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CONTEXT 

Leonard de Vinci

Developing high-order numerical methods for LES modeling of low-
dispersion/dissipation combustion

• The modeling of turbulent combustion requires an accurate numerical method
and modeling of the effects of turbulence

• For Large Eddy Simulation, it is necessary to use high-order methods in order to 
reduce numerical dissipation

Objectives of the thesis: 
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HIGH-ORDER METHODS: STATE OF THE ART

• Discontinuous Galerkin by Reed and Hill 1973 

• weak formulation, mass matrix bloc-diagonal

• expensive if standard Gaussian quadrature rules are 
employed

Figure 2 : Representation of a discontinuous solution 
over three cells

• Spectral Difference by  Kopriva and Kolias 1996

• strong formulation, exponential convergence for 
smooth solutions 

• difficult to implement on complex geometries

• Flux Reconstruction by Huynh 2007

• strong formulation

• set of schemes including collocation-based nodal DG 
and SD schemes in linear cases with many properties 
(stability, dissp, CFL) 

𝑈𝑎𝑝𝑝𝑟𝑜𝑥 − 𝑈𝑒𝑥𝑎𝑐𝑡 𝐿2 = 𝒪(Δ𝑥𝑝+1)
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HIGH-ORDER METHODS: APPLICATIONS

• Discontinuous Galerkin by Reed and Hill 1973

• turbulent jets, Anghan et el.[1]

• laminar-turbulent transition, Beck et al. [2]

• Spectral Difference by  Kopriva and Kolias 1996

• turbulent flows limited to the walls, Chapelier et al.[3]

• shocks and detonations, Gupta et al. [4]

• SD method for laminar and turbulent combustion,T. Marchal et al [5]

• Flux Reconstruction by Huynh 2007

• flows in turbomachines, flow around a wing and a 
cylinder Vincent, Jameson et al [6]

• double flux method to the FR discretization of the 
multi-species Euler equations, Peyvan et al [7]

• no work on combustion

Development of turbulent flow in a jet
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OUTLINE

•      Principles of Flux Reconstruction method

•      Conclusion and future works

•      Development of FR schemes for non-reactive 3D flows in AEROSOL

•      Development of FR schemes for non-reactive and reactive 3D flows in CONVERGE

•      Development of a coupling methodology for FR schemes and AMR in CONVERGE
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PRINCIPLES OF FLUX RECONSTRUCTION METHOD FOR  𝜕𝑡𝑢 + 𝜕𝑥𝑓 𝑢 = 0  

2.     Isoparametric map Θ𝑛:  Ω𝑛 Ω𝑠

• 𝜕𝑡 ො𝑢𝑛
𝛿𝐷 + 𝜕𝜁

መ𝑓𝑛
𝛿 ො𝑢𝑛

𝛿 = 0                                                         

• ො𝑢𝑛
𝛿𝐷 = 𝐽𝑛𝑢𝑛

𝛿𝐷,  መ𝑓𝑛
𝛿 = 𝑓𝑛

𝛿  

    

     

1. Write conservation laws on each Ω𝑛, Ω =∪𝑛=1
𝑁 Ω𝑛

• 𝜕𝑡𝑢𝑛
𝛿𝐷 + 𝜕𝑥𝑓𝑛

𝛿 𝑢𝑛
𝛿  = 0

                                          

3.     Polynomial approximation

    

     

• 𝑝 + 1 solution points 𝜁𝑘  / 𝑘 = 0, … , 𝑝 

• Interpolation 𝜁𝑘 , ො𝑢𝛿𝐷(𝑡, 𝜁𝑘) = 𝜁𝑘 , ො𝑢𝑘
𝛿𝐷

                               

ො𝑢𝛿𝐷 𝜁 = σ0⩽𝑘⩽𝑝 ො𝑢𝑘
𝛿𝐷 𝑙𝑘(𝜁), መ𝑓𝛿𝐷 𝜁 = σ0⩽𝑘⩽𝑝

መ𝑓𝑘
𝛿𝐷 𝑙𝑘(𝜁)

degree 𝑝 degree 𝑝
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PRINCIPLES OF FLUX RECONSTRUCTION METHOD

መ𝑓𝑛
𝛿 𝜁 = መ𝑓𝑛

𝛿𝐷 𝜁 + መ𝑓𝑛
𝛿𝐶 𝜁, 𝑔𝐿, 𝑔𝑅

     

