

Application of the reduced basis method to compressible single-phase flows in porous media

December 9th, 2024 Jana TARHINI

Doctoral dissertation supervised by

Sébastien BOYAVAL ENPC & Inria supervisor Guillaume ENCHÉRY IFPEN advisor Quang Huy TRAN IFPEN co-advisor

Outline

[Introduction](#page-2-0)

- \blacksquare [Modeling a CO](#page-3-0)₂ storage area
- **[Objectives](#page-7-0)**

2 [Application of RB methods to single-phase flow problems](#page-11-0)

- **[Definition of the problem](#page-12-0)**
- [State of the art on RB methods and contribution](#page-15-0)
- [Application to SPF problems](#page-18-0)
- **[Numerical tests](#page-33-0)**

3 [Conclusion and perspectives](#page-43-0)

Outline

1 [Introduction](#page-2-0)

- \blacksquare Modeling a $CO₂$ storage area
- **[Objectives](#page-7-0)**

[Application of RB methods to single-phase flow problems](#page-11-0)

[Conclusion and perspectives](#page-43-0)

Modeling a $CO₂$ storage area

- $CO₂$ storage in saline aquifers
- Large-scale induced motions
- Large extended domain

 \circledcirc IFPEN [tion](#page-2-0) | 1.1 [Modeling a CO](#page-3-0)₂ storage area 2/31 [Application of the reduced basis method to compressible single-phase flows in porous media](#page-0-0) | 1 [Introduc-](#page-2-0)

Parametrized problem

Uncertainty regarding certain parameters

-
-

$$
\overline{\kappa}(\boldsymbol{x}) = \overline{\kappa}_1 \mathbb{1}_{D_1}(\boldsymbol{x}) + \overline{\kappa}_2 \mathbb{1}_{D_2}(\boldsymbol{x})
$$

 \circledcirc IFPEN [tion](#page-2-0) | 1.1 [Modeling a CO](#page-3-0)₂ storage area $3/31$ [Application of the reduced basis method to compressible single-phase flows in porous media](#page-0-0) | 1 [Introduc-](#page-2-0)

Parametrized problem

- Uncertainty regarding certain parameters
	- Numerical resolution using a flow simulator
	- Several runs for different parameter values, e.g.,

 $\overline{\kappa}(\boldsymbol{x}) = \overline{\kappa}_1 \mathbb{1}_{D_1}(\boldsymbol{x}) + \overline{\kappa}_2 \mathbb{1}_{D_2}(\boldsymbol{x})$

 \circledcirc IFPEN [tion](#page-2-0) | 1.1 [Modeling a CO](#page-3-0)₂ storage area $3/31$ [Application of the reduced basis method to compressible single-phase flows in porous media](#page-0-0) | 1 [Introduc-](#page-2-0)

A possible way to handle large space domain

Local grid refinement near the injection zone **The Second** Still very costly computational effort п

Objective

Methodology

- Reduced systems for single-phase flow
	- Lower simulation costs of many simulations for many parameters
	- Control errors in parameter independent norms
	- Control linear outputs of the solutions p and u

 \odot IFPEN [tion](#page-2-0) | 1.2 [Objectives](#page-7-0) 5/31 [Application of the reduced basis method to compressible single-phase flows in porous media](#page-0-0) | 1 [Introduc-](#page-2-0)

Strategy

Advantages of (RB) method

Replace high-fidelity calls by less expensive surrogate calls

-
- - **POD-Greedy process**

- - Construct a Galerkin system of
-

 \odot IFPEN [tion](#page-2-0) | 1.2 [Objectives](#page-7-0) 6/31 [Application of the reduced basis method to compressible single-phase flows in porous media](#page-0-0) | 1 [Introduc-](#page-2-0)

Strategy

Advantages of (RB) method

Replace high-fidelity calls by less expensive surrogate calls

Offline stage

- Use of high-fidelity solutions Many degrees of freedom $\mathcal N$
- Construct reduced bases
	- POD-Greedy process

- -
-

 \odot IFPEN [tion](#page-2-0) | 1.2 [Objectives](#page-7-0) 6/31 [Application of the reduced basis method to compressible single-phase flows in porous media](#page-0-0) | 1 [Introduc-](#page-2-0)

Strategy

Advantages of (RB) method

Replace high-fidelity calls by less expensive surrogate calls

Offline stage

- Use of high-fidelity solutions Many degrees of freedom $\mathcal N$
- Construct reduced bases
	- POD-Greedy process

Online stage

- Construct reduced solutions
	- Construct a Galerkin system of small dimension N
- \bullet Provide cheap *output* of interest

 \odot IFPEN [tion](#page-2-0) | 1.2 [Objectives](#page-7-0) 6/31 [Application of the reduced basis method to compressible single-phase flows in porous media](#page-0-0) | 1 [Introduc-](#page-2-0)

Outline

[Introduction](#page-2-0)

2 [Application of RB methods to single-phase flow problems](#page-11-0)

- **[Definition of the problem](#page-12-0)**
- [State of the art on RB methods and contribution](#page-15-0)
- [Application to SPF problems](#page-18-0)
- **[Numerical tests](#page-33-0)**

[Conclusion and perspectives](#page-43-0)

