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Abstract A high quality block structure of the solid model can support many im-
portant applications. However, automated generation of high quality block structure
is still a challenging problem. In this paper, a dual surface based approach to au-
tomated and valid block decomposition of solid models is proposed. First, an op-
timized frame field is constructed on background tetrahedral mesh and three kinds
of degenerated singularities are corrected. Then, dual loops for block decomposi-
tion are generated with the help of the optimized frame field. After that, a required
dual surfaces set, whose dual surfaces can suitably separate all boundary elements
of solid model and singularities of frame field, is constructed based on dual loops
by min cut algorithm. Finally, a valid block structure is obtained by performing dual
operations along the dual surfaces on the hex mesh generated by splitting the tetra-
hedral mesh of the solid model. Experimental results show the effectiveness of the
proposed approach.

1 Introduction

A high quality block structure of the solid model can support many important ap-
plications. First, high quality hexahedral meshing, which is still a very challenging
problem, can be easily achieved based on it. Second, a high quality block structure
of a solid model plays an important role in the parameterization required for iso-
geometric analysis. Finally, this structure can be used to support multi-grid solvers
to accelerate computations. It is due to such important applications that block de-
composition of solid models has attracted more and more attention. However, au-
tomatic and high quality block decomposition for arbitrary shape is a challenging
problem.

The dual operation based methods can always guarantee the topological validity
of the hexahedral structure, that is, each cell of the decomposed structure is a hex-
ahedron. Kowalski et al. [8] first obtained the initial hexahedral mesh of the model
using a tet-to-hex method, then inserted the fundamental sheets into the mesh and fi-
nally extracted other sheets to obtain the final block structure. Although this method
can generate a block structure for the model, it seems that the method hardly guaran-
tees the geometric validity of block structure, that is, the final block structure cannot
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fully capture all the boundary elements of the solid model, because only the inserted
fundamental sheets cannot sufficiently capture all the geometric information some-
times. To this end, Wang et al. [16] improved this method by adding curve-related
sheets besides the fundamental sheets and obtaining the block structure by carefully
extracting the sheets. The insertion of curve-related sheets ensures the geometric va-
lidity of the block structure while improving the quality of the final block structure.
However, this method cannot deal with solid models with free-form surfaces. Gao et
al. [5] obtained the base complex in the input hexahedral mesh, iteratively removed
the appropriate sheets or chords, and performed geometric optimization after each
deletion step, to finally obtain a conformal, non-inverted, coarse hexahedral mesh.
This method can simplify the global structure of the complex hexahedral mesh ro-
bustly and efficiently, but it seems that the result is sensitive to the quality of the
input hexahedral mesh.

Kowalski et al. [7] was the first to propose the frame field based method to de-
compose the body into blocks. The author set up the frame field by propagating the
frames firstly defined along the geometric curves over the domain and smoothing
the initial frame field. Then, the singular graph were extracted to obtain the block
structure. However, it seems that this method does not guarantee the validity of the
block structure for the models with degenerated frame fields.

Lei et al. [10] proposed a meshing algorithm based on the surface foliation theory
for high-genus surfaces. This work proved the existence of a structured hexahedral
mesh solution for high-genus models, but mainly considered the topological aspect.
Other methods, such as skeleton driven [12] and generalized-sweeping-based [4]
block decomposition, seem that are not suitable for complex model.

Campen et al. [2] proposed a method for surface quad layout construction based
on dual loops. First, they made use of the method proposed by [1] to create a con-
sistent smooth cross field. Second, they constructed admissible loops to suitably
separate the singularities of the cross field. Finally, the quad layout was obtained by
layout primalization.

In order to automatically and effectively generate valid block structures of solid
models, in this paper we propose a dual surface based approach to block decompo-
sition of solid models. In general, our method has the following contributions:

1. The method automatically guarantees the geometric and topological validity of
the final block structure by constructing a required dual surfaces set and perform-
ing dual operations.

