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domaine

Frédéric Nataf, Emile Parolin and Pierre-Henri Tournier

Laboratory J.L. Lions (LJLL), CNRS, Alpines Inria and Sorbonne University

Journée IFPEN-INRIA – 2024

This work was given access to the HPC resources of OCCIGEN@CINES
TGCC@CEA under allocations 202X-067730 granted by GENCI.



Outline

1 Recall on GenEO for SPD problems

2 Extension of GenEO to Saddle Point problem

3 Numerical Results for the Extension to Saddle Point

4 HPDDM and FreeFem DSL

5 Spectral Coarse Space for General Sparse problems

F. Nataf Journée IFPEN-INRIA - GenEO for DDM 2 / 32



Outline

1 Recall on GenEO for SPD problems

2 Extension of GenEO to Saddle Point problem

3 Numerical Results for the Extension to Saddle Point

4 HPDDM and FreeFem DSL

5 Spectral Coarse Space for General Sparse problems

F. Nataf Journée IFPEN-INRIA - GenEO for DDM 3 / 32



(Recall) An introduction to DDM I

Consider the discretized Poisson problem: Au = f ∈ Rn.
Given a decomposition of J1;nK, (N1,N2), define:

the restriction operator Ri from RJ1;nK into RNi ,
RT

i as the extension by 0 from RNi into RJ1;nK.
um −→ um+1 by solving concurrently:

um+1
1 = um

1 + A−1
1 R1(f − Aum) um+1

2 = um
2 + A−1

2 R2(f − Aum)

where um
i = Rium and Ai := RiART

i .

Ω

F. Nataf Journée IFPEN-INRIA - GenEO for DDM 4 / 32



An introduction to DDM II
We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

I =
N∑

i=1

RT
i DiRi .

Then, um+1 =
N∑

i=1

RT
i Dium+1

i . M−1
RAS =

N∑
i=1

RT
i DiA−1

i Ri

+ Krylov acceleration ⇒ RAS algorithm (Cai & Sarkis, 1999).

1
2

1

1
2 1

Symmetrized version M−1
ASM :=

∑N
i=1 RT

i A−1
i Ri as a

preconditioner.
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Convergence curves- more subdomains

Plateaus appear in the convergence of the Krylov methods.
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Scalability issue of one level methods

Stagnation corresponds to a few very low eigenvalues in the
spectrum of the preconditioned problem. They are due to the
lack of a global exchange of information in the preconditioner.

−∆u = f in Ω
u = 0 on ∂Ω

The mean value of the solution in domain i depends on the
value of f on all subdomains.
How to achieve scalability
Introduction of a coarse problem that couples all subdomains.
This is closely related to deflation technique classical in linear
algebra (see Y. Saad, J. Erhel, Nabben and Vuik) and multigrid
techniques.
Strongly related to Multiscale FEM and Reduced Order Model.
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Adding a coarse space

One level methods are not scalable: M−1
ASM :=

∑N
i=1 RT

i A−1
i Ri .

We add a coarse space correction (aka second level). Let VH
be the coarse space and Z be a basis, VH = span Z , we define
the two level preconditioner as:

M−1
ASM,2 := Z (Z T AZ )

−1
Z T +

N∑
i=1

RT
i A−1

i Ri .

For constant per subdomain coefficients, Nicolaides approach
(1987) is to use the near-kernel of the local operators to build
the coarse space:

Z := (RT
i DiRi1)1≤i≤N .

Key notion: Stable splitting (J. Xu, 1989 )
Great for (locally) smooth problems
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Theoretical convergence result

Theorem (Widlund, Dryija)

Let M−1
ASM,2 be the two-level additive Schwarz method:

κ(M−1
ASM,2 A) ≤ C

(
1 +

H
δ

)
where δ is the size of the overlap between the subdomains and
H the subdomain size.

This does indeed work very well

Number of subdomains 8 16 32 64
ASM 18 35 66 128

ASM + Nicolaides 20 27 28 27

Fails for highly heterogeneous problems
You need a larger and adaptive coarse space
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Introduction to GenEO
Adaptive Coarse space for highly heterogeneous Darcy and
(compressible) elasticity problems:
Geneo .EVP per subdomain:

Find Vj,k ∈ RNj and λj,k ≥ 0:

ANeu
j Vj,k = λj,k Dj RjART

j DjVj,k

In the two-level ASM, let τ be a user chosen parameter in
[0, 1):
Choose eigenvectors λj,k ≤ τ per subdomain:

Z :=
(
RT

j DjVj,k
)j=1,...,N
λj,k≤τ

This automatically includes Nicolaides CS made of Zero

Energy Modes.
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Theory of GenEO

Under two technical assumptions:

Theorem (Spillane, Dolean, Hauret, N., Pechstein, Scheichl
(Num. Math. 2013))
If for all j : 0 < λj,mj+1 < ∞:

κ(M−1
ASM,2A) ≤ (1 + k0)

[
2 + k0 (2k0 + 1)

(
1 +

1
τ

)]

Possible criterion for picking τ : (used in our Numerics)