Single-phase flow

Model

 $c_{\Phi} \partial_t p - \nabla \cdot (\mathbf{\Lambda} (\nabla p + \rho q \nabla z)) = q(p)$ in $[0, T] \times \Omega$ $\mathbf{\Lambda}(\nabla p + \rho g \nabla z) \cdot \mathbf{n} = 0$ on $[0, T] \times \Gamma_N$ on $[0, T] \times \Gamma_D$ $p(x,t=0) = p^{0}(x)$ in Ω with uncertainty on $\Lambda = \overline{\kappa}(\boldsymbol{x})/\mu$ Predict the impact of $\bar{\kappa}$ on the flux $s = \frac{\mathbf{M}(\overline{\kappa}) (\mathbf{\nabla} p + \rho g \mathbf{\nabla} z) \cdot \mathbf{n}}{\Gamma_{\rm int}}$ $p = p_D$ Γint Γint $\frac{1}{\overline{\kappa}_1}$ $\Gamma_{\rm N}$ $\Gamma_{\rm int}$ $\overline{\kappa}_2$ $\Gamma_{\rm int}$ \vert \vert \vert $\Gamma_{\rm int}$ (S) (2) $\Gamma_{\rm D}$ $\Gamma_{\rm N}$ (1) $\Gamma_{\rm N}$

© IFPEN [Application of the reduced basis method to compressible single-phase flows in porous media](#page-0-0) | 2 [Application of RB](#page-11-0) [methods to single-phase flow problems](#page-11-0) | 2.1 [Definition of the problem](#page-12-0) $7/31$

Complex meshes in porous medium simulations

Geological layers using folders in a mesh of CPG-type \mathbf{r}

© IFPEN [Application of the reduced basis method to compressible single-phase flows in porous media](#page-0-0) | 2 [Application of RB](#page-11-0) [methods to single-phase flow problems](#page-11-0) | 2.1 [Definition of the problem](#page-12-0) 8/31

Discretization

Time: Implicit Euler discretization п Space: Average multi-point finite volume method Discrete high-fidelity system:

$$
\Delta t = \frac{T}{N}
$$

A parameter ξ

$$
(M + \Delta t \mathbf{A}(\xi))p_{\mathcal{M}}^{n+1} = M p_{\mathcal{M}}^n + \Delta t b(\xi) \qquad n = 0, \dots, N-1
$$

$$
s^{n+1} = l^T(\xi)p_{\mathcal{M}}^{n+1}
$$

$$
\begin{pmatrix}\nM + \Delta t \mathbf{A} & 0 & 0 & \dots & \dots & 0 \\
-M & M + \Delta t \mathbf{A} & \ddots & \ddots & & \vdots \\
0 & -M & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & \ddots & \ddots & \ddots & \ddots & 0 \\
0 & \dots & \dots & 0 & -M & M + \Delta t \mathbf{A}\n\end{pmatrix}\n\begin{pmatrix}\np_{\mathcal{M}}^{1} \\
p_{\mathcal{M}}^{2} \\
\vdots \\
p_{\mathcal{M}}^{N-1} \\
p_{\mathcal{M}}^{N}\n\end{pmatrix} = \Delta t \begin{pmatrix}\n\mathbf{b} + M p_{\mathcal{M}}^{0} \\
\mathbf{b} \\
\vdots \\
\mathbf{b} \\
\mathbf{b}\n\end{pmatrix}
$$

State of the art and contribution

State of the art

- A goal oriented version of the RB method
	- Grepl & Patera. A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. M2AN, 2005 Haasdonk & Ohlberger. Reduced basis method for finite volume approximations of parametrized linear evolution equations. M2AN, 2008

-
-

© IFPEN [Application of the reduced basis method to compressible single-phase flows in porous media](#page-0-0) | 2 [Application of RB](#page-11-0) [methods to single-phase flow problems](#page-11-0) | 2.2 [State of the art on RB methods and contribution](#page-15-0) 10/31

State of the art and contribution

State of the art

- A goal oriented version of the RB method
	- Grepl & Patera. A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. M2AN, 2005 Haasdonk & Ohlberger. Reduced basis method for finite volume approximations of parametrized linear evolution equations. M2AN, 2008

Contribution

- New discrete a posteriori error estimations
- Reduction error estimated using the *same norm* of $L^2([0,T];H^1(\Omega))$ -type for all parameter values
	- Tarhini, Boyaval, Enchéry & Tran, preprint, June 2024

© IFPEN [Application of the reduced basis method to compressible single-phase flows in porous media](#page-0-0) | 2 [Application of RB](#page-11-0) [methods to single-phase flow problems](#page-11-0) | 2.2 [State of the art on RB methods and contribution](#page-15-0) 10/31

Discrete Dual Problem

 $\blacksquare \forall n = N, \ldots, 0$

$$
\boldsymbol{M}\boldsymbol{\Psi}^{N}=-\boldsymbol{l}(\xi)\\(M+\Delta t\boldsymbol{A}^{T}(\xi))\boldsymbol{\Psi}^{n}=\boldsymbol{M}\boldsymbol{\Psi}^{n+1}
$$

© IFPEN [methods to single-phase flow problems](#page-11-0) | 2.2 [State of the art on RB methods and contribution](#page-15-0) 11/31[Application of the reduced basis method to compressible single-phase flows in porous media](#page-0-0) | 2 [Application of RB](#page-11-0)

