
Discrete Mesh Optimization on GPU

Daniel Zint and Roberto Grosso

Abstract We present an algorithm called discrete mesh optimization (DMO), a
greedy approach to topology-consistent mesh quality improvement. The method re-
quires a quality metric for all element types that appear in a given mesh. It is easily
adaptable to any mesh and metric as it does not rely on differentiable functions.
We give examples for triangle, quadrilateral, and tetrahedral meshes and for various
metrics. The method improves quality iteratively by finding the optimal position for
each vertex on a discretized domain. We show that DMO outperforms other state of
the art methods in terms of convergence and runtime.

1 Introduction

Simulations based on finite elements require meshes with high quality. Element
shape has a strong impact on convergence [3, 32]. In cases like fluid simulations
[1] anisotropy or a locally varying element size influence stability and accuracy.
Such attributes of a mesh can be described with a quality metric. A vast range of
smoothing methods considers purely element shape [7, 8, 11, 18, 17, 19, 21, 22, 24,
26, 37, 41, 42, 44, 45]. Changing the quality metric within these methods requires
major changes in the algorithm structure.

We present discrete mesh optimization (DMO), a greedy approach to topology-
consistent mesh smoothing. The exhaustive search efficiently exploits the paral-
lel computing power of GPUs. Full utilization is achieved by applying a coloring
scheme to update several independent vertices at once. Due to the versatility of

Daniel Zint
Computer Grahics Chair, Universität Erlangen-Nürnberg, Cauerstr. 11, 91058 Erlangen, Germany,
e-mail: daniel.zint@fau.de

Roberto Grosso
Computer Grahics Chair, Universität Erlangen-Nürnberg, Cauerstr. 11, 91058 Erlangen, Germany,
e-mail: roberto.grosso@fau.de

1

2 D. Zint and R. Grosso

DMO it optimizes meshes of any kind for any quality metric without relying on dif-
ferentiable functions. DMO aims to maximize the global mesh quality by iteratively
finding the optimal position for each vertex with respect to its one-ring neighbor-
hood. The optimal position is found by evaluating the quality metric on a coarse
grid of candidate positions. The best candidate is chosen as new vertex position.
The process is repeated several times while the grid spacing is reduced after every
iteration. This results in a runtime comparable to Laplacian-based smoothing while
creating high quality results. For example, with our setup DMO converges within
50 iterations on a mesh with 37907 interior vertices taking around 7ms. Besides the
GPU version, DMO was also implemented on CPU. Even though DMO was devel-
oped to benefit from parallelization, it still outperforms other smoothing methods
on CPU due to its fast convergence.

The next section introduces the max-min problem for mesh optimization. Sec. 3
gives an overview of smoothing methods. DMO is presented in Sec. 4. Examples
and a performance analysis are stated in Sec. 5. Conclusions are given in Sec. 6.

2 The max-min Problem for Mesh Optimization

For each mesh element ek a quality q(e)k is obtained by evaluating a quality metric
q(e)(ek). The quality metric should be strictly quasiconcave, continuous, and decay-
ing from its unique global maximum. This holds for commonly used quality metrics.
Other functions that do not fulfill this criteria do not guarantee optimal quality im-
provement.

The formulation of the mesh optimization problem is independent of the partic-
ular quality function q(e). Assume a mesh M in Rn which consists of n-dimensional
elements. They do not have to be of one type, hybrid meshes are also possible.

For finite element simulations the minimal element quality is of importance [40].
Therefore, the quality q(v)i of a vertex vi that is positioned at x is defined as the
minimal quality of its incident elements ek ∈ Ne(vi),

q(v)i (x) = min
ek∈Ne(vi)

q(e)k (x) , (1)

where element quality q(e)k depends merely on the vertex position x as the one-ring
neighborhood of vi is kept fixed. If the element quality function q(e)k is quasicon-
cave, continuous, and decaying from its maximum, it follows that the vertex quality
function q(v)i defined in (1) has a unique global maximum and is quasiconcave, [36].