τ := max
j=1,...,N

δj

Hj

Hj . . . subdomain diameter, δj . . . overlap
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Eigenvalues and eigenvectors (Elasticity)
E

Eigenvector number 1 is -3.07387e-15; exageration coefficient is: 1000000000 Eigenvector number 2 is 8.45471e-16; exageration coefficient is: 1000000000 Eigenvector number 3 is 5.3098e-15; exageration coefficient is: 1000000000
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Logarithmic scale

Eigenvector number 4 is 1.15244e-05; exageration coefficient is: 100000 Eigenvector number 5 is 1.87668e-05; exageration coefficient is: 100000 Eigenvector number 6 is 4.99451e-05; exageration coefficient is: 100000 Eigenvector number 7 is 0.000132778; exageration coefficient is: 100000 Eigenvector number 8 is 0.000141253; exageration coefficient is: 100000 Eigenvector number 9 is 0.000396054; exageration coefficient is: 100000

Eigenvector number 10 is 0.169032; exageration coefficient is: 100000 Eigenvector number 11 is 0.169212; exageration coefficient is: 100000 Eigenvector number 12 is 0.169217; exageration coefficient is: 100000 Eigenvector number 13 is 0.16922; exageration coefficient is: 1000000 Eigenvector number 14 is 0.169515; exageration coefficient is: 100000 Eigenvector number 15 is 0.170536; exageration coefficient is: 10000

Multiscale FEM based locally harmonic spectral coarse space by Ma, Scheichl, Dodwell (2022) and Bénézech,
Seelinger, Bastian, Butler, Dodwell, Ma, Scheichl, (2024)
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Highly Heterogeneous diffusion problem

USE CASE FOR SPD SYSTEMS I

◦ HHO for Darcy’s law [Ern et al. 2022]
◦ discrete fracture networks from Inria SERENA
◦ 140M d.o.f., 4k MPI processes

◦ 1.002 GC and 1.2 OC (80 sec setup, 20 sec solve)
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Joint work with P. Jolivet, M. Kern, G. Pichot, et al.
Tailoring multigrid method via a PhD: 3 years and is ”fragile”
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Non linear elasticity

USE CASE FOR SPD SYSTEMS II

◦ elasticity for stress corrosion cracking at ÉDF
◦ Code_Aster for the discretization
◦ 68M d.o.f., 1.2k MPI processes

◦ 1.0007 GC and 1.002 OC (1 min setup, 20 sec solve)
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By courtesy of EDF (N. Tardieu)
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Extension of GenEO to Saddle Point problem I

Inverting A (e.g. Stokes, Nearly inc. elasticity):

A :=

(
A BT

B −C

)
=

(
Id 0

BA−1 Id

)(
A 0
0 −(C + BA−1BT )

)(
Id A−1BT

0 Id

)
is equivalent to inverting A and S := C + BA−1BT . Starting

with A−1 ≈ 1 M−1
ASM 2 as above, we have

S ≈ C + BM−1
ASM 2BT = S0 +

N∑
i=1

R̃T
i (C̃i + B̃i (RiART

i )
−1 B̃T

i )R̃i︸ ︷︷ ︸
S1

,

where S0 := B ZGenEO (Z T
GenEO A ZGenEO)

−1 Z T
GenEO BT .

The operator S1 is itself preconditioned by a
Neumann-Neumann/FETI preconditioner with a GenEO type
correction.

1≈ means controlled provable spectral equivalence
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Nearly incompressible elasticity

The mechanical properties of a solid are characterized by its
elastic energy: ∫

Ω
2µ ε(u) : ε(u) + λ |div (u)|2

where the Lamé coefficients λ and µ are defined in terms of the
Young modulus E and Poisson ratio ν:

λ =
Eν

(1 + ν)(1 − 2ν)
and µ =

E
2(1 + ν)

.

As ν is close to 1/2−, λ → ∞ so that div(u) → 0, but the
pressure p:

p := λdiv (u) → pincompressibility

and has thus to be introduced for stability, e.g. νrubber = 0.4999.
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Saddle point system

The resulting discretized variational formulation reads:
∫
Ω 2µ ε(uh) : ε(vh)dx −

∫
Ω ph div (vh)dx =

∫
Ω fvhdx

−
∫
Ω div (uh)qhdx −

∫
Ω

1
λphqh = 0.

(1)

where we take the lowest order Taylor-Hood finite element
C0P2 − C0P1 so that the pressure ph is continuous. In matrix
form we have:(

A BT

B −C

) (
uh
ph

)
=

(
Fh
0

)
.

with an arbitrary domain decomposition .
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Mechanical test case

Figure: Heterogeneous beam of rubber and steel. Coefficient
distribution (left) and mesh partitioning by the automatic graph
partitioner Metis (right).