Galerkin projection

Primal reduced problem

Galerkin projection using $\mathbf{Z} \in \mathbb{R}^{\mathcal{N}, \mathsf{N}_{\mathrm{pr}}}$

 $\boldsymbol{Z}^T(\boldsymbol{M}+\Delta t \boldsymbol{A}(\xi))\boldsymbol{Z}\widetilde{\boldsymbol{p}}^{n+1} = \boldsymbol{Z}^T\boldsymbol{M}\boldsymbol{Z}\widetilde{\boldsymbol{p}}^n + \Delta t \boldsymbol{Z}^T\boldsymbol{b}(\xi)$

 $\Rightarrow \text{Reduced solution: } p^{\mathsf{N},n+1} \approx \mathbf{Z} \widetilde{p}^{n+1}$

 $\left(\boldsymbol{Z}^T_{\mathrm{du}}\ \boldsymbol{M}\boldsymbol{Z}_{\mathrm{du}} + \Delta t\ \boldsymbol{Z}_{\mathrm{du}}^T\ \boldsymbol{A}^T(\xi)\boldsymbol{Z}_{\mathrm{du}} \right)\widetilde{\boldsymbol{\Psi}}^n = \boldsymbol{Z}_{\mathrm{du}}^T\ \boldsymbol{M}\boldsymbol{Z}_{\mathrm{du}}\ \widetilde{\boldsymbol{\Psi}}^{n+1}$ $\boldsymbol{Z}_{\text{du}}^T \ \boldsymbol{M}\boldsymbol{Z}_{\text{du}} \widetilde{\boldsymbol{\Psi}}^N = - \boldsymbol{Z}_{\text{du}}^T \ \boldsymbol{l}(\xi)$

© IFPEN [Application of the reduced basis method to compressible single-phase flows in porous media](#page-0-0) | 2 [Application of RB](#page-11-0) [methods to single-phase flow problems](#page-11-0) | 2.3 [Application to SPF problems](#page-18-0) 12/31

Galerkin projection

Primal reduced problem

Galerkin projection using $\mathbf{Z} \in \mathbb{R}^{\mathcal{N}, \mathsf{N}_{\mathrm{pr}}}$

 $\boldsymbol{Z}^T(\boldsymbol{M}+\Delta t \boldsymbol{A}(\xi))\boldsymbol{Z}\widetilde{\boldsymbol{p}}^{n+1} = \boldsymbol{Z}^T\boldsymbol{M}\boldsymbol{Z}\widetilde{\boldsymbol{p}}^n + \Delta t \boldsymbol{Z}^T\boldsymbol{b}(\xi)$

 $\Rightarrow \text{Reduced solution: } p^{\mathsf{N},n+1} \approx \mathbf{Z} \widetilde{p}^{n+1}$

Dual reduced problem

Galerkin projection using $\mathbf{Z}_{du} \in \mathbb{R}^{\mathcal{N}, \mathsf{N}_{du}}$

$$
\begin{aligned} \big(\boldsymbol{Z}_{\text{du}}^T \ \boldsymbol{M} \boldsymbol{Z}_{\text{du}} + \Delta t \ \boldsymbol{Z}_{\text{du}}^T \ \boldsymbol{A}^T(\xi) \boldsymbol{Z}_{\text{du}} \big) \widetilde{\boldsymbol{\Psi}}^n = \boldsymbol{Z}_{\text{du}}^T \ \boldsymbol{M} \boldsymbol{Z}_{\text{du}} \ \widetilde{\boldsymbol{\Psi}}^{n+1} \\ \boldsymbol{Z}_{\text{du}}^T \ \boldsymbol{M} \boldsymbol{Z}_{\text{du}} \widetilde{\boldsymbol{\Psi}}^N = - \boldsymbol{Z}_{\text{du}}^T \ \boldsymbol{l}(\xi) \end{aligned}
$$

$$
\Rightarrow \textbf{Reduced solution: } \Psi^{\mathsf{N}_{\mathrm{du}},n} = Z_{\mathrm{du}}\ \widetilde{\Psi}^n
$$

© IFPEN [Application of the reduced basis method to compressible single-phase flows in porous media](#page-0-0) | 2 [Application of RB](#page-11-0) [methods to single-phase flow problems](#page-11-0) | 2.3 [Application to SPF problems](#page-18-0) 12/31

A posteriori error estimation for primal problem

Reduction error $e^n = p_{\mathcal{M}}^n - p^{\mathsf{N},n}$

A new space-time energy norm $\left\| \cdot \right\|_{\text{pr}}$ independent of ξ

$$
\big\| \big\| e^N \big\|_{\mathrm{pr}} := \Big(\sum_{n=1}^N \langle \boldsymbol{\boldsymbol{e}}^n, \boldsymbol{\boldsymbol{G}}^* \boldsymbol{\boldsymbol{e}}^n\rangle \Big)^{1/2} \leq \Delta_{\mathrm{pr}}^N := \Big(\frac{\Delta t}{\alpha_{\boldsymbol{\boldsymbol{G}},\mathrm{LB}}\alpha_{\boldsymbol{\boldsymbol{A}}_{\mathrm{sym},\mathrm{LB}}}} \sum_{n=1}^N (N+2-n) \|\boldsymbol{r}^n\|_{-1}^2 \Big)^{1/2}
$$

