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Abstract Curved mesh generation starting from a P 1 mesh relies on mesh
deformation and mesh optimization techniques. Mesh optimization tech-
niques consist in locally modifying the mesh in order to improve it with
respect to a given quality criterion. This work presents the generalization of
two mesh quality-based optimization operators to P 2 meshes. The general-
ized operators consist in mesh smoothing and generalized swapping. With
the use of these operators, P 2 mesh generation starting from a P 1 mesh
is more robust and P 2 connectivity-change moving mesh methods for large
displacements are now possible.

1 Introduction

In numerical simulation, unstructured meshes are commonly used. More
specifically, in Computational Fluid Dynamics (CFD) they are used to help
to solve real world problems found in industry and government. In the last
decade high-order resolution methods (continuous Galerkin [4], discontinu-
ous Galerkin [10], spectral differences [19], ...) have been used. To preserve
the high-order of convergence of these methods, it is required to have a high-
order representation of the geometry in the mesh. These meshes are curved in
order to fit at best with the boundary of the studied geometric shape. In this
context, the generation and the processing of high-order meshes is necessary.
To generate high-order meshes, several approaches exist. Some are using a
PDE or variational approach to curve a P 1 mesh into a P k mesh [5, 9, 14],
others are based on optimization and smoothing operations and start from
a P 1 mesh with a constrained P k curved boundary in order to generate a
suitable P k mesh [12, 15, 16]. In all these techniques, the key feature is to
find the best deformation to apply to the P 1 mesh and to optimize it.
A connectivity-change moving-mesh method [1] that enables closed-advancing
boundary layer mesh generation [2] relies on both mesh deformation and
mesh optimization techniques. In [1], the motion of vertices is first computed
thanks to a linear elasticity model and then the position of these vertices
is changed via local mesh optimization operators such as generalized swap-
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ping and mesh smoothing. To apply this connectivity-change moving-mesh
method to high-order meshes, these two operators need to be generalized to
high-order meshes.
In this paper, P 2 mesh quality-based optimization operators are presented.
They are a generalization of the P 1 operators and rely on the resolution of a
local optimization problem. These two operators can be applied to improve
P 2 mesh generation starting from a P 1 and enable high-order connectivity-
change moving mesh methods.
The paper is outlined as follow. Section 2 defines what a high-order mesh and
sets up validity and quality criteria. Section 3 deals with P 2 mesh optimiza-
tion. Section 4 shows two applications with examples of P 2 mesh optimiza-
tion. The first one is an improvement of a P 2 mesh generation technique that
curves a P 1 mesh thanks to a high-order linear elasticity solver and the sec-
ond one describes a P 2 connectivity-change moving mesh method also using
a high-order linear elasticity solver. Finally, Section 5 deals with conclusions
and perspectives driven by this work.

2 High-order element, validity and quality criteria

To properly define P 2 quality-based optimization operators, it is fundamental
to properly define quality and validity criteria for high-order elements.
In general, a finite element is defined [3] by the triplet {K,ΣK , Vh} where
K denotes the geometric element (triangle, etc), ΣK the list of nodes of
K, and Vh, the space of the shape functions, here it will be the Lagrange
polynomial functions (or interpolants). To properly define the geometry and
these functions, a reference space (that can also be seen as a parameter
space) is defined where all coordinates are between 0 and 1. In this space,

the reference element is denoted K̂ and has a fixed (and sometimes uniform)
distribution of nodes. The element K, also called physical element, is thus
the image of K̂ via a mapping, denoted FK (see Figure 1). More specifically,

for each point M of K, there is a point M̂ of K̂ such that M = FK(M̂).

Fig. 1 Mapping FK from K̂ to K.

Finally, the position of a point M inside K is defined by

M =

n∑
i=1

φi(M̂)Ai,
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where n is the number of nodes, Ai = FK(Âi) with Âi the nodes of the
reference element which map to Ai the nodes of the physical element, and φi
are the Lagrange polynomial functions defined such that:

φi(Âj) = δij and

n∑
i=1

φi = 1.