2. The method ensures the high quality of the every block generated by using the
high quality dual surfaces whose construction is based on the dual loops and high
quality frame field.
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2 Preliminaries and approach overview

2.1 Preliminaries

Before describing our block decomposition method, we firstly introduce some re-
lated concepts.

2.1.1 Basic concepts related to dual space

Given a hex mesh H and a mesh edge e in H, the set of mesh edges Es which consists
of all mesh edges topologically parallel to e recursively found is called a sheet. Ebs
is a set consisting of all the mesh boundary edges in Es. If Ebs 6= /0, the curve which
traverses all the edges in Ebs is called a dual loop. The manifold surface which
traverses all the mid points of the edges in Es is called a dual surface. We call two
opposite mesh edges in a mesh face topologically parallel edges. In Fig. 1a, the blue
curve is a dual loop while the yellow surface is a dual surface.

The dual operations refer to the operations modifying the topology of the hex
mesh. They mainly include the sheet inflation, sheet extraction and column collapse.
For the details, the readers can refer to [9, 14].

2.1.2 Frame field

The frame field will be a promising tool to guide the block decomposition [7]. A 3D
frame F is a 3-tuple {u, v, w}, where u, v, and w are three unit vectors such that
u.v = 0,w = u∧v. In our algorithm, with a background tet mesh of the solid model,
a frame field is a frame per cell of the tet mesh, as shown in Fig. 1c.

Between two frames Fs and Ft , there is a matching matrix Πst ∈ G (the chiral
cubic symmetry group). There is an orthonormal matrix type(e, t0) [6] representing
the type of an oriented tetrahedral mesh edge e, where t0 is a cell adjacent to the
edge e. If type(e, t0) 6= I, the e is a singularity edge.

A simple singular polyline is a set of concatenate singular mesh edges, which
has the property that the number of singular edges adjacent to each end vertex is
not 2 if it is not a closed polyline. To facilitate the construction of high quality dual
surfaces, we divide all simple singular polylines into five catergories:

Type 1 All the singular edges of the simple singular polyline are inside the body,
and only one of the polyline’s endpoints is on the boundary surface, as
shown by the cyan polylines in Fig. 1b;

Type 2 All the singular edges of the polyline are inside the body, while both of the
two endpoints are on the boundary surface, as shown by the blue polylines
in Fig. 1b;

Type 3 All the singular edges of the polyline are on the boundary surface, as
shown by the green polylines in Fig. 1b;
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Type 4 All of the singular edges of the polyline are inside the body, and both
endpoints are not on the boundary surface. For a closed simple singular
polyline, if all its singular edges are inside the volume, it is also defined
as a type 4 polyline. Type 4 simple singular polylines are red polylines
shown in the Fig. 1b;

Type 5 The simple singular polylines cannot be classified as one of the above four
categories.

(a) (b) (c)

Fig. 1: (a)Dual loop and dual surface;(b)All simple singular polylines of test case
2 model: the cyan, blue, green and red lines are type 1,2,3 and 4 simple singular
polylines, respectively;(c)A frame is associated with each cell and the edge e1 is a
singular edge with valence 3.

2.2 Overview of approach

Inspired by the work of Campen et al. [2], we solve the problem of block decompo-
sition in the dual setting, namely, achieving the automatic and valid block decom-
position of solid models based on dual surfaces and dual operations.

In order to effectively decompose a solid model into high quality blocks based
on dual surfaces, three critical issues need to be addressed:

1. How to construct the dual loops required by the construction of dual surfaces
toward valid block decomposition;

2. How to determine the required dual surfaces set based on dual loops;
3. How to generate the high quality dual surfaces that can ensure the high quality

of every generated block.