From (1) follows the local optimization problem for finding the maximum quality
q(v)i,max for a vertex vi,

q(v)i,max = max
x

q(v)i (x) = max
x

min
ek∈Ne(vi)

q(e)k (x) . (2)

Discrete Mesh Optimization on GPU 3

Fig. 1 Vertex quality function
q(v)i for some one-ring neigh-
borhood. Negative values
were projected to zero. The
red line points to the current
quality of the vertex for the
shown triangle fan.

0

0.2

0.2

0.4

0.6

0.4

0.8

1

0.6
10.80.8 0.60.40.21 0

The vertex quality function is nonlinear and nonsmooth (Fig. 1) and thus cannot be
solved by any optimization method that requires derivatives. Because of the proper-
ties of the vertex quality function an efficient exhaustive search as proposed in our
algorithm in Sec. 4.1 will certainly lead to the optimum of (2). The optimal position
x∗ for vi is given as

x∗ = argmax
x

q(v)i (x) = argmax
x

min
ek∈Ne(vi)

q(e)k (x) . (3)

In the next section we summarize different smoothing methods intending to solve
the max-min problem of mesh optimization. They mostly differ in their strategy of
approximating eq. (3).

3 Related Work

Smoothing methods can be divided into three main groups, Laplacian-, physics-, and
optimization-based. We will briefly discuss the three groups and give an overview
of their advantages and disadvantages.

The classical Laplace-smoothing [15] is known to be fast but unstable in case of
concave domains. A wide range of methods were proposed that modify the classi-
cal Laplace smoothing to overcome this problem [7, 8, 11, 19, 22, 24, 26, 29, 45].
Limitation still exists, for example angle-based smoothing [45] cannot deal with a
strongly varying element size, Fig. 4. Another representative is the ”Smart” Lapla-
cian Smoothing of Freitag [19] which only performs smoothing when mesh quality
is increased. Using ”Smart” Laplacian Smoothing without further processing steps
does not lead to satisfying results as it does not improve mesh quality considerably.
Freitag proposed to use it in combination with an optimization-based method. This
will be discussed later in this section. Laplacian-smoothers share the advantage of
being fast but they also lead to suboptimal results. Many of these methods cannot
guarantee that the quality will not decrease. DMO overcomes this problem by di-

4 D. Zint and R. Grosso

rectly optimizing quality. Therefore, it will not converge to a suboptimal result and
a non-decreasing quality can be guaranteed.

Physics-based methods consider the mesh as a physical model. Some examples
are spring-mass systems [9, 14], truss networks [35], or elasticity models [4, 13,
38]. Just like Laplace-based methods they do not provide any guarantee of mesh
improvement.

Optimization-based methods are named after their approach for optimizing a
quality metric. Some methods try to overcome the problem of nondifferentiabil-
ity by replacing eq. (2) with a smooth function [20, 27, 28, 43, 44]. They run into
the same problems as Laplacian-based methods.

Another approach is taken by the previously mentioned method of Freitag
[17, 18, 19, 21]. While in [18, 19] the optimization is done with an analogue of
the steepest descent method for smooth functions, later versions use the simplex
algorithm to solve a linear programming problem [17, 21]. To keep runtime low it
combines Laplacian-based smoothing with an optimization-based approach. Thus,
the method does not converge to the optimal solution in general. DMO avoids that
by optimizing all vertices the same way.

A derivative-free approach is done by Park and Shontz in [33]. They use pattern
search in combination with backtracking line search to find a better vertex position.
The convergence is suboptimal as it depends on search directions.

Rangarajan and Lew introduced the directional vertex relaxation (DVR) algo-
rithm [37]. It solves the optimization problem by breaking it down to one dimen-
sion. This is achieved by providing a smoothing direction which can be chosen
either randomly or by using previous knowledge. Within this one dimension the op-
timal solution can be found analytically. The major concern about this method is
its randomness of relaxation directions as it leads to an inefficient smoothing with
slow convergence rates. In contrast, DMO is not restricted to search directions and
therefore yields faster convergence than DVR or the method of Park and Shontz.

4 Discrete Mesh Optimization

DVR solves the max-min problem in eq. (2) analytically for only one direction.
DMO uses a different strategy for solving the mesh optimization problem. We eval-
uate the vertex quality function with a greedy algorithm on a discretized domain.
No derivatives are necessary which allows easy replacement of the quality metric.

