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I Modeling a CO5 storage area
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Parametrized problem
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Parametrized problem

© IFPEN

Uncertainty regarding certain
parameters
> Well

B Numerical resolution using a flow

simulator
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A possible way to handle large space domain

B Local grid refinement near the injection zone

m Still very costly computational effort
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Objective

Methodology

B Reduced systems for single-phase flow
B Lower simulation costs of many simulations for many parameters
B Control errors in parameter independent norms

B Control linear outputs of the solutions p and u
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Strategy

B Advantages of (RB) method

B Replace high-fidelity calls by less expensive surrogate calls
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I Strategy

B Advantages of (RB) method
B Replace high-fidelity calls by less expensive surrogate calls

Offline stage

® Use of high-fidelity solutions
® Many degrees of freedom N

® Construct reduced bases
® POD-Greedy process
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I Strategy

B Advantages of (RB) method
B Replace high-fidelity calls by less expensive surrogate calls

Online stage

Offline stage

® Use of high-fidelity solutions ® Construct reduced solutions
® Construct a Galerkin system of

® Many degrees of freedom N
small dimension N

® Construct reduced bases
® POD-Greedy process ® Provide cheap output of interest
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I Single-phase flow

m Model
coOp — V- (A(Vp + pgV=z)) = q(p) in ]0,T] x
A(Vp+pgVz) - n=0 on |0,7] x 'y
P =pD on |0,7T] xI'p
p(z,t=0) = p°(x) in Q

with uncertainty on A = #(x)/p

B Predict the impact of & on the flux s = — A(R)(Vp+pgVz)-n
T
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Complex meshes in porous medium simulations

B Geological layers using folders in a mesh of CPG-type
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I Discretization

B Time: Implicit Euler discretization
B Space: Average multi-point finite volume method
B Discrete high-fidelity system:

(M + AtA(9)piy' = Mpl + Atb(¢)
sn—l—l _ lT(ﬁ) n—+1

M
M + AtA 0 o ... .. 0
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0 -M
0
: - . . 0
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State of the art and contribution

State of the art

B A goal oriented version of the RB method

B Grepl & Patera. A posteriori error bounds for reduced-basis approximations
of parametrized parabolic partial differential equations. M2AN, 2005

B Haasdonk & Ohlberger. Reduced basis method for finite volume
approximations of parametrized linear evolution equations. M2AN, 2008
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I State of the art and contribution

State of the art

B A goal oriented version of the RB method

B Grepl & Patera. A posteriori error bounds for reduced-basis approximations
of parametrized parabolic partial differential equations. M2AN, 2005

B Haasdonk & Ohlberger. Reduced basis method for finite volume
approximations of parametrized linear evolution equations. M2AN, 2008

Contribution

B New discrete a posteriori error estimations

B Reduction error estimated using the same norm of L2([0, T]; H*(Q))-type for all
parameter values

B Tarhini, Boyaval, Enchéry & Tran, preprint, June 2024
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Discrete Dual Problem

M + AtA
0
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Galerkin projection

Primal reduced problem

® (lalerkin projection using Z € RN Nex
ZT(M + AtA(©)Zp" T = ZT M Zp"™ + AtZ7b(¢)

= Reduced solution: pN:"*+! ~ Zp"!
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I Galerkin projection

Primal reduced problem
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Dual reduced problem

® (Galerkin projection using Zg, € RN :Nau

(Z5, M Zy, + At ZE AT (6)Z4,) 9" = 25, M Z4, @™}
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A posteriori error estimation for primal problem

B Reduction error e" = p't, — pN

M A new space-time energy norm |[|-[|,, independent of ¢

¥, = (e o) < a) im (20— S w2 apen2,)

G LBXAgy, LB

n=1 n=1
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I A posteriori error estimation for primal problem
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A posteriori error estimation for dual problem

: n  _ ypn Nau,n
B Reduction error €}, = W)y — ¥

B Energy norm
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A posteriori error estimation for QOI

B Under the equality

n—1 n—1
P~ Py = At 3L N L Ap 3 (b Nty
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I EIM and SCM