For the first issue, the construction of dual loops is guided by the cross field for
block decomposition to meet the needs. For the second issue, we determine the dual
surfaces set by enabling all the dual surfaces in the set to separate each boundary
elements of solid model and simple singular polylines so that the resulting block
structure can be geometrically valid. If two elements are not separated by any dual
surface, they will be merged into one in the final block structure. For the third issue,
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Generation of  the initial tet 
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Fig. 2: Pipeline of dual surfaces based block decomposition.

we use the min cut algorithm to construct dual surfaces based on dual loops, so as to
ensure the high quality of every dual surface, which leads to blocks of high quality.

The input of our approach is a solid model with boundary representation, and
the output is a block structure. The following are the main steps of our method, as
shown in Fig. 2:

1. A tet mesh is generated as background mesh;
2. A smooth frame field is built and three types of singularity degeneracy are cor-

rected;
3. Dual loops for block decomposition are constructed;
4. Dual surfaces are constructed based on the dual loops and the singularity struc-

ture;
5. A block structure is generated based on the dual surfaces and the dual operations.

3 Frame field construction and singular polylines correction

To support the construction of high quality dual loops and dual surfaces, we first
construct a high quality frame field of the solid model. First, we initialize the frame
field by converting the cross field designed on the surface into frame field and prop-
agating it inside the volume. Then we smooth the frame field by minimizing a non-
convex object function using L-BFGS [11]. Due to limited space, we recommend
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the interested readers to refer to [10]. After the frame field is smoothed, we extract
simple singular polylines in the frame field and correct degenerate cases.

In order to ensure that the optimized frame field for block decomposition is as
effective as possible, we automatically identify and correct possible degenerate sin-
gularities. Specifically, the following three types of degeneracy are identified and
corrected: compound singularity, zigzag singularity and 3-5 simple singular poly-
lines. For the first two types of degeneracy, we directly use the fixing strategy pro-
posed in [6] to correct them.

3.1 Identification of 3-5 simple singular polylines

The 3-5 simple singular polyline is the simple singular polyline whose two end
edges are 3 and 5 valent singular edges respectively. As shown in Fig. 3a, the high-
lighted polyline is a 3-5 simple singular polyline with 3 valent end edge (in blue)
and 5 valent end edge (in red). The cross field induced from the singular structure
with 3-5 simple singular polylines cannot be used to construct all the dual loops for
block decomposition (cf. Fig. 4a and Fig. 4c). Therefore, we have to identify and
correct each 3-5 simple singular polyline.

According to the definition of 3-5 simple singular polyline, the key to identifying
it is to determine the valence of the end edges in each simple singular polyline, and
we determine the valence of an edge as follows: for each non-degenerate singular
oriented mesh edge e, the fixed axis ṽ is one of member vectors of frame in tet
t0 such that type(e, t0)ṽ = ṽ. If its deviation from the e is smaller(respectively, not
smaller) than π

2 and type(e, t0) corresponds to a counterclockwise rotation by kπ

2
along the ṽ, then e is a 4− k(respectively, 4+ k) valence singular edge, where k ∈
Z\{0}. In our cases, the valence of singular edges in the optimized frame field
after correcting zig-zag and compound singularities is only 3 and 5, and there is
theoretical possibility that higher valence of singular edges appears. According to
the valence determination, the edge e1 in Fig. 1c is a 3 valent singular edge.

(a) (b) (c)

Fig. 3: (a)A 3-5 simple singular polyline in test case 2;(b)Two related streamlines
of the 3-5 simple singular polyline;(c)The 3-5 simple singular polyline is replaced
with two polylines.
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3.2 Correction of 3-5 simple singular polylines

According to the principle [15] that a simple singular polyline should be consistent
with the direction of a frame field, we correct each 3-5 simple singular polyline
based on the streamlines of the frame field as follows:

1. Tracing of two related streamlines. For each endpoint of the 3-5 simple singu-
lar polyline, one related streamline who starts from this endpoint and takes the
direction of frame field closet to the directed end edge from the endpoint as the
initial direction is traced to the boundary. The two related streamlines are shown
in 3b.