It is important to note that in order to define a complete finite element of
degree k on a simplex of dimension d (edge for d = 1, triangle for d = 2,
tetrahedron for d = 3), the number of (distinct) nodes needs to be equal to
Πd

j=1(k+j)

d! . Also, on a simplex, the reference coordinates (x̂, ŷ, ẑ) can be used
to define the simplex barycentric coordinates (u, v, w, t). For instance, for a
triangle we have: u = 1 − x̂ − ŷ, v = x̂ and w = ŷ, and for a tetrahedron
u = 1− x̂− ŷ − ẑ, v = x̂, w = ŷ and t = ẑ.
A point M of the simplex K can also be expressed in Bézier form using the
Bernstein polynomials Bdijlm as:

M =
∑

i+j+l+m=k

Bdijlm(u, v, w, t)Pijlm,

with Bdijlm(u, v, w, t) = d!
i!j!l!m!u

ivjwltm. For a triangle, m = 0. The points

(Pijlm)i+j+l+m=k, also called (Ci)1≤i≤n (see Figure 2) are the Bézier control
points and are directly related to the nodes (Ai)1≤i≤n.
For instance, to compute C5 (P1100) in Figure 2, we use the formula (see [3]
for details):

C5 =
4A5 −A1 −A2

2
.

In general and in the following sections, (Ai)1≤i≤d+1 are called vertices,
(Ai)d+2≤i≤n are called nodes, and (Ci)1≤i≤n are called control points.

Fig. 2 Correspondence between the control points and the nodes for a P 2 tetrahedron.

The validity of an element means that the associated mapping FK is a
diffeomorphism. It can be ensured if the minimum of the determinant JK
of the Jacobian matrix of the mapping FK is strictly positive everywhere
inside the element [7]. In the case of a simplicial element, Jacobian JK can
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be written as polynomial of degree d× (k− 1) in the barycentric coordinates
of the simplex, where d is the dimension of the simplex and k the degree of
the simplex. When the element is of degree 1 (e.g. straight-sided), it simply
means that the oriented volume/area is strictly positive. The Jacobian can
also be expressed in the Bernstein polynomial basis:

JK(u, v, w, t) =
∑

i+j+l+m=d(k−1)

B
d(k−1)
ijlm (u, v, w, t)NK

ijlm,

where NK
ijlm are the control coefficient of the Jacobian. These coefficients can

be explicitly found and have a geometrical meaning (see [3] for more details).
In the case of a P 2-triangle (see Figure 3), a corner and an edge control
coefficients [3] are for example:

NK
200 = 4 det(

−−−−−→
P200P110,

−−−−−→
P200P101), (1)

NK
110 = 2 det(

−−−−−→
P200P110,

−−−−−→
P110P011) + 2 det(

−−−−−→
P110P020,

−−−−−→
P200P101). (2)

N110   =

P002

P200

P101 P011

P110 P020

N200   =

P002

KK

Fig. 3 Vectors involved in the determinant for the computation of a corner (left) and an
edge (right) control coefficients of a P 2 triangle.

Consequently, a sufficient condition to prove that JK is strictly positive
everywhere is to ensure that all NK

ijlm are strictly positive, but this is a too

strong condition. On the contrary, if a NK
ijlm is negative in a corner, it means

that JK is negative somewhere inside the element as NK
ijlm is the exact value

of the Jacobian in this corner [7]. However, if a control coefficient lying on an
edge or on a face or in a volume is negative, it does not mean that JK is neg-
ative somewhere inside the element. We cannot conclude on the positiveness
of the Jacobian without any further analysis. In this case, a few iterations of
a De Casteljau’s algorithm [1, 7] (or a subdivision of the element [11]) are
required to have more accurate bound of the Jacobian. The idea of this refine-
ment on an edge/face/volume is to create new control coefficients from the
initial ones. These control coefficients can define several curves whose union
is the Jacobian curve on the edge/face/volume. This way, a more accurate
bound can be found.
For instance, let us consider an edge on a P 2 tetrahedron (see Figure 4 on
the left) with a negative edge control coefficient on it. The De Casteljau’s
algorithms can be decomposed in three steps (see Figure 4, middle, K super-
scripts are omitted for clarity):
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By construction, N3
3000 = JK( 1