  

     

• The transfer of information is ensured by  flux reconstruction

• ො𝑢𝛿𝐷 and መ𝑓𝛿𝐷 may be discontinuous at the interfaces

degree 𝑝 + 1
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PRINCIPLES OF FLUX RECONSTRUCTION METHOD

• Vincent-Castonguay-Jameson-Huynh VCJH correction functions

•  𝑔𝐿 =
−1 𝑝

2
𝐿𝑝 −

𝜂𝑝𝐿𝑝−1+𝐿𝑝+1

1+𝜂𝑝
, 𝑔𝑅 =

1

2
(𝐿𝑝 +

𝜂𝑝𝐿𝑝−1+𝐿𝑝+1

1+𝜂𝑝
)

• 𝐿𝑝 : Legendre polynomial of degree 𝑝

• 𝜂𝑝 =
𝑐 2𝑝+1 𝑎𝑝𝑝!

2

2
,  𝑎𝑝 =

2𝑝!

2𝑝 𝑝! 2

• Set of schemes parameterized by 𝑐 ∶
−2

2𝑝+1 𝑎𝑝𝑝!
2 < 𝑐 < +∞ 

• 𝑐 = 0 :  Nodal Discontinuous Galerkin scheme

• 𝑐 =
2𝑝

2𝑝+1 𝑝+1 𝑎𝑝𝑝!
2 :  Spectral Difference scheme

• 𝑐 =
2 𝑝+1

2𝑝+1 𝑝 𝑎𝑝𝑝!
2 :  Huynh scheme

Figure 3 : VCJH Correction functions for 
𝑐 = 0 and 𝑝 = 2
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OUTLINE

•      Principles of Flux Reconstruction method

•      Conclusion and future works

•      Development of FR schemes for non-reactive 3D flows in AEROSOL

•      Development of FR schemes for non-reactive and reactive 3D flows in CONVERGE

•      Development of a coupling methodology for FR schemes and AMR in CONVERGE
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DEVELOPMENT OF FR SCHEMES IN AEROSOL

General form of the Navier-Stokes equations

                      𝜕𝑡𝑼 + ∇ ⋅ 𝑭conv 𝑼 + ∇ ⋅ 𝑭vis 𝑼, ∇𝑼 = 𝑺,  (𝑡, 𝑥) ∈ 0; 𝑇𝑓 × Ω

𝑼 = (𝜌, 𝜌𝑽, 𝜌𝐸)

𝑭conv = (𝜌𝑽, 𝜌𝑽 ⊗ 𝑽 + 𝑝𝐼, 𝜌𝐸𝑽 + 𝑝𝑽)

𝑭vis = (0, −∇ ⋅ 𝝉, −(∇ ⋅ (𝝉 ⋅ 𝑽 ) + ∇ ⋅ 𝜅 ∇ 𝑇  ))

𝜏𝑖𝑗  = 𝜈(𝜕𝑥𝑖
𝑉𝑗 + 𝜕𝑥𝑗

𝑉𝑖 + 𝜆 𝛿𝑖𝑗 ∇ ⋅  𝑽)

𝑼 = 𝐠, 𝑡, 𝑥 ∈ 0, 𝑇𝑓 × Γ

𝐸 =
𝑃

𝜌(𝛾 − 1)
+

1

2
(𝑉1

2+𝑉2
2 + 𝑉3

2) 
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NUMERICAL EXPERIMENTS: NAVIER-STOKES EQUATIONS 2D

Poiseuille Flow

• Source term: 𝐒 = (0, 𝐹𝑉 , 𝐹𝑉 ⋅ 𝑉) 
• 𝐹𝑉 = (8 𝜈𝑢𝑐 , 0)
• 𝐹𝑉 ⋅ 𝑉 = 32 𝜈𝑢𝑐

2𝑦(1 − 𝑦) 

• Isothermal boundary conditions : 𝑉1, 𝑉2, 𝑇 = 0,0, 𝑇𝑊

• 𝑔 = 𝜌𝑟𝑒𝑓, 0,0, 𝜌𝑟𝑒𝑓 𝑐𝑣𝑇𝑊

•  Discretisation

• Ω = 0,1 × 0,1 , 𝑇𝑊 = 1, u𝑐 = 1, 𝜌𝑟𝑒𝑓 = 0.001, 𝜈 = 0.001, 𝑃𝑟 = 0.7, 𝑀𝑎 = 0.2, 𝑅𝑒 = 1