$$
r^{n+1} = \frac{1}{\Delta t} \big[(\bm{M} + \Delta t \bm{A}) \bm{p}^{\mathsf{N},n+1} - \bm{M} \bm{p}^{\mathsf{N},n} - \Delta t \bm{b} \big]
$$

$$
\begin{aligned} &\alpha_{\boldsymbol{A}_{\text{sym}},\text{LB}}(\xi)\leq\inf_{\boldsymbol{v}\in\mathbb{R}^{\mathcal{N}}}\frac{\boldsymbol{v}^T\boldsymbol{A}_{\text{sym}}(\xi)\boldsymbol{v}}{\|\boldsymbol{v}\|_{\boldsymbol{G}^*}^2}:=\alpha_{\boldsymbol{A}_{\text{sym}}}(\xi) &&\text{I}\quad \boldsymbol{G}^*=\boldsymbol{M}+\Delta t\boldsymbol{A}_{\text{sym}}(\xi^*\\ &\alpha_{\boldsymbol{G},\text{LB}}(\xi)\leq\inf_{\boldsymbol{v}\in\mathbb{R}^{\mathcal{N}}}\frac{\boldsymbol{v}^T(\boldsymbol{M}+\Delta t\boldsymbol{A}_{\text{sym}}(\xi))\boldsymbol{v}}{\|\boldsymbol{v}\|_{\boldsymbol{G}^*}^2}:=\alpha_{\boldsymbol{G}}(\xi) &&\text{I}\quad \|\boldsymbol{r}^n\|_{-1}=\sup_{\boldsymbol{v}\in\mathbb{R}^{\mathcal{N}}}\frac{\boldsymbol{v}^T\boldsymbol{r}^n}{\|\boldsymbol{v}\|_{\boldsymbol{G}^*}}\end{aligned}
$$

A posteriori error estimation for primal problem

Reduction error $e^n = p_{\mathcal{M}}^n - p^{\mathsf{N},n}$

A new space-time energy norm $\left\| \cdot \right\|_{\text{pr}}$ independent of ξ

$$
\big\| \big\| e^N \big\|_{\mathrm{pr}} := \Big(\sum_{n=1}^N \langle e^n, \bm{G}^* e^n \rangle \Big)^{1/2} \leq \Delta_{\mathrm{pr}}^N := \Big(\frac{\Delta t}{\alpha_{\bm{G},\mathrm{LB}} \alpha_{\bm{A}_{\mathrm{sym},\mathrm{LB}}}} \sum_{n=1}^N (N+2-n) \| \bm{r}^n \|^2_{-1} \Big)^{1/2}
$$

Primal residual

$$
r^{n+1}=\frac{1}{\Delta t}\big[(\bm{M}+\Delta t\bm{A})\bm{p}^{\mathsf{N},n+1}-\bm{M}\bm{p}^{\mathsf{N},n}-\Delta t\bm{b}\big]
$$

α^Asym,LB(ξ) ≤ inf ^T Asym(ξ)v (M + ∆tAsym(ξ))v G[∗] = M + ∆tAsym(ξ

A posteriori error estimation for primal problem

Reduction error $e^n = p_{\mathcal{M}}^n - p^{\mathsf{N},n}$

A new space-time energy norm $\left\| \cdot \right\|_{\text{pr}}$ independent of ξ

$$
\big\| \big\| e^N \big\|_\mathrm{pr} := \Big(\sum_{n=1}^N \langle \boldsymbol{\boldsymbol{e}}^n, \boldsymbol{\boldsymbol{G}}^* \boldsymbol{\boldsymbol{e}}^n\rangle \Big)^{1/2} \leq \Delta_{\mathrm{pr}}^N := \Big(\frac{\Delta t}{\alpha_{\boldsymbol{\boldsymbol{G}},\mathrm{LB}}\alpha_{\boldsymbol{\boldsymbol{A}}_\mathrm{sym,\mathrm{LB}}}} \sum_{n=1}^N (N+2-n) \| \boldsymbol{r}^n \|^2_{-1} \Big)^{1/2}
$$

Primal residual

$$
r^{n+1}=\frac{1}{\Delta t}\big[(\bm{M}+\Delta t\bm{A})\bm{p}^{\mathsf{N},n+1}-\bm{M}\bm{p}^{\mathsf{N},n}-\Delta t\bm{b}\big]
$$

$$
\alpha_{\mathbf{A}_{\text{sym}},\text{LB}}(\xi) \le \inf_{\boldsymbol{v}\in\mathbb{R}^{\mathcal{N}}} \frac{\boldsymbol{v}^T\boldsymbol{A}_{\text{sym}}(\xi)\boldsymbol{v}}{\|\boldsymbol{v}\|_{\mathbf{G}^*}^2} := \alpha_{\mathbf{A}_{\text{sym}}}(\xi) \qquad \qquad \mathbf{G}^* = \boldsymbol{M} + \Delta t \boldsymbol{A}_{\text{sym}}(\xi^*)
$$
\n
$$
\alpha_{\mathbf{G},\text{LB}}(\xi) \le \inf_{\boldsymbol{v}\in\mathbb{R}^{\mathcal{N}}} \frac{\boldsymbol{v}^T(\boldsymbol{M} + \Delta t \boldsymbol{A}_{\text{sym}}(\xi))\boldsymbol{v}}{\|\boldsymbol{v}\|_{\mathbf{G}^*}^2} := \alpha_{\mathbf{G}}(\xi) \qquad \qquad \|\boldsymbol{r}^n\|_{-1} = \sup_{\boldsymbol{v}\in\mathbb{R}^{\mathcal{N}}} \frac{\boldsymbol{v}^T\boldsymbol{r}^n}{\|\boldsymbol{v}\|_{\mathbf{G}^*}}
$$

