phi \partial_t s - \nabla \cdot [\mathbf{K} \kappa(s) (\nabla p + \mathbf{g})] = f(\mathbf{x}, t), \quad (\mathbf{x}, t) \in \Omega \times (0, T)
$$

Figure: Brooks–Corey constitutive laws

- \blacktriangleright Elliptic: $\partial_t s = 0$
- \blacktriangleright Hyperbolic (ODE): $\kappa(s) = 0$
- In Kink at $p = p_M$ for Brooks–Corey constitutive law

$$
\phi \partial_t s - \nabla \cdot [\boldsymbol{K} \kappa(s) (\nabla p + \boldsymbol{g})] = f(\mathbf{x}, t), \quad (\boldsymbol{x}, t) \in \Omega \times (0, T)
$$

Figure: Brooks–Corey constitutive laws

Elliptic: $\partial_t s = 0$

 \blacktriangleright Hyperbolic (ODE): $\kappa(s) = 0$

In Kink at $p = p_M$ for Brooks–Corey constitutive law

$$
\phi\partial_ts-\nabla\cdot[K\kappa(s)(\nabla p+g)]=f(\mathbf{x},t),\quad (\pmb{x},t)\in\Omega\times(0,T)
$$

Figure: Brooks–Corey constitutive laws

Elliptic: $\partial_t s = 0$

I Hyperbolic (ODE): $\kappa(s) = 0$

In Kink at $p = p_M$ for Brooks–Corey constitutive law

$$
\phi \partial_t s - \nabla \cdot [\mathbf{K} \kappa(s) (\nabla p + \mathbf{g})] = f(\mathbf{x}, t), \quad (\mathbf{x}, t) \in \Omega \times (0, T)
$$

Figure: Brooks–Corey constitutive laws

Elliptic: $\partial_t s = 0$

- Hyperbolic (ODE): $\kappa(s) = 0$
- In Kink at $p = p_M$ for Brooks–Corey constitutive law

State of the art

Variable switching

晶

晶

Ħ

Forsyth, P. A., Y. S. Wu, and K. Pruess (1995). "Robust Numerical Methods for Saturated-Unsaturated Flow with Dry Initial Conditions in Heterogeneous Media". In: Adv. Water Resour. 18.1, pp. 25–38.

Diersch, H. J. G. and P. Perrochet (1999). "On the Primary Variable Switching Technique for Simulating Unsaturated–Saturated Flows". In: Adv. Water Res. 23.3, pp. 271–301.

Brenner, K. and C. Cancès (2017). "Improving Newton's method performance by parametrization: the case of the Richards equation". In: SIAM J. Numer. Anal. 55.4, pp. 1760–1785.

F.

Bassetto, S., C. Cancès, G. Enchéry, and Q. H.

Tran (2020). "Robust Newton Solver Based on Variable Switch for a Finite Volume Discretization of Richards Equation". In: Finite Volumes for Complex Applications IX—Methods, Theoretical Aspects, Examples—FVCA 9, Bergen, Norway, June 2020. Vol. 323. Springer Proc. Math. Stat. Springer, Cham, pp. 385–393.

Subquadratic schemes

- Celia, M. A., E. T. Bouloutas, and R. L. Zarba (1990). "A General Mass-Conservative Numerical Solution for the Unsaturated Flow Equation". In: Water Resour. Res. 26.7, pp. 1483–1496.
	- Pop, I. S., F. Radu, and P. Knabner (2004). "Mixed Finite Elements for the Richards' Equation: Linearization Procedure". In: J. Comput. Appl. Math. 168.1-2, pp. 365–373.
- F.

E.

Mitra, K. and I. S. Pop (2019). "A Modified Lscheme to Solve Nonlinear Diffusion Problems". In: Comp. & Math. Appl. 7th International Conference on Advanced Computational Methods in Engineering (ACOMEN 2017) 77.6, pp. 1722– 1738.

Stokke, J. S., K. Mitra, E. Storvik, J. W. Both, and F. A. Radu (2023). "An adaptive solution strategy for Richards' equation". In: Comput. Math. Appl. 152, pp. 155–167.