2. Replacement of the 3-5 polyline. First, for each streamline, we find the corre-
sponding polyline in mesh who are the shortest path connecting two endpoints
of the streamline. Second, we replace the original 3-5 simple singular polyline
with two polylines corresponding to two related streamlines. Two polylines are
shown in 3c.

Our strategy is heuristic and may not be able to deal with general case.

4 Construction of dual loops for block decomposition

Since it is very difficult to directly generate a high quality dual surface, we first
constructs the boundary of dual surfaces, i.e., dual loops, to support the construction
of the dual surfaces. In order to construct the dual loops required by the construction
of dual surfaces, we need to improve the existing dual loop construction method [2].
The necessary condition for dual surfaces set to be able to separate all the simple
singular polylines and all the boundary elements of solid model is that boundary
loops of dual surfaces must be able to separate all the end points of singularity
polylines and boundary elements of the surface. The basic idea of improvement is
to construct extra dual loops based on surface cross field matching the frame field in
volume. Specifically, the dual loops construction process is divided into two steps:
first, the surface cross field is built based on the frame field in volume; second, dual
loops are constructed to separate all the singular points and the boundary elements
of the surface.

4.1 Construction of frame field based cross field

We first construct a surface cross field that matches the singularity structure in vol-
ume, and the specific process consists of the following two steps.

1. Initial construction of the surface cross field based on frame field in volume. The
cross direction in each triangle is set as the non-normal direction of frame in
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(a) (b) (c)

Fig. 4: (a)the dual loops are constructed based on the cross field without ajdust-
ment;(b) the yellow polylines are the shortest paths connecting the pairs of the
intersection points;(c)the dual loops are constructed based on the cross field after
adjustment.

adjacent tetrahedral element; the period jump [13] between two adjacent crosses
is determined by the matching matrix type between the corresponding frames.

2. Surface cross field adjustment. For each pair of simple polylines induced from
a 3-5 simple singular polyline, the period jumps on shortest concatenate mesh
edges connecting the new pair of intersection points between adjusted polylines
and mesh boundary are adjusted so that a pair of 3-5 valence singular points
meeting the requirements appears on the surface. The yellow polylines in Fig. 4b
are the paths connecting the pairs of the intersection points while the loops in 4c
are the dual loops constructed based on the cross field after adjustment.

4.2 Construction of dual loops for dual surfaces

We now construct the dual loops based on the cross field with the goal to separate
all the target elements. In [2], only the singular points are set as the target elements
to be separated. In our work, we set the singular points and the boundary elements
of the surface (i.e. the geometric points and geometric edges of the solid model) as
target elements. The specific steps are as follows:

1. Mesh preprocess before dual loops construction. The corresponding tetrahedron
are refined so that there are at least two mesh edges connecting each pair of
elements to be separated, so that the elements are separated by dual loops.

2. Construction of separation indicators (SIs) [2]. In order to separate pairs of target
elements efficiently, we first construct SIs. For each pair of singularities, SIs are
paths representing a homotopy class each, as [2] done. For each pair of boundary
elements of the surface with other elements or singular points, SIs are shortest
paths between them.

3. Construct the dual loops to cut all SIs by the greedy algorithm in [2].
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(a) (b) (c)

Fig. 5: (a)The result dual loops are constructed based on SIs without boundary el-
ements of the surface taken into consideration.(b)The result dual loops are con-
structed based on SIs with boundary elements of the surface taken into considera-
tion.(c)The singular point V1 and V2 are all associated with the loop l1, l2 and l3.

The constructed dual loops above divide the boundary surface into different re-
gions, each containing at most one singular point. If a region contains a singular
point, we associate all the dual loops that surround the region with the singular
point. As shown in the Fig. 5c, the dual loops l1, l2 and l3 are associated with the
singular points V1 and V2 respectively. If all endpoints of a simple singular polyline
on boundary surface are associated with a loop and located on same side of the loop,
then this loop is associated with this polyline. As show in the Fig. 5c, the loops l2
and l3 are associated with the simple singular polyline P, respectively.