2 ,
1
2 , 0, 0). So, if N3

3000 ≤ 0 then the element is
invalid. Otherwise,N3000, N

1
3000, N

2
3000, N

3
3000 (resp.N3

3000, N
2
2100, N

1
1200, N0300)

defines a P 3 curve representing the Jacobian between JK(1, 0, 0, 0) and
JK( 1

2 ,
1
2 , 0, 0) (resp. JK( 1

2 ,
1
2 , 0, 0) and JK(0, 1, 0, 0)) (see Figure 4, right).

Consequently, the initial analysis can be done on these two sub-curves. If
central control coefficients are positive, the Jacobian on the sub-element is
valid. Otherwise, De Casteljau’s algorithm is reapplied to this subcurve to
conclude. If one subcurve gives an invalid Jacobian then the whole curve is
invalid.
This way, a recursive method to find the sign of the minimum of the Jacobian
on the edge is established.

Fig. 4 De Castljau’s refinement on two control coefficients of the Jacobian curve on an edge

of a P 2 tetrahedron. Left, the initial curve with its control coefficients. Middle, construction
of the new control coefficients. Right, the initial curve divided in two curves with their

control coefficients.

Once the validity of the element is known, it is interesting to consider
a quality criterion for the shape of the element. The chosen one is the one
proposed in [8]:

Q = α
hSk
Vk︸ ︷︷ ︸
1

max(V1, Vk)

min(V1, Vk)︸ ︷︷ ︸
2

(
NK
max

NK
min

)1/d

︸ ︷︷ ︸
3

,

with:

• d the dimension, Sk the exterior surface of the polyhedron (in 2D, the half
perimeter of the polygon) defined by nodes and vertices (Ai)1≤i≤n

• Vk the volume of the polyhedron (resp. surface of the polygon) defined
previously

• h the element’s largest edge P k-length (e.g the length of the union of
straight-sided lines defined by the nodes)
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• V1 the volume/surface of the equivalent P 1 element, e.g the element defined
by the vertices

• NK
min (resp. NK

max) the smallest (resp. largest) control coefficient of the
Jacobian of the element

• α is a normalization factor, dependent of the dimension such that Q = 1

for a regular simplex, α =
√

3
6 in 2D and α =

√
3

36 in 3D.

This quality function is actually a product of 3 terms. 1 is only a generaliza-
tion of the P 1 quality function and measures the gap to the regular element.
2 measures the distance between the volume of the curved element and the

volume of the straight element and ensures the function to be greater than
1 [8]. And, finally 3 gives a measure of the distortion of the element, it can
detect if the element is invalid or almost invalid by taking an infinite value.
Note that if the element is straight, the standard P 1 quality function [6] is
recovered: Q = QP 1 = αhS1

V1
= αhρ where ρ is the inradius of the straight

element. Also, this quality function can easily be extended to anisotropic
meshes. Based on these definitions, this element-wise quality measure is be-
tween 1 and the infinity. The closer the element quality is to 1, the better the
quality is.

3 High-order mesh optimization

In the same way as we want to have an optimal P 1 mesh in terms of quality,
we want to have an optimal P k mesh. Several optimization techniques exist
to correct an invalid P k mesh [12, 16] and to optimize the geometrical accu-
racy [17].
The idea here is to extend two classic mesh quality-based optimization oper-
ators [1] to P 2 meshes to increase its quality.