In order to demonstrate the strength of DMO we use the standard mean ratio
quality metric for triangles q(e)mtri [2, 5, 6, 12, 17, 37],

q(e)mtri = 4
√

3
A

∑
3
i=1 l2

i
, (4)

Discrete Mesh Optimization on GPU 5

where A is the signed area of the triangle and li is the length of its incident edges.
The metric can be replaced by any other. For further informations on metrics see
[30, 31, 40]. Some examples are given in Sec. 5.3.

In Sec. 4.1 our method is described. Sec. 4.2 explains a way of combining differ-
ent quality metrics, here, performing density adaption while preserving mesh qual-
ity.

4.1 Algorithm

The method starts assigning each vertex to one of the sets Sm and S f . Vertices that
should be optimized are in set Sm, fixed vertices in S f . In the given examples bound-
ary vertices are fixed, see Algorithm 1. For each vertex the argmax-min problem of
eq. (3) is solved on a discretized domain using a greedy approach. Vertices that are
not adjacent can be smoothed in parallel. Thus, graph coloring is applied once as
preprocessing step to create subsets of vertices for parallel optimization [25].

Solving the discretized argmax-min problem is done iteratively with a uniform
grid, see Algorithm 2. The grid is positioned around the vertex that should be op-
timized. The grid size is defined by the axis aligned bounding box for the one-ring
neighborhood and a scaling factor ω . In our case, using half the size of the bounding
box, ω = 0.5, as an initial scaling factor led to convenient results.

Each grid-point is considered as candidate position where eq. (1) is evaluated.
The vertex is repositioned at the best candidate if this increases its quality, Fig. 2.
After each iteration step the scaling factor ω is reduced such that the new grid size
is twice the old grid spacing,

ω ← ω ·2/(n−1), (5)

where n is the number of grid points in one dimension, Fig. 3. Furthermore, the grid
is repositioned around the current best vertex position. The process of candidate
evaluation and mesh downscaling is repeated iteratively until the desired level of
precision is reached.

We know that the vertex quality function stated in eq. (1) is decaying from its
unique maximum. Thus, we state that our exhaustive greedy approach provides the
optimal solution for the vertex within the one-ring in a discrete sense. Accuracy of
the result can be increased up to floating point precision by adapting the number of
iterations in the greedy algorithm. We found 3 iterations combined with n = 8 grid
points in each dimension to be sufficient.

Working on a uniform grid enables efficient parallelization of the greedy algo-
rithm. Using one block of 32 threads on a grid with 64 points leads to an optimal
utilization of the GPU if enough vertices are processed in parallel.

6 D. Zint and R. Grosso

Fig. 2: Left: Uniform grid with quality
metric evaluation for each candidate.
A large green point represents good,
a small red one bad quality. Position-
ing the vertex at one of the blue cir-
cles would result in triangle flipping.
Right: the resulting fan after position-
ing the vertex at the best candidate.

Fig. 3: Two iterations of the greedy
method for finding the optimal vertex
position. The dots represent the best
candidate of the corresponding grid.
The grid of the next iteration (red) is
scaled down and placed at the best
candidate of the previous grid (black).

Algorithm 1 Discrete mesh optimization
1: function SMOOTHMESH(M,niterations)
2: Vertex-set Sm,S f
3: for all v ∈M do
4: if v is boundary vertex then
5: S f ← S f ∪ v
6: else
7: Sm← Sm∪ v
8: Color-set Sc = COLORMESH(Sm , M) . Each color is a subset of Sm
9: for i = 0 to niterations do . Perform smoothing niterations times

10: for all C ∈ Sc do . iterate over colors
11: for all v ∈C do . Iterate over vertices in C
12: OPTIMIZEVERTEXPOSITION(v, Ne(v), 8, 3) . see Algorithm 2

return

4.2 Mesh Density Adaptive Optimization

We introduce a way of combining several quality metrics. As an example, we fuse
the mean ratio metric q(e)mtri of eq. (4), and the density metric q(v)d , defined as the
inverse of the squared distance between the position xk of a vertex vk and its optimal
position x∗k (in terms of density) relative to its one-ring neighborhood,

q(v)d,k(xk) =
1

‖xk− x∗k‖2 . (6)