5 High quality dual surfaces construction

In this work, we decompose the solid model into a block structure based on dual
surfaces. Therefore, constructing a set of high quality dual surfaces to separate all
the simple singular polylines and boundary elements of the solid model is the key to
accomplishing the valid block decomposition. In order to facilitate the construction
of the dual surfaces, we classify all dual surfaces into two categories, closed and
open. A dual surface without boundary is called a closed dual surface and a dual
surface with boundary is called an open dual surface. According to the fact that the
boundary of an open dual surface must be the dual loops on the boundary surface, we
construct each open dual surface by first identifying its corresponding dual loops. As
for the closed dual surface, it will be constructed directly according to its separation
effect.
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5.1 Determination and construction of open dual surfaces

In the following, we refer to the open dual surface with only one boundary loop as
simple dual surface, as shown in Fig. 6a, and refer to the open dual surface with
multiple boundary loops as complex dual surface, as shown in Fig. 6b. In our dual
surface construction algorithm, the determination of complex dual surface requires
the aid of some simple dual surfaces. Therefore, we first construct the simple dual
surfaces, and then construct the complex dual surfaces.

(a) (b) (c) (d)

Fig. 6: (a)A simple dual surface.(b)A complex dual surface.(c)The yellow loop is a
trivial loop but the loop is an M-loop.(d)The yellow loops are trivial loops and also
S-loops. The black loops are loops in the set B. The red loops are non-trivial but
S-loops. The blue loops are M-loops.

5.1.1 Classification of dual loops

In order to facilitate the construction of open dual surfaces, the dual loops are clas-
sified into two types:

S-loop An S-loop (short for the boundary loop to construct dual surface) is a loop
that can span a required surface in the interior of the solid model by itself;

C-loop An C-loop (short for the multiple loops to construct ) is a loop that can
not span a required surface in the interior of the solid model by itself.

A required surface refers to the surface that can separate boundary elements of solid
or/and simple singular polylines. Obviously, S-loops and C-loops are the boundary
of simple and complex dual surfaces respectively.

There is a special kind of loop on surface called the trivial loop which alone can
bound a subset of the surface; that is, a trivial loop can divide the boundary into
two regions. According to our analysis, the dual loops are classified based on the
following heuristic rules:

1. If a trivial loop is associated with all the endpoints of some simple singular poly-
lines, then it is an S-loop, otherwise it is an C-loop. Though every trivial loop can
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span a surface in the interior of the solid model, only the surface spanned by the
trivial loop meeting the above condition can separate simple singular polylines
with endpoints associated. Yellow loops in Fig. 6d are trivial loops which can
span desired surfaces while the yellow loop in Fig. 6c is a trivial loop which can
not span a desired surface.

2. If a nontrivial loop is the shortest loop passing through a hole, then it is an S-
loop. Generally, such loop can also span a surface which can separate boundary
elements or/and simple singular polylines. And we insert all such S-loops (as
black loops shown in Fig. 6d) into a set B.

3. If a nontrivial loop which is not in B has no intersection with loops in B, then it is
an S-loop (as red loops shown in Fig. 6d), otherwise it is an C-loop(as blue loops
shown in Fig. 6d). Generally, such S-loop can span a surface which separates
boundary elements and simple singular polylines.

5.1.2 Construction of simple dual surfaces

After identifying all the S-loops, we can construct simple dual surfaces accordingly.
To obtain the block structure by dual operations, the dual surfaces need to be con-
structed in a hexahedral mesh. So a hex mesh is transformed from the tet mesh
by using the tet-to-hex method, i.e., splitting each tetrahedron into four hexahedra.
At the same time, the frame field of hex mesh inherits the frame field of tet mesh
trivially.