3.1 P 2 swap operator

The swap operator (see Figure 5) locally changes the connectivity of the mesh
in order to improve its quality.
In 2D, it consists in flipping an edge shared by two triangles to form two new
triangles with the same four vertices (see Figure 5 left).
In 3D, two types of swap exist: face and edge swapping. The face swapping is
the extension of the 2D edge swapping, it consists in replacing the common
face of two neighboring tetrahedra by the edge linking the opposite vertices to
the face of each tetrahedron, also called 2→ 3. The edge swapping is a bit dif-
ferent. First, the shell of the edge to delete (e.g. the set of elements containing
this edge) is constructed. From a shell of size n, a non-planar pseudo-polygon
formed by n vertices is obtained. The swap consists in deleting the edge, gen-
erating a triangulation of the polygon and creating two tetrahedra for each
triangle of the triangulation thanks to the two extremities of the former edge.
These swaps are designated as n→ m with n ≥ 3, where n is the initial num-
ber of tetrahedra and m = 2(n− 2) is the final number of tetrahedra.
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Fig. 5 Left, the swap operation in 2D. Right, edge swap 3 → 2 and face swap 2 → 3. For

all these pictures, shells are in black, old edges are in red, new edges are in green.

For each possible swapped configuration, if the worst quality of all the
elements the shell is improved, the configuration is kept and will be in the
new mesh unless another swapped configuration of the shell provides a better
quality improvement. When it comes to connectivity-change moving-mesh
algorithms in 3D, a small local degradation of the shell’s worst quality has
been observed as an efficient way to improve the global quality of the mesh.
To generalize it to P 2 meshes, the inner nodes of the edges of the shell have
to be taken into account. For instance, for the P 2 case in 2D, there is one
node on the swapped edge and if we want the swap to be performed, we need
first to find an optimal position for the node in the swapped configuration
and then to check if this configuration improves the quality function (see
Figure 6). The key feature is therefore to find a functional whose optimum
will give the optimal position for the node in the swapped configuration in
term of quality.

Fig. 6 Three steps of P 2 swap in 2D.

In this context, the idea is to find a simple and smooth functional that
will be easy to optimize. The quality function is not a good candidate as it is
not smooth. We propose to consider the following functional (inspired from
the work of [16]):

f(X) =
∑

K∈S(e)

∑
i+j+k+l=d

ωijkl

(
NK
ijkl(X)

d!V1
− 1

)2

,
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where d is the dimension, X = [x1, ...,xn] is a set of n coordinates to be
optimized, X→ NK

ijk(X) is a function that depends, in the worst case on two
variables of X, S(e) is the shell of the initial edge e (e.g. the set of elements K
containing e), ωijkl is a weight function that measures the importance of each
control coefficient, and V1 is the volume of the straight-sided element deduced
from K. Note that X can either be empty (in which case no optimization is
required), or contain more than one node’s coordinates as it represents the
coordinate of the created edges of the shell.
In 2D, X is always a singleton and is simply noted x, weights ωijk (l = 0)
are equal to 2 for the corner coefficients and equal to 1 everywhere. In this
case, f has the following properties : it is a positive define quadratic form
as x → NK

ijk(x) is linear in x, which means that the functional as a unique
minimum. Also, on every regular swap configuration, the minimum of f in x
is the same as the minimum of the worst quality of the swapped shell in x.
Using the result of the optimization problem in the swap configuration gives
therefore a very good approximation of the best configuration that can be
obtained. Since the best swap configuration is found, we are able to conclude
if this swap will increase the quality or not.
In 3D, weights ωijkl are equal to 4 for a corner control coefficient, equal to 2 for
an edge control coefficient and equal to 1 otherwise. In this work, considered
swaps are 2 → 3, 3 → 2 and 4 → 4 which means that the functional of the
problem is in the worst case quadratic. This is a consequence of the fact that
control coefficients have a linear dependence with repect to a given control
coefficient. Also, the problem appears numerically to be definite positive on
a regular configuration. Note that these swaps represent ∼ 95% of the swaps
performed during a P 1 mesh optimization. For the other swaps (5 → 6,
6→ 8), the problem begins to be highly costly in term of CPU. The resolution
of these optimization problems is performed thanks to a L-BFGS algorithm
[13]. Note that even if the quality function is not used for the optimization
problem, it is mandatory to keep using it so that it degenerates into classical
swap operator when the elements are straight.