Discrete Mesh Optimization on GPU 7

Algorithm 2 Discrete optimization of vertex position
1: function OPTIMIZEVERTEXPOSITION(v, Ne(v), n, ngreedy)
2: ω ← 0.5 . Scaling-factor for grid
3: for counter = 0 to ngreedy do . Do ngreedy iterations of the algorithm
4: (xmin, ymin, dx, dy) = GETGRID(v, Ne(v), n, ω) . Get geometric grid specifications
5: Create quality grid[n][n]
6: for i, j = 0 to n do
7: v′← (xmin + i ·dx, ymin + j ·dy) . Position v′ at grid-point (i,j)
8: quality grid[i][j]← VERTEXQUALITY(v′,Ne(v))
9: qmax←−∞, imax← 0, jmax← 0

10: for i, j = 0 to n do
11: if quality grid[i][j] > qmax then . Get argmax of quality grid
12: qmax← quality grid[i][j]
13: imax← i, jmax← j
14: if qmax > VERTEXQUALITY(v,Ne(v)) then . Check if initial position is better
15: v← (xmin + imax ·dx, ymin + jmax ·dy) . Move vertex to new position
16: ω ← ω ·2/(n−1) . Reduce scaling factor

return

This metric tends to infinity the closer we get to the optimum and towards zero the
further we move away. Computing the optimal position x∗k is based on the spring-
model for parametrization [16],

x∗k =
∑j∈N(k) Djxj

∑j∈N(k) Dj
, Dj =

1
h(xj)

, (7)

with N(k) the indices of the one-ring neighborhood of vk and h(vj) the size function
at position xj [34].

Assume we want to adapt mesh density while ensuring a minimal element quality
q̂(e)mtri . We combine the two metrics to a new one as follows

q(v)md,k(x) =

{
q(v)mtri(x) if q(v)mtri(x)≤ q̂(e)mtri

q̂(e)mtri +q(v)d,k(x) otherwise
, (8)

and solve the same argmax-min problem as before. An application of this metric is
demonstrated in Sec. 5.3.

5 Results

DMO is compared to other methods in terms of convergence in Sec. 5.1 and perfor-
mance in Sec. 5.2. Here, performance denotes the throughput of smoothed vertices
per second. Examples for several mesh types and quality metrics are given in Sec.
5.3.

8 D. Zint and R. Grosso

5.1 Convergence

We compare DMO with Laplace smoothing, angle-based smoothing, and DVR
by analyzing convergence of minimal element quality. One iteration denotes that
smoothing was applied to all vertices of Sm once. DMO and DVR optimize both
for the mean ratio metric q(e)mtri of eq. (4). Fig. 4a shows convergence on the trian-
gle mesh ”east”. The input mesh has already satisfactory quality. While DMO and
DVR increase the minimal element quality, Laplace smoothing keeps it unchanged.
Angle-based smoothing even decreases the quality. The bad behavior of angle-based
smoothing is caused by the strongly varying element size within the mesh. DMO and
DVR converge towards the same result. Nevertheless, DMO reached its optimum al-
ready after two iterations whereas DVR required 10 iterations.

A finer and block structured version of mesh ”east” is shown in Fig. 4b. Here,
Laplace smoothing is unstable. This follows from the topology which is not per-
fectly adapted to the geometry anymore. Angle-based smoothing decreases quality.
DVR and DMO improve the mesh quality. However, DVR takes around 900 itera-
tions to reach the same minimal quality that is achieved by DMO in 60 iterations.
Thus, DMO converges 15 times faster than DVR.

0.5

0.6

0.7

0.8

0.9

1.0

q m
in

0 2 4 6 8 10
iterations

DMO

DVR

Laplace

AngleBased

(a) ”east”, nm = 8249

0.0

0.2

0.4

0.6

0.8

q m
in

0 50 100
iterations

DMO

DVR

Laplace
AngleBased

(b) ”east”, nm = 37907

0.0

0.1

0.2

q m
in

0 5000 1×104
iterations

DMO

DVR

(c) ”shashkov”, nm = 3969

Fig. 4: Improvement of minimal quality measured with the mean ratio metric.