A posteriori error estimation for dual problem

 $\textbf{Reduction} \; \text{error} \; \boldsymbol{\varepsilon}_{\text{du}}^{n} = \boldsymbol{\Psi}_{\mathcal{M}}^{n} - \boldsymbol{\Psi}^{\mathsf{N}_{\text{du}},n}$ \blacksquare

Energy norm

$$
\left\| \left[{\boldsymbol \varepsilon}^N \right]\right\|_{\rm du} := \bigg(\sum_{n=1}^N \langle {\boldsymbol e}^n, {\boldsymbol G}^* {\boldsymbol e}^n \rangle \bigg)^{1/2} \leq \Delta_{\rm du}^N
$$

$$
\Delta_{\text{du}}^N := \left(\frac{\Delta t}{\alpha_{\mathbf{A}_{\text{sym,LB}}} \alpha_{\mathbf{G},\text{LB}}} \sum_{m=0}^{N-1} (m+2) \| \boldsymbol{\varrho}^m \|_{-1}^2 + \frac{(T+\Delta t)}{\Delta t} \frac{\| \boldsymbol{\varrho}^N \|_{-1}^2}{\alpha_M \alpha_{\mathbf{G},\text{LB}}} \right)^{1/2}
$$
\n
$$
\mathbf{P} \ \boldsymbol{\varrho}^n = \frac{1}{\Delta t} (M + \Delta t \mathbf{A}^T) \boldsymbol{\Psi}^{\mathrm{N_{du}},n} - M \boldsymbol{\Psi}^{\mathrm{N_{du}},n+1} \qquad n = N-1, \dots, 0
$$
\n
$$
\mathbf{P}^N = -l - M \boldsymbol{\Psi}^{\mathrm{N_{du}},N} \qquad \triangleright \ \| \boldsymbol{\varrho}^m \|_{-1} = \sup_{v \in \mathbb{R}^N} \frac{\langle \boldsymbol{\varrho}^m, v \rangle}{\|v\|_{G^*}} \qquad \triangleright \alpha_M := \inf_{v \in \mathbb{R}^N} \frac{v^T M v}{\|v\|_{G^*}^2}
$$

A posteriori error estimation for dual problem

 $\textbf{Reduction} \; \text{error} \; \boldsymbol{\varepsilon}_{\text{du}}^{n} = \boldsymbol{\Psi}_{\mathcal{M}}^{n} - \boldsymbol{\Psi}^{\mathsf{N}_{\text{du}},n}$ \blacksquare

Energy norm

$$
\left\| \left[{\boldsymbol \varepsilon}^N \right]\right\|_{\rm du} := \bigg(\sum_{n=1}^N \langle {\boldsymbol e}^n, {\boldsymbol G}^* {\boldsymbol e}^n \rangle \bigg)^{1/2} \leq \Delta_{\rm du}^N
$$

$$
\Delta_{\text{du}}^N := \left(\frac{\Delta t}{\alpha_{A_{\text{sym,LB}}} \alpha_{G,\text{LB}}} \sum_{m=0}^{N-1} (m+2) \| \varrho^m \|_{-1}^2 + \frac{(T + \Delta t)}{\Delta t} \frac{\| \varrho^N \|_{-1}^2}{\alpha_M \alpha_{G,\text{LB}}} \right)^{1/2}
$$

$$
\varrho^n = \frac{1}{\Delta t} (M + \Delta t A^T) \Psi^{\text{N}_{\text{du}},n} - M \Psi^{\text{N}_{\text{du}},n+1} \qquad n = N - 1, ..., 0
$$

$$
\varrho^N = -l - M \Psi^{\text{N}_{\text{du}},N} \qquad \varrho \| \varrho^m \|_{-1} = \sup_{v \in \mathbb{R}^N} \frac{\langle \varrho^m, v \rangle}{\|v\|_{G^*}} \qquad \varrho \alpha_M := \inf_{v \in \mathbb{R}^N} \frac{v^T M v}{\|v\|_{G^*}^2}
$$

A posteriori error estimation for QOI

The Second Service Under the equality

$$
\langle l,p^n_{\mathcal{M}}-p^{\mathsf{N}_{\mathrm{pr}},n}\rangle = \Delta t\,\sum_{k=0}^{n-1}\langle r^{k+1},\varepsilon^{N-n+k}\rangle + \Delta t\,\sum_{k=0}^{n-1}\langle r^{k+1},\Psi^{\mathsf{N}_{\mathrm{du}},N-n+k}\rangle
$$

Reduced output **COL**

$$
s^{\mathsf{N}_{\mathrm{s}},n} = \big \langle \boldsymbol{l}, \boldsymbol{p}^{\mathsf{N}_{\mathrm{pr}},n} \big \rangle + \Delta t \, \sum_{n'=0}^{n-1} \big \langle \boldsymbol{r}^{n'+1}, \boldsymbol{\Psi}^{\mathsf{N}_{\mathrm{du}},N-n+n'} \big \rangle
$$