3.2 P 2 mesh smoothing

Mesh smoothing is a technique that consists in relocating some points inside
the mesh to improve the quality of the elements. In P 1, the idea is to relocate
each vertex Pi inside its ball of elements (see Figure 7). For each element Kj

in the ball of Pi, the opposite face to Pi denoted by Fj gives an optimal
position P optj . Then, the vertex is relocated considering a weighted average
of the proposed positions. If the proposed new location of the vertex does
not improve the ball configuration in term of quality, then a relaxation is
performed to check if an improved configuration exists between the original
location and the new one. The optimal configuration is computed as follows:

P optj = Gj +

√
2

3
hj

nj
||nj ||

,
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where Gj is the gravity center of Fj , hj is the average length of the edges
of Fj , and nj is the outward normal to Fj . The proposed position is then
computed with:

P opti =

∑
Kj∈Ball(Pi)

max(Q(Kj), Qmax)P optj∑
Kj∈Ball(Pi)

max(Q(Kj), Qmax)
,

where Qmax is a parameter to be defined. Here Qmax = 10. Note that if
every computed configuration decreases the quality, the smoothing is not
performed.

Initial configuration Each edge of the ball propose
an optimal new position for P New configuration

P P'

Fig. 7 Laplacian smoothing in two dimensions. Each element of the ball of considered

vertex Pi suggests an optimal position for Pi. The resulting new optimal position for Pi is

computed as a weighted average of all these proposed locations.

To extend it to P 2 meshes, the edges’ node needs to be taken into account.
The idea here, is to perform two independent smoothing operations:

• A vertex smoothing

The vertex smoothing is simply a generalization of the P 1 smoothing. The
optimal position of the vertex is computed in the same way as in P 1, and the
vertex is located exactly in the same way as before. In order to be consistent
with the P 1 vertex smoothing and to keep in the ball straight edges that are
initially straight, the displacement of all the inner nodes of the ball cavity is
set to half of the value of the displacement of the central vertex (see Figure 8).
In the exact same way as in P 1 if the final configuration does not improve
the quality, relaxation is performed the original location and the new one.

• A node smoothing.

The optimization of the node position follows the same algorithm as in the
P 2 swap operator to find its optimal position. For this purpose, functional f
can be re-used to find the optimal node position (see Figure 9). In this case,
there is always only one node coordinates to optimize and consequently the
optimization problem is quadratic. In the exact same way as in P 1, if the
final configuration does not improve the quality, relaxation is performed the
original location and the new one.
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Initial configuration in P2 Each edge of the P1 ball propose 
an optimal new position for P New configuration  in P2

P

P'

Fig. 8 P 2 laplacian smoothing in two dimensions. Each element of the P 1 ball of consid-

ered vertex P suggests an optimal position for P . The resulting new optimal position for
P is computed as a weighted average of all these proposed locations. The new position of

the nodes of the internal edges of the P 2 ball is then deduced by proportionality.

Fig. 9 P 2 node smoothing in two dimensions. The optimal position of the node of the

central edge is computed solving an optimization problem. Left, the initial configuration,

right, the optimized configuration.