•  Numerical flux Lax-Friedrichs (advective), LdG (viscous);  RK45, DG via FR 

• 𝐶𝐹𝐿 =
𝛿𝑡𝜈

𝛿𝑥
2 , 𝑝 ∈ {0,1,2,3}, 𝑁2 ∈ {102, 202, 402}

• Exact solution
• 𝑉 = 4𝑢𝑐𝑦(1 − 𝑦), 0 

• 𝑇(𝑥, 𝑦)  =  𝑇𝑤 [ 1 +
16 𝑃𝑟 𝑀𝑎2 𝛾 − 1

3
𝑦(1 −  𝑦) ( 𝑦2  −  𝑦 +

1

2
) ] 

C. Brun, M. Petrovan Boiarciuc, M. Haberkorn, and P. Comte, Large eddy si-mulation of compressible channel flow, Theor. Comput. Fluid Dyn., 22 (2008)
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Convergence curves with DG via FR
•  𝑝 ∈ 0,1,2,3
• 𝑁2 ∈ {102, 202, 402}

NUMERICAL EXPERIMENTS: NAVIER-STOKES EQUATIONS 2D

𝑈 − 𝑈𝛿
𝐿2  = 𝒪(Δ𝑥𝑝+1)
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NUMERICAL EXPERIMENTS: NAVIER-STOKES EQUATIONS 3D

•  Initial condition

•  𝑉1 = 𝑢0 sin
𝑥

𝐿0
cos

𝑦

𝐿0
cos(

𝑧

𝐿0
)

•  𝑉2 = −𝑢0 cos
𝑥

𝐿0
sin

𝑦

𝐿0
cos(

𝑧

𝐿0
)

•  𝑉3 = 0

•  𝑃 = 𝑃0 +
𝜌0𝑉0

2

16
(cos

2𝑥

𝐿0
+ cos

2𝑦

𝐿0
)(cos

2𝑧

𝐿0
+ 2)

•  Discretisation

• Numerical flux Lax-Friedrichs (advective), LdG (viscous);  RK45, DG via FR 

•  Ω = −𝜋L0, 𝜋𝐿0 × −𝜋L0, 𝜋𝐿0 × −𝜋L0, 𝜋𝐿0 ,  𝑇𝑓 = 12s.

•  𝐿0 =
1

𝜋
, 𝑢0 =

1

𝜋
, 𝜌0 = 1, 𝑇0 = 1, 𝑃𝑟 = 0.71, 𝑀𝑎 = 0.1, 𝑅𝑒 = 1600.

•  Boundary condition

•  Periodic

Chapelier J. B., De La Llave Plata M., Renac F. & Lamballais E., Evaluation of a high-order discontinuous Galerkin method for the DNS of turbulent flows, 
Computers & Fluids 95, 210–226 (2014).

Taylor-Green Vortex (TGV)
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NUMERICAL EXPERIMENTS: TGV at Re = 1600

h,p-refinement
• Order ∈ {3,4}
• 𝑁3 ∈ {963, 1283} 

Isosurface of Q criterion colored 
by the z-vorticity

• Order = 4
• 𝑁3 = 963

Cant R., FERGUS, A user guide, technical report, Cambridge University Engineering Department.

Kinetic Energy Enstrophy

𝐸𝑘 =
1

𝐾
න

𝐾

𝑉 ⋅ 𝑉

2
𝜁 =

1

𝐾
න

𝐾

(∇ × 𝑉) ⋅ (∇ × 𝑉)

2

• Good agreement with reference data and with less DoF
• The results are better with high-order for constant number of DoF
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OUTLINE

•      Principles of Flux Reconstruction method

•      Conclusion and future works

•      Development of FR schemes for non-reactive 3D flows in AEROSOL

•      Development of FR schemes for non-reactive and reactive 3D flows in CONVERGE

•      Development of a coupling methodology for FR schemes and AMR in CONVERGE
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NAVIER-STOKES EQUATIONS: GLOBAL CONSERVATION OF MASS