The simple singular polylines are elements to be separated by dual surfaces, so
during the dual surfaces construction the simple singular polylines are taken into
consideration if the polylines are associated with the input loops. Due to the fact
that the determination of the dual surfaces on the mesh is analogous to finding a cut
on a graph [3], we use the min cut algorithm for input dual loop(s) to construct dual
surface(s) by the following steps:

1. Determination of the source and the target hexahedra sets for min cut algorithm.

a. Quads division on the boundary surface. The input dual loops divides the
quads on the boundary surface into two sets, which are called source and
target quads sets respectively.

b. Source and target hexahedra sets determination. The hexahedra with boundary
mesh face in the source(target) quads set are inserted into the source(target)
hexahedra set.

c. Source and target hexahedra sets completion. In order to take the associated
simple singular polylines into consideration, the source and target hexahedra
sets need to be completed. The hexahedra adjacent to the associated simple
singular polylines are inserted into the source (target) hexahedron set if its
boudanry endpoints belong to the source (target) quadrilateral set. The source
and target hexahedra set are shown in Fig. 7b and 7c, respectively.

2. Construction of desired digraph and acquisition of dual surfaces by min cut al-
gorithm.
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a. Nodes determination. A graph is built by considering all the hexahedra as
the nodes, where the nodes corresponding to source and target hexahedra are
denoted as s-nodes and t-nodes, respectively.

b. Arcs determination and weight assignment. Two nodes are considered adja-
cent if their corresponding cells share at least one mesh face. For the s-node,
a directed arc from it to each of its adjacent nodes is added; for the t-node, a
directed arc from each of its adjacent nodes to it is added; for the rest pair of
adjacent nodes, a pair of opposite directed arcs are added. The weight of each
arcs above is set as the area of the common mesh face between corresponding
cells.

c. Dual surface determination. The minimum cut is found between s- and t-
nodes using the min cut algorithm, and this cut corresponds to the simple
dual surface in the hex mesh.

(a) (b)

(c) (d)

Fig. 7: Illustration of simple dual surface construction:(a)the yellow loop is associ-
ated with four type 1 simple singular polylines;(b)the hexahedra in source set;(c) the
hexahedra in target set;(d)the yellow surface is constructed by min cut algorithm.

5.1.3 Determination and construction of complex dual surfaces

After all the simple dual surfaces constructed, the complex dual surfaces are con-
structed with the assist of existing simple dual surfaces. The intersection of two dual
surfaces forms the dual curves and the intersections of the boundary loops of these
dual surfaces are the endpoints of the corresponding dual curve. Therefore, we use
the quad layout of the dual surfaces to determine the C-loops groups. For efficiency,
only the dual surfaces spanned by the chosen dual loops and the shortest loops inter-
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secting with the trivial undesired loops are considered. The following are the steps
to determine the dual loops groups.

1. Extraction of the dual surfaces’ quad layout based on cross field. First, the cross
field on the smoothed dual surface is established by projecting the frames asso-
ciated to cells on one side of surface. Second, the singular points on the surface
are determined according to the intersection of the orignal dual surface and sim-
ple singular polylines, as shown in Fig. 8a. Finally, the streamlines are traced
from singular points as the separatrices and quad layout is obtained, as shown in
Fig. 8b.

2. Dual loops grouping. According to the quad layout, the intersecting loops at op-
posite side of each chord need to be grouped. Before doing this, some dual loops
have to be added to balance the number of intersecting dual loops at both end of
the chord. One dual loop per side of the chord is added for the chord who has
no loop at neither side, except the trivial chord whose deletion will not influence
the singular points configuration in quad layout, as golden dotted lines shown in
Fig. 8b. If two dual loops groups intersect, they are merged into one. The Fig. 8c
shows the final blocks traversed by the dual surface.

(a) (b) (c)

Fig. 8: Illustration of determining the dual loops group:(a) the target dual surface in
test case 6;(b) the existing dual loops and newly added dual loops represented by
solid red circles and hollow red circles in smoothed dual surface;(d)the final blocks
traversed by the dual surface.