4 Applications

4.1 High-order mesh generation by curving an initial
P 1 mesh

Most of the techniques to generate an high-order mesh is to start from a
P 1 mesh and then to curve it, in a way or another, in order to obtain a P k

mesh [5, 12, 14, 18]. The main reason to use a post-treatment is that all
existing P 1 mesh generation algorithms can be reused. It would be harder
to implement a directly high-order mesh generator. To curve meshes, used
models are numerous : PDE or variational models [5, 9, 14], smoothing and/or
optimization procedures [12, 15, 16], ... Our choice here is to use the linear
elasticity equation as a model for the motion of the vertices to generate a P k

mesh from a P 1 mesh.
For this purpose, let us consider the linear elasticity equation with Dirichlet
boundary conditions:

∇ · (σ(E)) = 0 , with E =
∇ξ + T∇ξ

2
, (3)
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where σ, and E are respectively the Cauchy stress and strain tensors, ξ is the
Lagrangian displacement. The Cauchy stress tensor follows the Hooke’s law
for isotropic homogeneous medium.
Here, Dirichlet boundary conditions represent the gap between the P k-nodes
of the initial straight boundary elements and their position on the real bound-
ary. For mesh boundary vertices, the gap is equal to 0.
To compute the gap at the nodes, a continuous representation of the sur-
face mesh is required. It can be either provided by CAD/analytical model
or deduced from initial P 1 mesh via a cubic reconstruction technique [20].
Once Dirichlet boundary conditions are set, the high-order finite element lin-
ear elasticity code is called. The use of an high-order FE resolution rather
than on a subdivided P 1 mesh aims the degrees of freedom to be intrinsically
represented. This gives more consistency to the obtained motion.
The elasticity problem using the high-order FEM provides the new position
of the internal vertices and nodes. It is then used to generate the high-order
mesh by moving the vertices and nodes of the initial straight mesh with the
associated values in the elasticity solution vector. If some elements remain
invalid after optimization, it is always due to non suitable boundary displace-
ments. In this case, the FEM solution is proportionally reduced in the vicinity
(boundary included) of the invalid element until global validity is obtained.
The process is summarized by Algorithm 1.

Algorithm 1 Mesh curving algorithm

1. Generate a P 1 mesh.

2. Perform P 1 mesh optimization pre-processing: generalized swapping and vertex smooth-

ing.
3. Perform cubic reconstruction of the boundary or use its analytical representation to set

Dirichlet boundary conditions for the linear elasticity equation.
4. Solve linear elasticity equation on the P 1 mesh with the FEM at the order of the wanted

mesh.

5. Generate the Pk mesh by moving the P 1 mesh with the solution of the linear elasticity.
6. Perform P 2 mesh optimization post-processing: generalized swapping and node/vertex

smoothing.

7. Check validity of Pk elements and locally relax the FEM solution if necessary or desired
until it is valid.

The major fact with this method is that the deformed mesh is only made
of isotropic or almost isotropic elements. In this context, the use of the elas-
ticity problem is efficient and always provides a valid mesh. Optimization in
the pre-processing makes elements more isotropic and therefore helps curva-
ture process to be more robust whereas optimization in the post-processing
improves the quality of the mesh and untangle invalid elements if any. Some
results in P 2 are presented below:
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Fig. 10 NASA RO37 rotor turbomachine meshes. From top to bottom, surface, coarse

and fine meshes. From right to left, P 1 and P 2 meshes. P 2 meshes are generated with

Algorithm 1 using a cubic reconstruction.



P 2 mesh optimization operators 13

Fig. 11 NASA Common Research Model aircraft meshes. From top to bottom, surface,
coarse and fine meshes. From right to left, P 1 and P 2 meshes. P 2 meshes are generated

with Algorithm 1 using a cubic reconstruction.
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4.1.1 NASA RO37 rotor

This example is a NASA RO37 rotor used for turbomachinery applications.
Two different meshes are considered (see Figure 10).