Estimation m.

$$
|s^N-s^{\mathsf{N}_\mathrm{s},N}|\leq \Delta t\,\Big(\sum_{n=1}^N\|r^n\|_{-1}^2\Big)^{1/2}\Delta_\mathrm{du}^N=:\Delta_s^N
$$

EIM and SCM

\n- $$
\Delta_{\text{pr}}^N
$$
 has to be reliable: $\left\|e^N\right\|_{\text{pr}} \leq \Delta_{\text{pr}}^N$
\n- $c := \frac{\Delta_{\text{pr}}^N}{\left\|e^N\right\|_{\text{pr}}}$ depends weakly on ξ
\n

n. computationally cheap

\n- \n EIM for
$$
A^N = Z^T A(\xi) Z
$$
, $b^N(\xi) = Z^T b$ \n
$$
A(\xi) \approx \sum_{d=1}^{D_a} \theta_d^a(\xi) A_d, \quad b(\xi) \approx \sum_{d=1}^{D_b} \theta_d^b(\xi) b_d
$$
\n
\n- \n SCM on $\alpha_{A_{\text{sym}}}(\xi)$ \n
\n

$$
\alpha_{\mathbf{A}_{\text{sym},\text{LB}}}(\xi) \leq \alpha_{\mathbf{A}_{\text{sym}}}(\xi) \leq \alpha_{\mathbf{A}_{\text{sym},\text{UB}}}(\xi)
$$

POD method

S: snapshots matrix \blacksquare ric $\in [0,1]$

Algorithm 1: POD-greedy algorithm using Δ_{pr}^N

Input: $N_{\text{max}}, \epsilon_{\text{tol}}, \Xi$, ric **Data:** $N_{\text{pr}} = 1$, $\delta^{N_{\text{pr}}} = \epsilon_{\text{tol}} + 1$ $\xi \in \Xi, \, \ell = 1, \, \Xi^{\ell} = \{\xi_1\}$

Initialize: Compute $p_M^n(\xi_1)$ for $0 \le n \le N$ Set Spr = p 0 ^M(ξ1)    . . .    ^p N ^M(ξ1)

 $\mathbf{Set} \,\, \pmb{Z}^{\pmb{\mathrm{N}}_{\mathrm{pr}}} = \mathbf{POD}(\mathbf{S}_{\mathrm{pr}},\pmb{G}^*,\pmb{ric})$ $\delta^{\mathsf{N}_{\mathrm{pr}}} = \max_{\xi \in \Xi} \Delta^N_{\mathrm{pr}} \hspace{1cm} \xi_{\ell+1} = \arg \max_{\xi \in \Xi} \Delta^N_{\mathrm{pr}} \hspace{1cm} \Xi$ $^{\ell+1} \leftarrow \Xi^\ell \cup \{\xi_{\ell+1}\}$

while $\,\delta^{\rm N_{\rm pr}} > \epsilon_{\rm tol},\, {\rm N_{\rm pr}} < {\rm N_{\rm max}}\, \, {\rm do}$ Compute $p^n_{\mathcal{M}}(\xi_\ell)$ for $0 \leq n \leq N$ $\mathbf{S}_{\text{pr}} := \left[\bm{p}^0_{\mathcal{M}}(\xi_\ell) - \text{Proj}_{\bm{Z}_{\text{pr}}}(\bm{p}^0_{\mathcal{M}}(\xi_\ell))\big|\dots\big|\bm{p}^N_{\mathcal{M}}(\xi_\ell) - \text{Proj}_{\bm{Z}_{\text{pr}}}(\bm{p}^N_{\mathcal{M}}(\xi_\ell))\right]$ $\text{Compute} \; \big[\boldsymbol{z}_1 | \ldots | \boldsymbol{z}_{\delta \mathsf{N}_{\mathrm{pr}}} \big] = \mathbf{POD}(\mathbf{S}_{\mathrm{pr}}, \boldsymbol{G}^*, ric)$ $\text{Define }\mathbf{\mathit{Z}}^{\mathsf{N}_{\text{pr}}+\delta \mathsf{N}_{\text{pr}}}:= orthonormalize(\mathbf{\mathit{Z}}^{\mathsf{N}_{\text{pr}}}\cup\left[\boldsymbol{z}_{1}|\ldots|\boldsymbol{z}_{\delta \mathsf{N}_{\text{pr}}}\right])$

while $\,\delta^{\rm N_{\rm pr}} > \epsilon_{\rm tol},\, {\rm N_{\rm pr}} < {\rm N_{\rm max}}\, \, {\rm do}$ Compute $p_{\mathcal{M}}^n(\xi_\ell)$ for $0 \leq n \leq N$ Set $\mathbf{S}_{\text{pr}} := \left[\boldsymbol{p}^0_{\mathcal{M}}(\xi_\ell)-\text{Proj}_{\boldsymbol{Z}_{\text{pr}}}(\boldsymbol{p}^0_{\mathcal{M}}(\xi_\ell))\big|\dots\big|\boldsymbol{p}^N_{\mathcal{M}}(\xi_\ell)-\text{Proj}_{\boldsymbol{Z}_{\text{pr}}}(\boldsymbol{p}^N_{\mathcal{M}}(\xi_\ell))\right]$ $\text{Compute} \; \big[\boldsymbol{z}_1 | \ldots | \boldsymbol{z}_{\delta \mathsf{N}_{\mathrm{pr}}} \big] = \mathbf{POD}(\mathbf{S}_{\mathrm{pr}}, \boldsymbol{G}^*, ric)$ $\text{Define }\mathbf{\mathit{Z}}^{\mathsf{N}_{\text{pr}}+\delta \mathsf{N}_{\text{pr}}}:= orthonormalize(\mathbf{\mathit{Z}}^{\mathsf{N}_{\text{pr}}}\cup\left[\boldsymbol{z}_{1}|\ldots|\boldsymbol{z}_{\delta \mathsf{N}_{\text{pr}}}\right])$