The last example considers an anisotropic mesh for which it is not reasonable to
optimize its elements for roundness. Nevertheless, it can be used to test convergence
of smoothing methods in extreme scenarios. Depending on a search direction, espe-
cially on a random one, leads to very slow convergence. Fig. 4c shows an excerpt

Discrete Mesh Optimization on GPU 9

of the mesh ”shashkov” which was taken from the example files of the Mesquite
Toolkit [10]. DMO converged within 1400 iterations, whereas DVR was not con-
verged after the stated 10000 iterations.

5.2 Performance

We compare the performance of DMO with Laplace smoothing and DVR on trian-
gle grids. Performance is measured as smoothed vertices per second. Preprocess-
ing steps like mesh loading or coloring were excluded from measurements. Each
method performed 1000 iterations on each mesh, ignoring convergence as we are
only interested in runtime per iteration. The performance of DMO was achieved
on a Nvidia GTX 1070. The other methods and also a CPU version of DMO were
profiled on an Intel i7-6700K CPU with 4.00GHz and 4 cores. Note that the com-
parison was done using our own implementation of Laplace smoothing and DVR.
DMO was performed using 8 grid points in each dimension and 3 iterations of the
greedy algorithm. Several tests were run on different meshes, Fig. 5. DMO and
Laplace smoothing reach around 2 · 107, DVR and DMO on CPU 105 vertices per
second. The performance of DMO increases for larger meshes because the GPU is
not fully utilized in case of small meshes.

On a mesh with 1333540 vertices in Sm and an initial minimal mean ratio quality
of 0.033 DMO required 4 iterations and an execution time of 400ms on GPU, in-
cluding about 200ms for graph coloring and copying data to the GPU, to converge
towards a quality of 0.34. On CPU DMO ran for 31s to execute the same number of
iterations and reach the same quality. DVR required 43 iterations which took about
435s to converge towards the same quality. Thus, in this example DMO is 14 times
faster on CPU than DVR. On GPU it runs more than 1000 times faster.

Another mesh is given with 8429 vertices in Sm and an initial minimal mean
ratio quality of 0.65. DMO converged within 4 iterations. On GPU it terminated in
4ms, on CPU in 100ms. DVR converged within 10 iterations and ran for 780ms.
All methods reached a minimal quality of 0.82. Here, DMO is 7.8 times faster on
CPU than DVR and on GPU it is 195 times faster.

Fig. 5 Performance of
smoothing methods for dif-
ferent mesh sizes. The per-
formance is measured in
smoothed vertices per second.

104

105

106

107

108

p
er
fo
rm

an
ce

[v
/s
]

103 104 105 106

mesh size

Laplace
DMO on GPU

DMO on CPU

DVR

10 D. Zint and R. Grosso

5.3 Different Quality Metrics

All results stated up to now were computed using the mean ratio metric for triangles,
eq. (4). In this subsection we apply different metrics on various mesh types showing
the flexibility of our method.

First, we smooth the block structured triangular mesh ”east” (Fig. 6a) with re-
spect to rectangularity [23],

q(e)rect = max
i = 1,2,3

qi, (9)

qi = (1− |
π

2 −θi|
π

2
) · (1− |eij− eik|

max(eij,eik)
). (10)

Here, qi denotes the local quality of one vertex within the triangle, θi is the interior
angle at this vertex, eij and eik are the incident edges. The right-angled quality cri-
terion in [23] contains another factor that aligns the triangles according to a cross
field. We skipped this term as our purpose is just to show the flexibility of DMO.
Fig. 6c clearly states a rapid convergence of DMO to an optimal mesh. The resulting
mesh is shown in Fig. 6b.

We also tested DMO with several other triangle shape quality metrics such as

• Max angle [3]: maxi = 1,2,3 θi · 3
π

• Min angle [18]: 1.5(1− mini = 1,2,3 θi
π

)
• Radius ratio [40]: 2 r

R , where r is the incricle and R the circumcircle.

Fig. 6f states the convergence plots for these metrics, the resulting meshes for radius
ratio and max angle are given in Fig. 6d and 6e.

In the following example we apply the mean ratio metric for quad meshes,

q(e)mquad = 2
A

∑
4
i=1 l2

i
. (11)

The mesh in Fig. 7a is a block structured quad version of ”east”. The plot in Fig. 7c
shows fast convergence and significant improvement in terms of the given quality
metric. Fig. 7b shows the resulting mesh.