• A coarse mesh (see Figure 10, middle) with an initial number of 2 434 ver-
tices, 13 326 nodes and 10 970 tetrahedra. The initial mesh average quality
is 6.16with a worst quality of 1 682 due to the presence of sharp anisotropic
trailing and leading edges on the input wing surface mesh. Curving the
mesh without optimization provides an average quality of 5.3 with a worst
quality of 1 729. Optimization in post and pre processing increase average
quality to 2.5 and worst quality to 1 346. Note that the number of nodes
and tetrahedra is changed to respectively 11 598 and 10 862.

• A fine mesh (see Figure 10, bottom) with an initial number of 22 145
vertices, 137 393 nodes and 106 562 tetrahedra. The initial mesh average
quality is 2.14 with a worst quality of 111. Note that is better than with the
coarse mesh as the mesh is finer and therefore deals better with trailing
and leading edges. Curving the mesh without optimization provides an
average quality of 2.15 with a worst quality of 366 . Optimization in post
and pre processing increase average quality to 1.7 and worst quality to 27.5.
Note that the number of nodes and tetrahedra is changed to respectively
136 924 and 106 093.

In both cases, we clearly observe the benefits of the optimization that im-
proves the average and the worst quality of the final mesh. Note that the
worst quality of the final P 2 might be greater than the one of the initial P 1

mesh. This a consequence of the curving process that decreases the quality
of straight elements by curving them. We can also observe that the curvature
is not propagated a lot in the volume as it is not visible after 2 or 3 layers of
elements (see Figure 10, middle and bottom right). This is an illustration of
St Venant’s principle which states that the elasticity solution can be divided
into transmissive effects and local disturbances.

4.1.2 NASA Common research model aircraft

This example is the NASA Common Research Model, an aircraft model that
is massively used in both experimental and numerical simulations in fluid
dynamics (see Figure 11). Again, two meshes are considered:

• A coarse mesh (see Figure 11, line 3) with an initial number of 32 479
vertices, 173 468 nodes and 118 012 tetrahedra. The initial mesh average
quality is 2.49 with a worst quality of 271 due to the presence of sharp
anisotropic trailing and leading edges on the input wing surface mesh.
Curving the mesh without optimization provides an invalid configuration
with 10 invalid elements. Optimization in post and pre processing increase
average quality to 2.13 and worst quality to 271. Note that the number of
nodes and tetrahedra is changed to respectively 173 744 and 118 288.

• A fine mesh (see Figure 11, line 4) with an initial number of 101 422
vertices, 660 071 nodes and 535 672 tetrahedra. The initial mesh average
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quality is 2.28 with a worst quality of 1 314. Curving the mesh without
optimization provides an invalid configuration with 4 invalid elements.
Optimization in post and pre processing increase average quality to 1.4
and worst quality to 1 777. Note that the number of nodes and tetrahedra
is changed to respectively 659 545 and 535 146.

In both cases, optimization ensures a valid curved mesh at the end that
would not have been obtained without it. In the same way as in the previous
example, the curvature is not propagated a lot in the volume as it is not
visible after 2 or 3 layers (see Figure 11, line 3 and 4 right).

4.2 A moving mesh technique for high-order elements

In this section, a connectivity-change moving-mesh method inspired from [1]
for P 2 meshes is presented. In this case, the initial mesh is a P 2-mesh whose
boundary has an initial displacement. Using a linear elasticity analogy, the
resolution of the elasticity equation with high-order finite elements gives us a
displacement for all the vertices and nodes in the volume. Then the mesh is
moved to the new position. The motion of the vertices can be also enhanced
by using a local stiffness factor technique [1]. This technique locally multiplies
the tensor σ of linear elasticity equation by a factor proportional to JK(x)

−χ
.

χ determines the degree by which smaller elements are rendered stiffer than
larger ones. We use χ = 1 [1]. Afterwards, connectivity changes are performed
on the mesh to improve the quality of the elements. It is an efficient way to
get rid of any shearing that occurs in the mesh. The high-order moving-mesh
algorithm is summarized in Algorithm 2.