Since the uneven surface will result in undesired quad layout, we perform Lapla-
cian smoothing to the dual surface before dual loops grouping. If the endpoints of
a chord have unequal dual loops intersection numbers, we add dual loops as fol-
lows(the endpoint of the chord having larger intersection number is called the start
side, and another endpoint is called the end side). First, shortest paths from each
intersecting vertices on the start side to the end side are computed. Second, a dual
loop for each shortest path is computed by anisotropic front propagation in [2] with
the end vertex of the path chosen as the loop’s start vertex. The first two steps are
performed on the original tet mesh. Finally, the newly constructed dual loops are
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converted into the hex mesh and replace with original dual loops on the end side.
As for each chord who has no intersecting loop at neither sides, the two end vertices
of the shortest path connecting the two side are chosen as start vertices to add dual
loops.

After determining the dual loops groups, the complex dual surfaces are con-
structed by the min cut algorithm as simple dual surfaces done in Sect. 5.1.2.

5.2 Closed dual surface construction

Since construction of open dual surfaces only takes boundary dual loops and simple
singular polylines into consideration, the type 4 simple singular polylines may not
be sufficiently separated. Hence, closed dual surfaces must be constructed to make
up for this omissions. Currently, we only consider the general situation that the type
4 polylines are not separated from the boundary surfaces. Therefore, the method first
detects whether there is any type 4 polyline unseparated from the boundary surface
of model and then constructs corresponding dual surface to separate the polyline
and the surface if necessary. The specific algorithm is as follows:

(a) (b) (c)

Fig. 9: Illustration of the closed dual surface construction:(a)12 simple singular
polylines with type 4 not separated from boundary surface;(b)a closed dual surface
constructed;(c)the final blocks generated.

1. Check whether a closed dual surface is needed. First, decompose the hexahe-
dral mesh by the existing dual surfaces. Then, traverse the parts and record the
boundary surface if there is a part contains both hexahedra with mesh face on
this surface and the singular edges of a type 4 simple singular polyline. There are
12 polylines unseparated from the boundary surface in Fig. 9a.

2. Construct the closed dual surface if necessary. First, the hexahedra whose bound-
ary mesh faces are in the recorded surface of solid are inserted into the source
hexahedra set, while the rest hexahedra are inserted into the target set. Then, the
closed dual surface is generated by min cut algorithm as described in Sect. 5.1.2.
A closed dual surface is inserted in Fig. 9b and the corresponding block structure
of the model is shown in Fig. 9c.
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6 Block structure generation through dual operation

After the required dual surfaces set has been constructed, as shown in the Fig. 10a,
the corresponding sheets are generated through sheet inflation operations applied
along the dual surfaces, as shown in Fig. 10b. Sheet set extraction [16] is used to
remove the remaining sheets in the current hex mesh and final block structure is
obtained, as shown in Fig. 10c.

(a) (b) (c)

Fig. 10: Illustration of the block structure generation:(a)the dual surface of the
model;(b)sheets inflated based on the dual surfaces;(c)the final block structure.

7 Experimental results and limitations

The proposed method has been implemented using C++ as programming language
and ACIS as the geometric engine. Tet meshes are generated using commercial soft-
ware Abaqus. According to the max-flow min-cut theorem, we compute the min cut
of digraph by the Ford-Fulkeson method. And all the shortest paths are computed
by the Dijkstra algorithm. In order to visulize the block structure and measure the
scaled Jacobian value, the final block structure generated through dual operations
are refined and optimized. Apart from the test case 1 which has been shown in
Fig. 2, the other test cases and results are shown in Table 1. And the statistics of the
results are given in Table 2.