Outline

[Introduction](#page-1-0)

[Regularization and adaptive algorithm](#page-11-0)

- [Numerical results](#page-27-0)
- [Conclusions and perspectives](#page-39-0)

Discretization

Method of lines

 \blacktriangleright Mesh \mathcal{T}_h of Ω , fixed conforming \mathcal{P}^1 -FEM in space

$$
V_h := \left\{ u_h \in H_0^1(\Omega), \ u_h|_K \in \mathcal{P}_1(K) \quad \forall \, K \in \mathcal{T}_h \right\}
$$

 \blacktriangleright backward Euler in time: uniform time step $\tau = 1/NT$, for each *n* ∈ {1, ..., *N*} and a given $p_{n-1,h}$ ∈ V_h , $p_{n,h}$ ∈ V_h satisfying

$$
\frac{1}{\tau}(\phi(S(p_{n,h}) - S(p_{n-1,h})), \varphi_h) + (\mathbf{F}(p_{n,h}), \nabla \varphi_h) = (f(\cdot, t_n), \varphi_h) + (q_N, \varphi_h)_{\Gamma_N} \quad \forall \varphi_h \in V_h
$$

The flux function is defined as

$$
\boldsymbol{F}(q) := \boldsymbol{K}\kappa(S(q))[\nabla q + \boldsymbol{g}].
$$

Regularized and linearized problems

Regularized problem (index *j*)

$$
\frac{1}{\tau}(S_{\epsilon_j}(p_{n,h}^j) - S_{\epsilon_j}(p_{n-1,h}^{\bar{j}}), \varphi_h) + (\mathbf{F}_{\epsilon_j}(p_{n,h}^j), \nabla \varphi_h) \n= (f(\cdot, t_n), \varphi_h) + (q_N, \varphi_h)_{\Gamma_N} \quad \forall \varphi_h \in V_h,
$$

$$
\blacktriangleright \ \mathbf{F}_{\epsilon_j}(q) := \mathbf{K}\kappa_{\epsilon_j}(S_{\epsilon_j}(q))[\nabla q + \mathbf{g}].
$$

Regularized/linearized problem (index *k*)

$$
\frac{1}{\tau}(\phi S_{\epsilon_j}(p_{n,h}^{j,k-1}) - S_{\epsilon_j}(p_{n-1,h}^{\bar{j},\bar{k}}), \varphi_h) + \frac{1}{\tau}(\phi L(p_{n,h}^{j,k} - p_{n,h}^{j,k-1}), \varphi_h) \n+ (F_{\epsilon_j}^k, \nabla \varphi_h) + (q_N, \varphi_h)_{\Gamma_N} \n= (f(\cdot, t_n), \varphi_h) \quad \forall \varphi_h \in V_h,
$$
\n
$$
\triangleright \ \ F_{\epsilon_j}^k := \mathbf{K}\kappa_{\epsilon_j}(S_{\epsilon_j}(p_{n,h}^{j,k-1}))[\nabla p_{n,h}^{j,k} + \mathbf{g}] + \xi(p_{n,h}^{j,k} - p_{n,h}^{j,k-1}) \n\triangleright (L, \xi) \in \mathbf{L}^{\infty}(\Omega; \mathbb{R}^{d+1}) \text{ depend on the specific linearization used.}
$$

A posteriori error estimators

Averaging in \mathbf{H} (div, Ω)

 \blacktriangleright Lowest order Raviart-Thomas space $\boldsymbol{R}\,\boldsymbol{T}_0(\mathcal{T}_h) := \{\boldsymbol{v}_h \in [L^2(\Omega)]^d: \boldsymbol{v}_h|_K \in [\mathcal{P}(K)]^d + \boldsymbol{x}\mathcal{P}_0(K), \forall K \in \mathcal{T}_h\}$ $▶$ Reconstruction $\sigma_{n,h}^{j,k} \in \bm{RT}_0(\mathcal{T}_h) \cap \bm{H}(\text{div}, \Omega)$ of $-F_{\epsilon_j}^k$ based on averaging with connection to equilibrated flux [Vlasák [2020;](#page-44-0) Ern, Nicaise, and Vohralík [2007\]](#page-44-0)