Algorithm 2 High-order moving mesh algorithm
1. Mesh deformation algorithm.

a. Compute body displacement from body translation and rotation data.

b. Solve linear elasticity equation with the FEM at the order of the mesh.
c. Perform high-order mesh optimization.

d. Check validity of the obtained displacement and restart it with a smaller body

displacement if necessary/desired until the obtained displacement is valid.

2. Move the mesh.

The studied case is a moving sphere of radius 0.6 inside a large control
volume (see Fig 12, line 1 left). At each iteration, the sphere is displaced of
0.08 in x direction. The initial mesh (see Fig 12, line 2) has an average quality
of 1.27 and a worst quality of 2.5. Three positions are considered (see Fig 12,
line 1 right) with and without connectivity-change: the initial position, the
position after 30 iterations (displacement of 4 radii) and the position after
50 iterations (displacement of 6.7 radii).
When no connectivity-change is done after each iteration, shearing appears in
the mesh which constraints the displacement. The high-order linear elasticity
resolution gives to the elements a curvature that fits to the displacement of
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Fig. 12 Case of the moving sphere inside a P 2 mesh. First line, description of the sphere

and description of the three considered positions of the moving sphere: the sphere is moving
from right to left. And then, from top to bottom, zoom in the vicinity of the sphere for

each position. Left, without mesh optimization operators. Right, with mesh optimization

operators.
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the sphere in order to move as far as possible the object when the mesh
connectivity is fixed. Indeed, in front of the sphere, the deformed elements
fit to the shape of the sphere, whereas in the wake, the curvature of elements
is made so that the shearing is reduced. This is a good point but the mesh
quality decreases drastically (see Fig 12, line 3 and 4 left): after 30 iterations,
average quality is 1.64 and worst quality is 5.7 and after 50 iterations, 84
elements are invalid. On the contrary, when mesh quality-based optimization
operators are considered with the moving mesh algorithm at each iteration,
the average and the worst quality do not change a lot (see Fig 12, line 3 and
4 right): after 30 iterations, average quality is 1.43 and worst quality is 3.1
and after 50 iterations, average quality is 1.48 and worst quality is 3.5.

5 Conclusion and perspectives

P 2 mesh quality-based optimization operators have been presented. These
operators ensure a valid P 2 mesh generation starting from a P 1 mesh and
enable to deal with connectivity-change P 2 moving-mesh methods. Note that
all these developments are suitable for isotropic meshes but do not work that
well on anisotropic meshes and do not work as is with boundary layer meshes.
The moving-mesh method gives similar results in term of quality as in P 1

which is promising for future research. The immediate next step will be to
generalize it to curved trajectories using [1]. Isotropic degree two meshes
were only the first step, further developments will be to generalize it to any
higher-order meshes and to deal with anisotropy using metric fields. When it
comes to boundary layer meshes, the goal is to extend the closed-advancing
boundary layer mesh generation method of [2] to high-order meshes in order
to generate directly curved boundary layer meshes. To this end, it is required
to:

• Start form an initial high-order mesh that is obtained using the method
of Section 4.1

• Consider the connectivity-change moving mesh method for high-order
mesh presented in Section 4.2 with curved trajectories to deform the ini-
tial high-order mesh when the boundary layer mesh is inflated inside the
domain

• Generate directly high-order elements in the boundary layer when it is
inflated using the advancing layer approach presented in [2].

The future work to do is the last item. The advancing layer method will be
modified to take into account the high-order boundary layer elements. The
new position of the nodes in the boundary layer will be given using the same
process as the one for proposing the new position for the vertices. High-order
quality functions will be used to check the quality of the boundary layer
elements when they are generated.
Note that more accurate normals will be obtained as they will be computed on
the high-order mesh instead of a P 1-straight mesh. This is an important point
as the quality of the boundary layer is highly dependent on the accuracy of
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the normal computations [2]. Also, curved boundary layer mesh generation
will not need the creation of a new tool and should be more robust and
efficient as it directly controls the high-order mesh quality.
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