•  𝜕𝑡𝜌 + ∇ ⋅ 𝜌𝒖 = 0,  (𝑡, 𝑥) ∈ 0; 𝑇𝑓 × Ω

•  𝜕𝑡 𝜌𝒖 + ∇ ⋅ 𝜌𝒖 ⊗ 𝒖 + 𝑃𝐼 + ∇ ⋅ (−𝝉) = 0, (𝑡, 𝑥) ∈ 0; 𝑇𝑓 × Ω

•  𝜕𝑡 𝜌𝐸 + ∇ ⋅ 𝜌𝐸𝒖 + 𝑃𝒖 + ∇ ⋅ − 𝝉 ⋅ 𝒖 + 𝜅 ∇ 𝑇 − 𝜌 σ𝑘 ℎ𝑠𝑘𝑌𝑘𝑽𝑘 = ὠ𝑇 , (𝑡, 𝑥) ∈ 0; 𝑇𝑓 × Ω

•  𝜕𝑡𝜌𝑘 + ∇ ⋅ 𝜌𝑘𝒖 = ∇ ⋅ 𝜌𝐷𝑘
𝑊𝑘

𝑊
∇𝑋𝑘 − 𝜌𝑘𝑽𝑐 + ὠ𝑘 ,  (𝑡, 𝑥) ∈ 0; 𝑇𝑓 × Ω ,     𝑘 ∈ {1,2, ⋯ , 𝑁𝑠}

𝐸 = 𝑒𝑠 +
1

2
𝒖2, 

ℎ𝑠𝑘 = Δℎ𝑓,𝑘
0 + න

𝑇0

𝑇

𝐶𝑝𝑘 𝑇′ 𝑑𝑇′ 

General form of Navier-Stokes equations

ℎ𝑠 = σ𝑌𝑘ℎ𝑠𝑘
𝑽𝑐 = ෍

𝑗

𝐷𝑗𝑊𝑗

𝑊
∇X𝑗

𝑌𝑘𝑽𝑘 = −𝐷𝑘

𝑊𝑘

𝑊
∇𝑋𝑘

𝑊𝑘

𝑊
∇X𝑘 = ∇𝑌𝑘 − 𝑌𝑘𝑊 ෍

𝑠

∇𝑌𝑠

𝑊𝑠
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HOW TO COMPUTE NUMERICAL FLUXES 𝐹𝛿𝐼?

• CONS approach     𝑈𝑆𝑃  ⟶ 𝑈𝐹𝑃 ⟶ 𝐹𝛿𝐼

•  Extrapolate the conservative variables to the flux points: 𝑈𝑆𝑃  ⟶ 𝑈𝐹𝑃

• Compute 𝐹𝛿𝐼 from 𝑈𝐹𝑃.

• TUPY approach     𝑈𝑆𝑃  ⟶ 𝑄𝑆𝑃 ⟶ 𝑄𝐹𝑃 ⟶ 𝑈𝐹𝑃 ⟶ 𝐹𝛿𝐼

• Compute the primitive variables from the conservative variables at the solution points: 𝑈𝑆𝑃  ⟶ 𝑄𝑆𝑃 

• Extrapolate the primitive variables to the flux points: 𝑄𝑆𝑃  ⟶ 𝑄𝐹𝑃

• Compute the conservative variables from the primitive variables at the flux points: 𝑄𝐹𝑃 ⟶ 𝑈𝐹𝑃

• Compute 𝐹𝛿𝐼 from 𝑈𝐹𝑃.

• Conservative variables: 𝑈 = (𝜌, 𝜌𝑉1, 𝜌𝑉2, 𝜌𝑉3, 𝜌𝐸, 𝜌𝑌1, 𝜌𝑌2, ⋯ , 𝜌𝑌𝑁s
)

• Primitives variables: 𝑄 = (𝑃, 𝑉1, 𝑉2, 𝑉3, 𝑇, 𝑌1, 𝑌2, ⋯ , 𝑌𝑁s
)

CHALLENGES OF FR SCHEMES IN MULTI-SPECIES SIMULATION

Thomas Marchal et al, Extension of the Spectral Difference method to combustion, Journal of Computational Physics, 2023.
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NUMERICAL EXPERIMENTS: REACTIVE NAVIER-STOKES EQUATIONS 2D

H2/O2 combustion kinetic scheme Boivin et al. (9 species | 12 reactions)
SAGE is used to solve kinetic chemistry.