Comparison with Kowalski et al.’s method [7]. In column 2 of Table 1, the in-
put model, singular graph, all the dual surfaces and final block structure of test case
2 are shown. The test case 2 is a model that can not be handled by the Kowalski’s
method. After correcting the 3-5 simple singular polylines, a frame field without
degenerate singularities can ensure the validity of the final block structure by our
method, and the obtained blocks is high quality as shown in Table 2.

Comparison with Wang et al.’s method [16]. The models of test cases 3 and
4 in Table 1 all contain free-form surfaces, which can not be handled by Wang’s
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Table 1: The main results of test cases.

test case 2 test case 3 test case 4 test case 5 test case 6

Input Models

Singular Graph

Dual Surfaces

Block Structure

Table 2: The statistics of the results. The numbers of dual surfaces constructed,
blocks of final structure, inner singular edges are in columns Dual Surfaces, Block
and Inner Singularity, respectively. The fifth and sixth columns show the minimum
and average scaled Jacobian values of blocks, and the last column shows the cell
numbers of the refined hex mesh used.

Model Dual Block Inner Scaled Jacobian
Surfaces Singularity Min Mean Hex Num.

test case 1 21 75 20 0.434 0.969 8288
test case 2 10 23 20 0.723 0.971 2432
test case 3 6 11 6 0.411 0.908 5472
test case 4 6 7 4 0.784 0.982 4710
test case 5 17 67 16 0.681 0.988 14252
test case 6 30 128 16 0.325 0.972 8800

method. Guided by the optimized frame field, the dual surfaces set are constructed,
which not only ensure the geometric validity but also ensure the quality of the blocks
generated.

The models of test case 1 and 5 with two through holes are decomposed into high
quality blocks. In column 6 of Table 1, the input model, singular graph, some dual
surfaces constrcuted and final block structure of test case 6 are shown. The test case
6 is a relatively complex model and the final block structure of it has 128 blocks.
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The refined mesh’s minimum scaled Jacobian value is 0.325, as shown in Table 2.
We think that the reason why these low quality elements is that our geometric opti-
mization algorithm is not good enough for this example.

Limitations: There are several limitations existing in the cur-
rent method. First, there is still the possibility that our frame field
optimization and degeneracy correction may fail for complex
model. Second, the dual loops constructed may be not enough
for block decomposition. For example, there is no dual loop on
torus(as shown in the right inset). Third, our dual loops catego-
rization algorithm is currently heuristic based.

8 Conclusion and future work

In this paper, we propose a novel approach to block decomposition of solid mod-
els. The approach automatically generates a valid block structure of a solid model
based on dual surfaces and dual operations. Compared to the previous methods, our
approach has the following characteristics:

1. Through constructing the required dual surfaces set based on dual loops and sim-
ple singular polylines and enabling all the dual surfaces constructed to separate
every simple singular polylines and boundary elements of the solid, the geomet-
ric validity of final block structure is guaranteed. In addition, through performing
the dual operations on the intermediate hexahedral mesh, the topological validity
of final block structure is guaranteed.

2. By constructing dual surfaces based on dual loops for block decomposition and
min cut algorithm, the dual surfaces constructed are of high quality, which fur-
thermore ensures the high quality of the final blocks.

3. By the identifying and correcting three types of singularity degeneracy of the
frame field, including the 3-5 simple singular polyline introduced in this work,
the dual loops generated based on such frame field can support the construction
of the necessary dual surfaces as effectively as possible.

The following shortcomings need to be overcome in our future work:

1. Our current approach deals with the three types of degenerate singular polylines
that can be observed up to now. However, it is also necessary to test more com-
plex models and theoretically make sure whether there exists any other degen-
eracy of the singularities in the frame field and, if so, to provide corresponding
correction strategy.

2. At present our dual loops classifying algorithm is heuristic based. In the future,
a more general algorithm will be studied.

3. Since the construction of optimized frame field and dual loops are all sensitive
to the input tet mesh, in the future, the reasonable tet mesh discretization of the
input solid model will be studied.
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