[ A]pvr has to be

m reliable: |H(3N|Hpr < AN

N

||| N”| depends weakly on &

B computationally cheap

m EIM for AN = ZTA(6)Z, bN(¢) = ZTb

Da Dy,
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d=1 d=1
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POD method

Construct a correlation matrix

c=S5"Gg's
Eigenvalues: Eigenvectors:
4 storg_d in ad \V4
® S: snapshots matrix e
m TZCG[O,l] E:dlag(oo,..‘,aN)
SNpr
ZN 0 > ric
n=09n
70N
Zpop (&) = SV§N
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POD-Greedy algorithm

Algorithm 1: POD-greedy algorithm using Aé\;

Input: Npax, €tol, 2, 7ic
Data: N, =1, ONer = e + 1
£eB, (=15 ={&}

Initialize:
Compute p}, (&) for 0 <n < N

Set
Spr = (Pha(&) | - | Pie)

Set ZN»* = POD(S,,, G*, ric)

5Npr = I?Ea:X AI{X. §é+1 = arg Igleag( Aé\i‘ Ee+1 <— E,Z U {g[_l,_l}
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POD-Greedy algorithm

while §Ner > €, Npr < Npax do

Compute p (&) for 0 <n < N
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POD-Greedy algorithm

while §Ner > €, Npr < Npax do

Compute p (&) for 0 <n < N
Set

Spr == [Ph (&) — Projz, (p(&e))] - [pN4(&e) — Projz,, (PR4(&))]
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POD-Greedy algorithm

while §Ner > €, Npr < Npax do

Compute p (&) for 0 <n < N
Set

Spr == [Ph (&) — Projz, (p(&e))] - [pN4(&e) — Projz,, (PR4(&))]

Compute [z1]...|zsn,, | = POD(S,:, G*, ric)

Define ZNer™Ner .= orthonormalize( ZN> U [21] ... |zon,.])
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POD-Greedy algorithm

while §Ner > €, Npr < Npax do
Compute p (&) for 0 <n < N

Set
Spr = [Ph(&e) = Projz, (PR(&0)] - - [P4(&) — Projz, (DX (&0))]

Compute [z1]...|zsn,, | = POD(S,:, G*, ric)

Define ZNer™Ner .= orthonormalize( ZN> U [21] ... |zon,.])
SNer = IgleaEX Afx oy = arg I?EaEX Ag B 20U &)
Npr <= Npr + 6N, C—10+1

end
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Numerical tests

\L”,
’

®m Number of cells NV = 15210

m Yellow zone:
k1 € [1071% m2, 10712 m?]

® Blue zone: kg € [10717 m?, 1071 m?]

B 7 =200 days, At = 10 days
B Dirichlet condition: pp = 10° Pa
m Well pressure: py, = 4.3 x 107 Pa
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Pressure profile

k1 =10712, Ky = 10716 k1 =10"13, Ky =101

60e+05 le+7 2e+7 3e+7 4.7e+07 6.0e+05 le+7 2e+7 3e+7 4.7e+07
| 1 I I

k1 =1071%, Ky =3 x 1077

65e+05 le+7 2e+7 3e+7 4.7e+07
| !
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Numerical tests: EIM
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Numerical tests

Offline stage Online stage
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Numerical tests

T T
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Numerical tests

B 1/2
| Apr,max = HlSaX (A 25:1 ||Tn|’%1) (M. A. Grepl and A. T. Patera ,2005)
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Numerical tests
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Numerical tests
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Numerical tests

_ 1/2
o N At n||2 N At n||2
[ | As7max = (Zn:l O‘Asyim . ||T' ”,1 anl A Le ”Q ”71) (M. A. Grepl and A. T.
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Numerical tests
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Time for one HF simulation

B Online stage

=17
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Outline

Conclusion and perspectives
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Conclusion

RB for SPF problem

B A space-time energy norm independent of the parameters
B A posteriori estimation for linear QOIs

B Submitted paper: Reduced Basis method for finite volume simulations of
parabolic PDEs applied to porous media flows
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Perspectives

SPF problem

B Modify the definition of the estimator for better efficiency 7
B Estimate different types of QOIs

B Consider a time-varying source term
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