•  Discretisation

• Time: Explicit RK45, four order DG via FR vs PISO 

• Numerical flux Lax-Friedrichs, LdG (viscous)

• Setup

• Ω = −𝜋L0, 𝜋𝐿0 × −𝜋L0, 𝜋𝐿0 ,  𝐿0 = 1mm , L = 2𝜋𝐿0,  𝑢0 = 4,

• 𝜏𝑟𝑒𝑓 =
L0

𝑢0
= 0.25ms,   Tend = 10 × 𝜏𝑟𝑒𝑓, 𝑀𝑎 = 0.1, 𝑅𝑒 = 267, 𝑁2 ∈ {642, 1282}, CFL=0.2

•  Boundary condition

•  Periodic

Ghislain Lartigue et al, The Taylor–Green vortex as a benchmark for high-fidelity combustion simulations using low-Mach solvers, Computers & Fluids 95,
 223(2021).

L

•  𝑉1 = 𝑢0 sin
𝑥

𝐿0
cos

𝑦

𝐿0
,      𝑉2 = −𝑢0 cos

𝑥

𝐿0
sin

𝑦

𝐿0

𝑂2 𝑂2𝑁2/𝐻2

• 𝑌𝑂2

0 ,     𝑌𝑁2

0 ,     𝑌𝐻2

0 ,  𝑃 = 101325 Pa,   𝑇 = 300 K,   𝑇𝑓 = 1910 K at the 
interface between the 𝑂2 and 𝐻2 + 𝑁2
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CHEMICAL REACTION: TRANSPORT - COMBUSTION

• σ𝑘 𝑌𝑘 𝑡,⋅ = 1, ∀𝑡 ≥ 0

• The simulation is stable ∀𝑡 ≥ 0

• We observe the consumption and production
of chemical species

• 𝑌𝑘,𝑚𝑖𝑛
0 ≤ 𝑌𝑘 𝑡,⋅ ≤ 𝑌𝑘,𝑚𝑎𝑥

0 ,  ∀ 𝑘 ∈ 1, 𝑁𝑠 , 𝑡 ≥ 0 

Reactive test case
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NUMERICAL EXPERIMENTS: 1D profiles at 𝑡 = 𝜏𝑟𝑒𝑓, 𝑦 = 0.5𝐿
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NUMERICAL EXPERIMENTS: TUPY APPROACH IN 3D 
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NUMERICAL EXPERIMENTS: TUPY APPROACH IN 3D 

𝑥 = 0 . 5 𝐿, and 𝑧 = 0 . 5 𝐿 for 3-D non-reacting multi-species flow at 𝑡 = 2 𝜏𝑟𝑒𝑓

Ghislain Lartigue et al, The Taylor–Green vortex as a benchmark for high-fidelity combustion simulations using low-Mach solvers, Computers & Fluids 95, 
223(2021).
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OUTLINE

•      Principles of Flux Reconstruction method

•      Conclusion and future works

•      Development of FR schemes for non-reactive 3D flows in AEROSOL

•      Development of a coupling methodology for FR schemes and AMR in CONVERGE

•      Development of FR schemes for non-reactive and reactive 3D flows in CONVERGE
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HIGH ORDER INTERPOLATION AND PROJECTION OPERATORS FOR AMR

refinement coarsening

Interpolation projection 

• To ensure the conservativeness of the scheme, we need to define the high-order operators 
• To transfer data after refinement or coarsening

Example 𝑝 = 1

• To calculate the numerical flux on the faces separating two cells of different sizes

David A. Kopriva A Conservative Staggered-Grid Chebyshev Multidomain Method for Compressible Flows. II. A Semi-Structured Method, JCP, 1996.
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HIGH ORDER INTERPOLATION AND PROJECTION OPERATORS FOR AMR

refinement

Interpolation 

𝒖𝑚
𝐾 𝜁 = 𝐼𝑐 𝒖𝑃 𝜁 = ෍

𝑖=1

𝑁𝑝

𝑙𝑖 Φ𝑚 𝜁 𝒖𝑖
𝑃 , 𝑚 ∈ {1,2, ⋯ , 2𝐷}Interpolation operator: 

𝒖𝑃(𝜁) = ෍

𝑖=1

𝑁𝑝

𝑙𝑖 𝜁 𝒖𝑖
𝑃

𝒖𝑚
𝐾 𝜁 = ?