while $\,\delta^{\rm N_{\rm pr}} > \epsilon_{\rm tol},\, {\rm N_{\rm pr}} < {\rm N_{\rm max}}\, \, {\rm do}$ Compute $p_{\mathcal{M}}^n(\xi_\ell)$ for $0 \leq n \leq N$ Set $\mathbf{S}_{\text{pr}} := \left[\boldsymbol{p}^0_{\mathcal{M}}(\xi_\ell)-\text{Proj}_{\boldsymbol{Z}_{\text{pr}}}(\boldsymbol{p}^0_{\mathcal{M}}(\xi_\ell))\big|\dots\big|\boldsymbol{p}^N_{\mathcal{M}}(\xi_\ell)-\text{Proj}_{\boldsymbol{Z}_{\text{pr}}}(\boldsymbol{p}^N_{\mathcal{M}}(\xi_\ell))\right]$ Compute $[z_1|\dots|z_{\delta N_{\mathrm{pr}}}] = \textbf{POD}(\mathbf{S}_{\mathrm{pr}}, \bm{G}^*, ric)$ Define $\boldsymbol{Z}^{\boldsymbol{\mathsf{N}}_{\text{pr}}+\delta \boldsymbol{\mathsf{N}}_{\text{pr}}} := orthonormalize(\boldsymbol{Z}^{\boldsymbol{\mathsf{N}}_{\text{pr}}}\cup\left[\boldsymbol{z}_1| \ldots|\boldsymbol{z}_{\delta \boldsymbol{\mathsf{N}}_{\text{pr}}}\right])$

while $\,\delta^{\rm N_{\rm pr}} > \epsilon_{\rm tol},\, {\rm N_{\rm pr}} < {\rm N_{\rm max}}\, \, {\rm do}$ Compute $p_{\mathcal{M}}^n(\xi_\ell)$ for $0 \leq n \leq N$ Set $\mathbf{S}_{\text{pr}} := \left[\boldsymbol{p}^0_{\mathcal{M}}(\xi_\ell)-\text{Proj}_{\boldsymbol{Z}_{\text{pr}}}(\boldsymbol{p}^0_{\mathcal{M}}(\xi_\ell))\big|\dots\big|\boldsymbol{p}^N_{\mathcal{M}}(\xi_\ell)-\text{Proj}_{\boldsymbol{Z}_{\text{pr}}}(\boldsymbol{p}^N_{\mathcal{M}}(\xi_\ell))\right]$ Compute $[z_1|\dots|z_{\delta N_{\mathrm{pr}}}] = \textbf{POD}(\mathbf{S}_{\mathrm{pr}}, \bm{G}^*, ric)$ Define $\boldsymbol{Z}^{\boldsymbol{\mathsf{N}}_{\text{pr}}+\delta \boldsymbol{\mathsf{N}}_{\text{pr}}} := orthonormalize(\boldsymbol{Z}^{\boldsymbol{\mathsf{N}}_{\text{pr}}}\cup\left[\boldsymbol{z}_1| \ldots|\boldsymbol{z}_{\delta \boldsymbol{\mathsf{N}}_{\text{pr}}}\right])$ $\delta^{\mathsf{N}_{\mathrm{pr}}} = \max_{\xi \in \Xi} \Delta^N_{\mathrm{pr}} \hspace{1cm} \xi_{\ell+1} = \arg \max_{\xi \in \Xi} \Delta^N_{\mathrm{pr}} \hspace{1cm} \Xi^{\ell+1} \leftarrow \Xi^{\ell} \cup \{\xi_{\ell+1}\}$ $N_{\text{pr}} \leftarrow N_{\text{pr}} + \delta N_{\text{pr}} \qquad \ell \leftarrow \ell + 1$ end

Numerical tests

- Number of cells $\mathcal{N} = 15210$
- Yellow zone: $\kappa_1 \in [10^{-14} \text{ m}^2, 10^{-12} \text{ m}^2]$
- Blue zone: $\kappa_2 \in [10^{-17} \text{ m}^2, 10^{-15} \text{ m}^2]$
- $T = 200$ days, $\Delta t = 10$ days Dirichlet condition: $p_D = 10^5$ Pa Well pressure: $p_{bh} = 4.3 \times 10^7$ Pa

© IFPEN [Application of the reduced basis method to compressible single-phase flows in porous media](#page-0-0) | 2 [Application of RB](#page-11-0) [methods to single-phase flow problems](#page-11-0) | 2.4 [Numerical tests](#page-33-0) 20/31