Adding a third dimension to DMO enables optimization for volume meshes. Fig.
8 shows a tetrahedral mesh where the mean ratio metric for tetrahedrons [17, 31, 37]
was applied. The mesh quality was improved significantly within 10 iterations.

Finally, we want to show that our method is capable of adapting density as de-
scribed in Section 4.2. We use the distance to some point (x0,y0) as size function,

h1(x,y) =
√
(x0− x)2 +(y0− y)2 (12)

h2(x,y) =
1

h1(x,y)
. (13)

Discrete Mesh Optimization on GPU 11

(a) Initial block structured
”east”. (b) Right-angled quality.

0.00

0.35

0.70

q m
in

0 50 100
iterations

RightAngled

(c) Convergence for right-
angled quality.

(d) Radius ratio metric. (e) Max angle metric.

0.0

0.2

0.4

0.6

0.8

1.0

q m
in

0 20 40 60 80
iterations

MaxAngle

MeanRatio

MinAngle
RadiusRatio

(f) Convergence for several
shape metrics.

Fig. 6: Block structured triangle mesh ”east” optimized with different quality met-
rics.

(a) ”east” initial (b) ”east” smoothed

0.0

0.2

0.4

0.6

0.8

1.0

q m
in

0 10 20 30 40 50
iterations

MeanRatio

(c) ”east” as a block structured
quad mesh.

Fig. 7: Quad mesh ”east” optimized with mean ratio metric.

12 D. Zint and R. Grosso

0.0

0.1

0.2

0.3

0.4

0.5

q m
in

0 10 20
iterations

MeanRatio

Fig. 8: Tetrahedral volume mesh ”tire” from [39].

Fig. 9b shows the application of h1 and Fig. 9c of h2 on the triangle mesh ”ba-
hamas”, Fig. 9a. In both cases the minimal mean ratio q̂(e)mtri = 0.7 was given.

(a) Mesh ”bahamas” (b) h1 applied, q̂(e)mtri = 0.7 (c) h2 applied, q̂(e)mtri = 0.7

Fig. 9: Density adaption on mesh ”bahamas”.

5.4 Robustness Against Smoothing Order

We give examples which indicate robustness of DMO against the order in which ver-
tices are processed. We change the smoothing order by shuffling the vertex indices
before applying DMO. We measure the quality of the mesh by lexicographically or-
dering the elements by their quality. Fig. 10 shows the results of two meshes which
already have an initial good quality. The smoothing was done 50 times with differ-

Discrete Mesh Optimization on GPU 13

ent orders and for each time a black line was added to the plot. These lines mostly
overlap which corresponds to equal overall mesh quality.

Fig. 11 shows the same plot for a Delaunay triangulation of 100 randomly dis-
tributed points. Here, a larger deviation in quality can be observed. This is caused
by the extremely low quality of the input mesh. Due to the large movements during
smoothing the order in which vertices are processed has a strong influence on the
output mesh. Fig. 12 gives two examples. Both meshes have approximately the same
minimal element quality but look completely different. This behavior could only be
observed in such extreme cases as a Delaunay triangulation of randomly distributed
points. If an input mesh has a reasonable quality, the result of our optimization
algorithm is expected to be independent from the order in which the vertices are
processed.

0.0

0.2

0.4

0.6

0.8

1.0

q

0 500 1000 1500
index

initial
final

(a) ”bahamas”

0.0

0.2

0.4

0.6

0.8

1.0

q

0 5000 1×104 1.5×104

index

initial
final

(b) ”east”

Fig. 10: Quality with different smoothing orders on good initial meshes.

0.0

0.2

0.4

0.6

0.8

1.0

q

0 50 100 150
index

initial
final

Fig. 11: Quality with different smoothing orders on a Delaunay triangulation (left).

14 D. Zint and R. Grosso

Fig. 12: Results for different smoothing orders.

6 Conclusion

We presented a greedy approach to mesh optimization with fast convergence and
adaptability to any kind of mesh or quality metric. This method can take full advan-
tage of the parallelism of a consumer GPU. The minimal quality of a mesh is either
improved or at least not decreased within each iteration. The interchangeability of
the quality metric enables various cases of practical relevance, e.g. adaptive mesh
smoothing.