Φ𝑚 𝜁 =
𝜁1 − 𝑜1

𝑚

𝑠
,
𝜁1 − 𝑜2

𝑚

𝑠
, 𝑚 ∈ {1,2, ⋯ , 2𝐷}With isoparametric map: 
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HIGH ORDER INTERPOLATION AND PROJECTION OPERATORS FOR AMR

coarsening

projection 

Projection operator: 

With mass matrix: 𝑀𝑗𝑖 = න
෡Ω

𝑙𝑗𝑙𝑖 𝑑𝜁 𝑆𝑚,𝑗𝑖 = න
෡Ω

𝑙𝑗  መ𝑙𝑖
𝑚 𝑑𝜁

𝒖𝑚
𝐾 (𝜁) = ෍

𝑖=1

𝑁𝑝

መ𝑙𝑖
𝑚 𝜁 𝒖𝑚,𝑖

𝐾 𝒖𝑃 𝜁 = ?

𝒖𝑃 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑉∈෠𝐿𝑝
𝑉 − ෍

𝑚=1

2𝐷

𝒖𝑚
𝐾

𝐿2

⇒  𝒖𝑃 = Π𝑐 𝒖𝑚
𝐾 = ෍

𝑚=1

2𝐷

𝑴−1𝑺𝑚𝒖𝑚
𝐾

David A. Kopriva A Conservative Staggered-Grid Chebyshev Multidomain Method for Compressible Flows. II. A Semi-Structured Method, JCP, 1996.
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HIGH ORDER INTERPOLATION AND PROJECTION OPERATORS FOR AMR

• The numerical flux on the faces separating two cells of different sizes

• Interpolation on the real faces of each element: 𝐼𝑓

• Projection on mortar face: (Π𝑓)−1 

• Projection from mortar face: Π𝑓

L RF

F

David A. Kopriva A Conservative Staggered-Grid Chebyshev Multidomain Method for Compressible Flows. II. A Semi-Structured Method, JCP, 1996.
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NUMERICAL EXPERIMENTS: EULER EQUATIONS 2D

•  Initial condition

•  𝜌 = 1, 𝑉 = 0,1 , 

• 𝛿𝑉 =
𝛽

2𝜋
(− y − yc , (x − xc))exp(0.5 1 − 𝑟2 )

• 𝛿𝑇 = −
𝛾−1 𝛽2

8𝛾𝜋2 exp( 1 − 𝑟2 )

• 𝐸 =
𝑃

𝜌(𝛾−1)
+

1

2
(𝑉1

2+𝑉2
2), 𝛾 = 1.4 

   

•  Discretisation

•  Numerical flux Lax-Friedrichs (advective) , RK33, DG via FR second order (𝑝=3)  

•  Ω = −10,10 × −10,10 , 𝑁2 = 502,  𝑇𝑓 = 20s,  CFL(𝑝) =
1

𝑝+1

•  Boundary condition

•  Periodic

Shu C. W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, vol. 1697 of Lecture notes in Mathematics, 
325–432, 1998.

Vortex convection

𝑡 = 0

𝑉

20 m

𝑡 = 0
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NUMERICAL EXPERIMENTS: EULER EQUATIONS 2D

Solution with four order accuracy, amr criterion based on density, level = 3

Density profile at 𝑡 = 0 sec 
without AMR

Density profile at 𝑡 = 0 sec 
with AMR

Density profile at 𝑡 = 20 sec 
with AMR
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OUTLINE

•      Principles of Flux Reconstruction method

•      Conclusion and future works

•      Development of FR schemes for non-reactive 3D flows in AEROSOL

•      Development of a coupling methodology for FR schemes and AMR in CONVERGE

•      Development of FR schemes for non-reactive and reactive 3D flows in CONVERGE
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CONCLUSION AND FUTURE WORKS

During this work we have:

• Developed up to the sixth order of accuracy of Flux Reconstruction scheme for 3D non-reactive Navier-
Stokes equations (AEROSOL CFD)

• Developed up to the sixth order of accuracy of Flux Reconstruction scheme for 3D multispecies reactive 
Navier-Stokes equations (CONVERGE CFD Version 3.1 and 3.2)

• TUPY approach is stable, preserves global mass conservation and the positivity of mass fractions 

• Developed high order Galerkin projection for AMR (h-refinement) coupled with FR Schemes (CONVERGE 
CFD Version 3.2)

Future work :

• Adapt FR schemes for order refinement: h,p-refinement

• Adapt FR Schemes for CutCells method: Add wall / inlet / outlet BC (p=0)

Cut Cells on the surface of a cylinder

𝑝 = 0

𝑝 > 0
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