Rubber is nearly incompressible νrubber = 0.4999 and soft
Erubber = 0.01GPa whereas steel is compressible νsteel = 0.35
and hard Esteel = 200.GPa.
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Weak scalability

#cores n dim(V0) dim(W̃0) setup(s) #It gmres(s) total(s) #It N−1
S

262 15 987 380 5 383 3 319 710.7 24 631.6 1342.3 11
525 27 545 495 9 959 2 669 526.6 21 519.5 1046.1 12

1 050 64 982 431 17 837 4 587 675.2 22 665.9 1341.1 11
2 100 126 569 042 32 361 7 995 689.2 25 733.8 1423.0 10
4 200 218 337 384 59 704 13 912 593.0 27 705.4 1298.4 10
8 400 515 921 881 141 421 25 949 735.8 32 1152.5 1888.3 10

16 800 1 006 250 208 260 348 41 341 819.2 29 1717.9 2537.1 12

Table: Weak scaling experiment.

Reproducible script with the open source DSL FreeFem2

https://github.com/FreeFem/FreeFem-sources/
blob/develop/examples/ffddm/elasticity_
saddlepoint.edp

2Hecht since 1987
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Comparison with AMG GAMG (PETSc)

Comparisons on the velocity (only) formulation since we were
unable to run GAMG on the saddle point formulation.

525 cores GAMG DD solver
ν #It total(s) dim(V0) setup(s) #It gmres(s) total(s)

0.48 56 25.5 41 766 60.4 18 5.0 65.4
0.485 60 26.1 41 984 60.9 20 5.3 66.2
0.49 116 33.3 42 000 60.4 23 5.9 66.3
0.495 >2000 / 42 000 60.4 32 7.6 68.1
0.499 >2000 / 42 000 60.6 95 20.3 81.0

Table: GAMG (PETSc) versus standard GenEO for a homogeneous
beam discretized with 7.9 million unknowns.

As ν gets close to 0.5, GAMG fails to compute a solution.
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Availability of the GenEO method in HPDDM

focused on domain decomposition [Jolivet, Hecht, Nataf
and Prud’homme 2013]
block Krylov methods [Jolivet and Tournier 2016]
POD (Plain Old Data) library, Open-sourced in 2014
Written in C++, interfaces in C, Python, and Fortran
integrated in PETSc: KSPHPDDM and PCHPDDM [Jolivet,
Roman, Zampini 2021]
Running on GENCI machines (Irene Rome, A64FX, Jean
Zay GPU), porting to Frontier in process
Used in academia and the industry (FreeFem++, EDF
PRISME and ERMES, Denso, ABB, MOOSE)
Thermomechanics with 300 millions de d.o.f. on 2000
cores for which multigrid fails.
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Spectral Coarse Space for General Sparse problems

In a 2024 Arxiv preprint with E. Parolin, we develop a general
theory for:

M−1 :=
N∑

i=1

RT
i Si Ri

(Si is a local operator) applied to a well posed, real or complex
valued, sparse problem A x = b.
Examples:

RAS algorithm: Si = Di A−1
i

RAS algorithm with inexact local solves: e.g.
Si = Di ILU0

−1
i

ASM algorithm: Si = A−1
i
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Coarse Space for General Sparse problems

Let C be a Hermitian matrix such that

ρ := ∥I − C−1A∥C < 1 ,

and L̃i := D̃i − S̃i R̃i AR̃∗
i , (tilde matrices are built on a

subdomain enclosing subdomain i , oversampling subdomain),
the coarse space is built from local generalized eigenvalues:

L̃∗
i R̃i C R̃∗

i L̃i ũik = λik C̃i ũik

Then, let τ > 0 be some user-chosen threshold, we can define
a two-level preconditioner M−1

2 with a coarse space built from
the eigenvalues larger than τ such that:

∥I − M−1
2 A∥C ≤

√
k0 k1 τ

1 − ρ
.
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Connections with other works

Key remark: if Si := Di A−1
i as in RAS, then the local

generalized eigenvalues of:

L̃∗
i R̃i C R̃∗

i L̃i ũik = λik C̃i ũik

are harmonic in the subdomains as in
Ma, R. Scheichl, and T. Dodwell, 2022 for Multiscale FEM
Q. Hu and Z. Li, 2024 and Strehlow, Ma, Scheichl, 2024
where the two-level RAS preconditioner with exact local
solves is studied

Note that our theory applies to the RAS algorithm with inexact
local solves as well as to other DD preconditioners:

additive Schwarz Method (ASM): Si := A−1
i

Symmetrized Optimized Restricted Additive Schwarz
(SORAS): Si := Di A−1

i Di
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First numerical results

Smaller coarse space than the GenEO coarse space.
Efficiency with Incomplete Cholevski (ICC)
More on the way
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Conclusion and Prospects

”Past” works
Spectral Coarse space for SPD problems
Iterative solver for saddle point problem with highly
heterogeneous linear elasticity, Stokes systems, . . .
Available via HPDDM with or without its interface to PETSc
Available to FreeFem user

Recent works (2024) on coarse space constructions
Nataf, Parolin, ”Coarse spaces for non-symmetric two-level
preconditioners based on local generalized
eigenproblems”, 2024
Al Daas, Jolivet, Nataf, Tournier (2024). “A robust two-level
Schwarz preconditioner for sparse matrices”, submitted for
publication. (not shown here)

See also Heinlein, Smetana, 2022
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