In future work we will apply DMO to block structured ocean meshes. Creating a
block structured mesh from an unstructured mesh results in a loss of minor features
along the boundary. We aim to reposition the boundary of a block structured mesh
to restore minor features while preserving high mesh quality.

References

1. Vadym Aizinger and Clint Dawson. A discontinuous galerkin method for two-dimensional
flow and transport in shallow water. Advances in Water Resources, 25(1):67–84, 2002.

2. Nina Amenta, Marshall Bern, and David Eppstein. Optimal point placement for mesh smooth-
ing. Journal of Algorithms, 30(2):302–322, 1999.

3. Ivo Babuška and A Kadir Aziz. On the angle condition in the finite element method. SIAM
Journal on Numerical Analysis, 13(2):214–226, 1976.

4. Timothy J Baker. Mesh movement and metamorphosis. Engineering with Computers,
18(3):188–198, 2002.

5. Randolph E Bank and R Kent Smith. Mesh smoothing using a posteriori error estimates. SIAM
Journal on Numerical Analysis, 34(3):979–997, 1997.

6. RE Bank. A software package for solving elliptic partial differential equations–users guide
7.0. Frontiers in Applied Mathematics, 15, 1998.

7. Ted D Blacker and Michael B Stephenson. Paving: A new approach to automated quadrilateral
mesh generation. International Journal for Numerical Methods in Engineering, 32(4):811–
847, 1991.

8. Ted D Blacker, Michael B Stephenson, and Scott Canann. Analysis automation with paving:
a new quadrilateral meshing technique. Advances in engineering software and workstations,
13(5-6):332–337, 1991.

Discrete Mesh Optimization on GPU 15

9. Frederic J Blom. Considerations on the spring analogy. International journal for numerical
methods in fluids, 32(6):647–668, 2000.

10. Michael L Brewer, Lori Freitag Diachin, Patrick M Knupp, Thomas Leurent, and Darryl J
Melander. The mesquite mesh quality improvement toolkit. In IMR, 2003.

11. Scott A Canann, Yong-Cheng Liu, and Anton V Mobley. Automatic 3d surface meshing to
address today’s industrial needs. Finite Elements in Analysis and Design, 25(1-2):185–198,
1997.

12. Scott A Canann, Joseph R Tristano, Matthew L Staten, et al. An approach to combined
laplacian and optimization-based smoothing for triangular, quadrilateral, and quad-dominant
meshes. In IMR, pages 479–494. Citeseer, 1998.

13. Valmor F De Almeida. Domain deformation mapping: application to variational mesh gener-
ation. SIAM Journal on Scientific Computing, 20(4):1252–1275, 1999.

14. Ch Farhat, C Degand, B Koobus, and M Lesoinne. Torsional springs for two-dimensional
dynamic unstructured fluid meshes. Computer methods in applied mechanics and engineering,
163(1-4):231–245, 1998.

15. David A Field. Laplacian smoothing and delaunay triangulations. International Journal for
Numerical Methods in Biomedical Engineering, 4(6):709–712, 1988.

16. Michael S Floater. Parametrization and smooth approximation of surface triangulations. Com-
puter aided geometric design, 14(3):231–250, 1997.

17. Lori Freitag, Mark Jones, and Paul Plassmann. A parallel algorithm for mesh smoothing.
SIAM Journal on Scientific Computing, 20(6):2023–2040, 1999.

18. Lori Freitag, P Plassmann, and M Jones. An efficient parallel algorithm for mesh smoothing.
Technical report, Argonne National Lab., IL (United States), 1995.

19. Lori A Freitag. On combining laplacian and optimization-based mesh smoothing techniques.
ASME applied mechanics division-publications-amd, 220:37–44, 1997.

20. Lori A Freitag and Patrick M Knupp. Tetrahedral mesh improvement via optimization of
the element condition number. International Journal for Numerical Methods in Engineering,
53(6):1377–1391, 2002.

21. Lori A Freitag, Paul Plassmann, et al. Local optimization-based simplicial mesh untangling
and improvement. International Journal for Numerical Methods in Engineering, 49(1):109–
125, 2000.