Component estimators

For an approximate solution $p_{n,i}^{j,k}$ $_{n,h}^{\jmath,\kappa},$

$$
\eta_{\text{dis}}^{\ell,j,k} := \|\mathbf{F}_{\epsilon_j}^k + \sigma_{n,h}^{j,k}\|
$$
 (discretization)
\n
$$
\eta_{\text{lin}}^{\ell,j,k} := \|\mathbf{F}_{\epsilon_j}(p_{n,h}^{j,k}) - \mathbf{F}_{\epsilon_j}^k\|
$$
 (linearization)
\n
$$
\eta_{\text{reg}}^{\ell,j,k} := \|\mathbf{F}(p_{n,h}^{j,k}) - \mathbf{F}_{\epsilon_j}(p_{n,h}^{j,k})\|
$$
 (regularization)

Outline

[Introduction](#page-1-0)

- [Regularization and adaptive algorithm](#page-11-0)
- [Numerical results](#page-27-0)
- [Conclusions and perspectives](#page-39-0)

Free and open source library

$$
F = K \cdot ((\kappa 0 \circ S_n 0) \ast \nabla(p_n^{k-1}) + (\kappa 0 \circ S_n 0) \ast g)
$$

\n
$$
F_j = K \cdot ((\kappa \circ S_n) \ast \nabla(p_n^{k-1}) + (\kappa \circ S_n) \ast g)
$$

\n
$$
(\xi, -) = get_L_and_{\xi}(\text{linearization, data})
$$

\n
$$
F_j^{k-1} = K \cdot ((\kappa \circ S_n) \ast \nabla(p_n^k) + (\kappa \circ S_n) \ast g) + \xi^*(p_n^k - p_n^{k-1})
$$

\n
$$
\sigma_n = \text{EquilibratedFlux.build_averaged_{\text{flux}}(-F_j^{k-1}, \text{model})
$$

Methods tested for comparision

Linearizations

\blacktriangleright Newton's method: $L := S'_{\epsilon_j}(p_{n,h}^{j,k-1})$ $(\hat{\theta}_{n,h}^{j,k-1}), \quad \boldsymbol{\xi} := \boldsymbol{K}(\kappa_{\epsilon_j} \circ S_{\epsilon_j})' (\hat{p}_{n,h}^{j,k-1}).$ $\sum_{n,h}^{j,k-1})[\nabla p_{n,h}^{j,k-1} + \boldsymbol{g}]$ ▶ modified Picard [Celia, Bouloutas, and Zarba [1990\]](#page-44-0): $L := S'_{\epsilon_j}(p_{n,h}^{j,k-1})$ $\binom{y,\kappa-1}{n,h},\quad \bm{\xi}:=\bm{0}$

Timestepping/regularization

For Newton's method we consider

- \triangleright No regularization and simple timestep cutting algorithm
- \triangleright No regularization and uniform timestepping
- \triangleright With regularization and uniform timestepping
- For modified Picard only uniform timestepping and no regularization

Injection test: setup

 $\blacktriangleright \Omega = (0,1)^2$

$$
\blacktriangleright T = 1.0
$$

- \blacktriangleright $\tau = 2.82 \cdot 10^{-2}$
- \blacktriangleright Quasi uniform mesh with $h = 2.82 \cdot 10^{-2}$

$$
\sum_{D} \Gamma_{D} = \{(x_1, x_2) | x_1 \in (0, 0.3), x_2 = 1\}
$$

$$
\blacktriangleright \Gamma_N = \partial \Omega \setminus \Gamma_D
$$

$$
\bullet \quad \boldsymbol{g} = (0, -1)^T
$$

$$
f = 0
$$

$$
\blacktriangleright \ \ p_0 = -1, \quad s_0 = S(p_0)
$$

 $p_{\rm D} = 1$ Inspired by test case in [Brenner and Cancès [2017\]](#page-44-0)