Pressure profile

$$
\kappa_1 = 10^{-12}, \, \kappa_2 = 10^{-16} \qquad \qquad \kappa_1 = 10^{-13}
$$

$$
\kappa_1=10^{-13},\,\kappa_2=10^{-16}
$$

$$
\begin{array}{c|cccc}\n\text{6.0e+05} & 1\text{e+7} & 2\text{e+7} & 3\text{e+7} & 4.7\text{e+07} \\
\hline\n\end{array}
$$

 $\kappa_1 = 10^{-13}, \, \kappa_2 = 3 \times 10^{-17}$

Numerical tests: EIM

 $\hat{\boldsymbol{v}} = \left((\alpha_{K,\sigma\sigma'})_{K\in\mathcal{T},\sigma\in\mathcal{E}_K,\sigma'\in\mathcal{S}_{K,\sigma}},(\alpha_{K,\sigma\sigma'}\omega_{M,\sigma'})_{K\in\mathcal{T},M\in\mathcal{T}_{\sigma'},\sigma\in\mathcal{E}_K,\sigma'\in\mathcal{S}_{K,\sigma},\sigma'\in\mathcal{E}_{\mathrm{int}}},(\mathtt{WI})_{K\in\mathcal{T}}\right)$

© IFPEN [Application of the reduced basis method to compressible single-phase flows in porous media](#page-0-0) | 2 [Application of RB](#page-11-0) [methods to single-phase flow problems](#page-11-0) | 2.4 [Numerical tests](#page-33-0) 22/31

$\sum_{i=1}^{\infty}$ Numerical tests

© IFPEN [Application of the reduced basis method to compressible single-phase flows in porous media](#page-0-0) | 2 [Application of RB](#page-11-0) [methods to single-phase flow problems](#page-11-0) | 2.4 [Numerical tests](#page-33-0) 23/31

Numerical tests

Numerical tests pr,² = $\frac{1}{2}$

$$
\blacksquare \quad \bar{\Delta}_{\mathrm{pr},\mathrm{max}} = \max_{\xi} \left(\frac{\Delta t}{\alpha_{A_{\mathrm{sym},\mathrm{LB}}}} \sum_{n=1}^{N} \|\boldsymbol{r}^{n}\|_{-1}^{2} \right)^{1/2} \ (M. \ A. \ Grepl \ and \ A. \ T. \ Patera \ , 2005)
$$

Figure 5: EV methods to single-phase flow problems | 2.4 Numerical tests 25/31 © IFPEN [Application of the reduced basis method to compressible single-phase flows in porous media](#page-0-0) | 2 [Application of RB](#page-11-0)

Numerical tests

\n- \n
$$
e_{\rm s}^N = |s^N - s^{\mathsf{N}_{\rm s},N}|
$$
\n
\n- \n
$$
e_{\rm s,max}^N = \max_{\xi} |s^N - s^{\mathsf{N}_{\rm s},N}|
$$
\n
\n- \n
$$
\Delta_{\rm s,max}^N = \max_{\xi} \Delta_{\rm s}^N
$$
\n
\n- \n
$$
\eta_{\rm s,max}^N = \max_{\xi} \frac{\Delta_{\rm s}^N}{e_{\rm s}^N}
$$
\n
\n- \n Effectivities $\eta_{\rm s,max}^N \approx 10^6$ \n
\n

Numerical tests

© IFPEN [methods to single-phase flow problems](#page-11-0) | 2.4 [Numerical tests](#page-33-0) 27/31[Application of the reduced basis method to compressible single-phase flows in porous media](#page-0-0) | 2 [Application of RB](#page-11-0) nethods to single-phase flow problems | 2.4 Numerical tests

Numerical tests
 $\frac{1}{\sqrt{2}}$ ($\frac{1}{\sqrt{2}}$)

Numerical tests
\n
$$
\bar{\Delta}_{s,\max} = \left(\sum_{n=1}^{N} \frac{\Delta t}{\alpha_{A_{\text{sym,LB}}}} \|r^n\|_{-1}^2 \sum_{n=1}^{N} \frac{\Delta t}{\alpha_{A_{\text{sym,LB}}}} \| \varrho^n \|_{-1}^2 \right)^{1/2} (M. A. \text{ Graph and } A. T. \text{
$$

Figure 7: Office $\mathcal{F}_{\mathbf{r}}$, the true error associated with the true error associated with the $\mathcal{F}_{\mathbf{r}}$ © IFPEN [methods to single-phase flow problems](#page-11-0) | 2.4 [Numerical tests](#page-33-0) 28/31

Numerical tests

Offline stage

- Time computation of "Greedy" increases with respect to $N_{\rm pr}$
- Time computation of "POD" linear with respect to N_{pr}

Online stage

Time computation reduced by a factor of $\frac{20 \text{ s}}{1.17 \text{ s}} = 17$

[Introduction](#page-2-0)

- [Application of RB methods to single-phase flow problems](#page-11-0)
- 3 [Conclusion and perspectives](#page-43-0)

Conclusion

RB for SPF problem

- A space-time energy norm independent of the parameters
- A posteriori estimation for linear QOIs
- Submitted paper: Reduced Basis method for finite volume simulations of parabolic PDEs applied to porous media flows

Perspectives

SPF problem

- Modify the definition of the estimator for better efficiency ?
- Estimate different types of QOIs
- Consider a time-varying source term

Thank you for your attention!

Innovating for energy

Find us on:

₩ww.ifpenergiesnouvelles.com