22. Paul-Louis George and Houman Borouchaki. Delaunay triangulation and meshing. 1998.
23. Christos Georgiadis, Pierre-Alexandre Beaufort, Jonathan Lambrechts, and Jean-François

Remacle. High quality mesh generation using cross and asterisk fields: Application on coastal
domains. arXiv preprint arXiv:1706.02236, 2017.

24. Leonard R Herrmann. Laplacian-isoparametric grid generation scheme. Journal of the Engi-
neering Mechanics Division, 102(5):749–907, 1976.

25. Tommy R Jensen and Bjarne Toft. Graph coloring problems, volume 39. John Wiley & Sons,
2011.

26. RE Jones. Qmesh: A self-organizing mesh generation program. Technical report, Sandia
Labs., Albuquerque, N. Mex.(USA), 1974.

27. Jibum Kim. A multiobjective mesh optimization algorithm for improving the solution accu-
racy of pde computations. International Journal of Computational Methods, 13(01):1650002,
2016.

28. Patrick Knupp. Updating meshes on deforming domains: An application of the target-
matrix paradigm. International Journal for Numerical Methods in Biomedical Engineering,
24(6):467–476, 2008.

29. Patrick M Knupp. Winslow smoothing on two-dimensional unstructured meshes. Engineering
with Computers, 15(3):263–268, 1999.

30. Patrick M Knupp. Achieving finite element mesh quality via optimization of the jacobian
matrix norm and associated quantities. part iia framework for volume mesh optimization and
the condition number of the jacobian matrix. International Journal for numerical methods in
engineering, 48(8):1165–1185, 2000.

31. Patrick M Knupp. Algebraic mesh quality metrics. SIAM journal on scientific computing,
23(1):193–218, 2001.

16 D. Zint and R. Grosso

32. Michal Křı́žek. On the maximum angle condition for linear tetrahedral elements. SIAM
Journal on Numerical Analysis, 29(2):513–520, 1992.

33. Jeonghyung Park and Suzanne M Shontz. Two derivative-free optimization algorithms for
mesh quality improvement. Procedia Computer Science, 1(1):387–396, 2010.

34. Per-Olof Persson. Mesh size functions for implicit geometries and pde-based gradient limit-
ing. Engineering with Computers, 22(2):95–109, 2006.

35. Per-Olof Persson and Gilbert Strang. A simple mesh generator in matlab. SIAM review,
46(2):329–345, 2004.

36. Ramsharan Rangarajan. On the resolution of certain discrete univariate max–min problems.
Computational Optimization and Applications, 68(1):163–192, 2017.

37. Ramsharan Rangarajan and Adrian J Lew. Provably robust directional vertex relaxation for
geometric mesh optimization. SIAM Journal on Scientific Computing, 39(6):A2438–A2471,
2017.

38. Martin Rumpf. A variational approach to optimal meshes. Numerische Mathematik,
72(4):523–540, 1996.

39. Shewchuk. Stellar: A tetrahedral mesh improvement program, 05-23-2018. URL: https:
//people.eecs.berkeley.edu/˜jrs/stellar/input_meshes.zip.

40. Jonathan Shewchuk. What is a good linear finite element? interpolation, conditioning,
anisotropy, and quality measures (preprint). University of California at Berkeley, 73:137,
2002.

41. Suzanne M Shontz and Stephen A Vavasis. A mesh warping algorithm based on weighted
laplacian smoothing. In IMR, pages 147–158, 2003.

42. Hongtao Xu and Timothy S Newman. 2d fe quad mesh smoothing via angle-based optimiza-
tion. In International Conference on Computational Science, pages 9–16. Springer, 2005.

43. Kaoji Xu, Xifeng Gao, and Guoning Chen. Hexahedral mesh quality improvement via edge-
angle optimization. Computers & Graphics, 70:17–27, 2018.

44. Pablo D Zavattieri, Enzo A Dari, and GUSTAVO C Buscaglia. Optimization strategies in
unstructured mesh generation. International Journal for Numerical Methods in Engineering,
39(12):2055–2071, 1996.

45. Tian Zhou and Kenji Shimada. An angle-based approach to two-dimensional mesh smoothing.
In IMR, pages 373–384, 2000.