 $\Gamma_{\mathrm{D}}: p = p_{\mathrm{D}} \; \Gamma_{\mathrm{N}}: \mathrm{No \; Flux}$

Injection test: saturation comparision

 \triangleright With (left) and without (right) regularization

Injection test: performance

Realistic test: setup

Inspired by test case in [Mitra and Vohralík [2024\]](#page-44-0)

Realistic test: saturation comparison

 \triangleright With (left) and without (right) regularization

Realistic test: performance

Perched water table: setup

▶ Adapted from [Kirkland, Hills, and Wierenga [1992\]](#page-44-0)

Perched water table: saturation profile

 \blacktriangleright Evolution of the saturation at time $t \in \{0 \text{ s}, 21 \cdot 10^3 \text{ s}, 41 \cdot 10^3 \text{ s}, 86.1 \cdot 10^3 \text{ s} = 1 \text{ day}\}.$

Perched water table: performance

Outline

[Introduction](#page-1-0)

- [Regularization and adaptive algorithm](#page-11-0)
- [Numerical results](#page-27-0)
- [Conclusions and perspectives](#page-39-0)

Summary

- \blacktriangleright Introduce regularization of common constitutive laws for Richards equation
- \blacktriangleright Error estimation based on flux reconstruction
- \triangleright Adaptive algorithm based on balancing error components
- \blacktriangleright Tested on benchmark problems from the literature

Févotte, F., Rappaport, A., and Vohralík, M. Adaptive regularization for the Richards equation. Comput. Geosci. (2024).

Perspectives

- \triangleright Combine with existing techniques like variable switching
- \triangleright Extension to two phase flow (variational inequalities)

Thank you for your attention!

Summary

- \blacktriangleright Introduce regularization of common constitutive laws for Richards equation
- \blacktriangleright Error estimation based on flux reconstruction
- Adaptive algorithm based on balancing error components
- \blacktriangleright Tested on benchmark problems from the literature

Févotte, F., Rappaport, A., and Vohralík, M. Adaptive regularization for the Richards equation. Comput. Geosci. (2024).

Perspectives

- \triangleright Combine with existing techniques like variable switching
- \triangleright Extension to two phase flow (variational inequalities)

Thank you for your attention!

Summary

- \blacktriangleright Introduce regularization of common constitutive laws for Richards equation
- \blacktriangleright Error estimation based on flux reconstruction
- Adaptive algorithm based on balancing error components
- \blacktriangleright Tested on benchmark problems from the literature

Févotte, F., Rappaport, A., and Vohralík, M. Adaptive regularization for the Richards equation. Comput. Geosci. (2024).

Perspectives

- \triangleright Combine with existing techniques like variable switching
- \triangleright Extension to two phase flow (variational inequalities)

Thank you for your attention!

Regularization of the relative permeability for Van-Genuchten

Follow the approach in [Bassetto, Cancès, Enchéry, and Tran [2020\]](#page-44-0) where the relative permeability κ is replaced by a second degree polynomial near the critical point $s = 1$:

Hermite interpolation for the Brooks–Corey Saturation

$$
S_{\epsilon}(p_{\mathrm{M}} - \epsilon) = S(p_{\mathrm{M}} - \epsilon), \qquad S_{\epsilon}(p_{\mathrm{M}} + \epsilon) = S(p_{\mathrm{M}} + \epsilon)
$$

\n
$$
S'_{\epsilon}(p_{\mathrm{M}} - \epsilon) = S'(p_{\mathrm{M}} - \epsilon), \qquad S'_{\epsilon}(p_{\mathrm{M}} + \epsilon) = S'(p_{\mathrm{M}} + \epsilon),
$$

\n
$$
\vdots
$$

\n
$$
S^{(r)}_{\epsilon}(p_{\mathrm{M}} - \epsilon) = S^{(r)}(p_{\mathrm{M}} - \epsilon), \qquad S^{(r)}_{\epsilon}(p_{\mathrm{M}} + \epsilon) = S^{(r)}(p_{\mathrm{M}} + \epsilon).
$$

