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Abstract An improved Lepp based, terminal triangles centroid algorithm for cons-
trained Delaunay quality triangulation is discussed and studied. For each bad quality
triangle t, the algorithm uses the longest edge propagating path (Lepp(t)) to find a
couple of Delaunay terminal triangles (with largest angles less than or equal to 120
degrees) sharing a common longest (terminal) edge. Then the centroid of the termi-
nal quadrilateral is Delaunay inserted in the mesh. Bisection of some constrained
edges are also performed to assure fast convergence. We prove algorithm termina-
tion and that a graded, optimal size, 30 degrees triangulation is obtained, for any
planar straight line graph (PSLG) geometry with constrained angles greater than or
equal to 30 degrees.

1 Introduction

Lepp bisection algorithm [10, 3] is an efficient reformulation of previous longest
edge algorithm for triangulation refinement, that for each target triangle follows the
longest edge propagating path (Lepp) to find a couple of terminal triangles sha-
ring a common longest edge (terminal edge), which are then refined by longest
edge bisection. Consequently, local refinement operations are used, and conforming
triangulations (where adjacent triangles either share a common edge or a common
vertex) are maintained throughout the whole refinement process. Due to the pro-
perties of the iterative longest edge bisection of triangles, refined triangulations that
maintain the triangulation quality (bounded smallest angle) are obtained, while the
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proportion of quality triangles increases as the refinement proceeds. Based on the
properties of terminal triangles and terminal edges it was also proved that optimal
size triangulations are obtained [3].

A Lepp Delaunay algorithm for quality Delaunay triangulation, based on the De-
launay insertion of the midpoint of the terminal edge, was introduced by Rivara [10]
and studied by Bedregal and Rivara [2]. An algorithm based on computing the cen-
troid Q of the terminal triangles which is Delaunay inserted, was presented in [11]
without proving termination, neither optimal size property. In this paper we study
a tuned, order independent algorithm (where the size of the refined triangulation
is almost equal independently of the triangle processing order), based on the Lepp
centroid algorithm discussed in [11].

Alternative Delaunay refinement algorithms, based on selecting the circumcenter
(or a point close to the circumcenter) of each skinny triangle which is Delaunay in-
serted in the triangulation have been studied by Ruppert [14], Shewchuk [16], and by
Erten an Üngor [5]. Lepp Delaunay algorithms and circumcenter based algorithms
have analogous practical behavior, as shown in the empirical study of reference [11],
where the Triangle software [16] (without later improvement criteria) was com-
pared with Lepp Delaunay algorithms. It is worth noting however that Lepp based
algorithms have the advantage of being order independent, in the sense that they
construct triangulations of approximately the same size independently of the proce-
ssing order of the bad quality triangles. Consequently they are simpler methods than
circumcenter based algorithms, easy to implement and easy to parallelize. On the
other hand, the implementation of circumcenter algorithms is rather cumbersome,
and requires processing triangles in bad-quality order. Section 6.3 of reference [4]
discusses several recommendations to implement Ruppert’s algorithm efficiently,
which include maintaining a queue of skinny and oversized triangles throughout the
refinement process.

Lepp algorithms. These are longest edge algorithms formulated in terms of the
concepts of terminal edges, terminal triangles and longest edge propagating path
[10, 3, 2]. An edge E is a terminal edge in triangulation τ if E is the longest edge
of every triangle that shares E. The triangles sharing E are called terminal triangles
(edge AB in Fig 1 (a)). If E is shared by two terminal triangles then E is an interior
edge; if E is shared by a single terminal triangle then E is a boundary edge.

For any triangle t0 in τ , the longest edge propagating path of t0, Lepp(t0), is the
ordered sequence of increasing triangles {t j}N+1

0 such that t j is the neighbor trian-
gle on the longest edge of t j−1 and where longest edge t j > longest edge t j−1, for
j = 1, . . . ,N. The process ends by finding the terminal edge E and a couple of asso-
ciated terminal triangles tN , tN+1. In Figure 1 (a), Lepp(t0) = {t0,t1,t2,t3}.

For each target triangle t, the generic Lepp based algorithms find an associated
local largest edge shared by a couple of terminal triangles. Then a point is selected
inside the terminal triangles (terminal edge midpoint or terminal triangles centroid)
and inserted in the mesh. In the Lepp bisection algorithm, the midpoint M of the ter-
minal edge is inserted by longest edge bisection of the terminal triangles as shown in
Figure 1 (b). In the Lepp centroid Delaunay algorithm, the centroid Q of the termi-
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nal triangles is selected and (constrained) Delaunay inserted in the mesh, as shown
in Figure 1 (c). The process is repeated until the target triangle t is destroyed.

Algorithm Generic Lepp-based algorithm
Input : triangulation τ , set S of triangles to be refined / improved
Out put : Refined triangulation τ ′

1: for each t in S do
2: while t remains in τ do
3: Find Lepp(t), terminal triangles t1, t2 and terminal edge E ( t2 can be null)
4: Select point P inside terminal triangles, insert P in the mesh and update S
5: end while
6: end for

Fig. 1 (a) AB is a termi-
nal edge shared by termi-
nal triangles {t2, t3} and
Lepp(t0) = {t0, t1, t2, t3}; (b)
First step of Lepp-bisection
algorithm for refining t0; (c)
First step of Lepp Delaunay
centroid algorithm.
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This paper presents improved and new results in the following senses:

i) In a previous paper, Rivara and Calderon [11] discussed a Lepp Delaunay cen-
troid algorithm where for each selected couple of terminal triangles t1, t2 (with
non constrained terminal edge) the centroid of the quadrilateral formed by t1, t2
is selected and Delaunay inserted in the mesh. In the tuned algorithm of this pa-
per, if t1 (or t2) is a bad quality triangle with constrained second longest edge E,
the midpoint of E is (constrained) Delaunay inserted in the mesh, (see section 3),
which significantly reduces the number of points inserted close to the constrained
edges.

ii) In this paper we present new rigorous results on algorithm termination and on
the construction of optimal size triangulations, based on the properties of Lepp
sequences proved in [3].

iii)We prove that the algorithm produces 30o quality triangulations for any pla-
nar straight line graph (PSLG) geometry with constrained angles greater than or
equal 30o. This is a strong new result. Note that the proof in Ruppert’s algorithm
requires constrained angles ≥ 90o, while the modified algorithm of Shewchuk
requires constrained angles ≥ 60o.

iv)We prove that the practical behavior of the tuned algorithm is independent of
the triangles processing order, which is not the case of circumcircle based algo-
rithms.
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More specifically, in this paper we study a tuned Lepp Delaunay centroid al-
gorithm by integrating previous, revisited and new results needed in the algorithm
analysis. The following issues are considered:

• The simple insertion of the centroid Q over a couple of Delaunay terminal trian-
gles t1,t2, obtained by joining Q with the vertices of t1,t2, improves the triangles
obtained by longest edge bisection. This is an intermediate operation used in the
algorithm analysis. In addition the Delaunay mesh insertion operation of Q im-
proves even more the triangles involved.

• Most of the bad obtuse triangles have largest angle > 120o, and are eliminated
by edge swapping, assuming that an edge swapping Delaunay algorithm is used.

• The average Lepp size is small and tends to be 2 as the refinement proceeds. This
result was proved for triangulations obtained by the Lepp bisection algorithm and
extends to the algorithm of this paper.

• The constrained Delaunay triangulation of any PSLG data defines an intuitive
edge distribution function which identifies edge details and non edge details in
the PSLG geometry. We prove that the algorithm constructs a graded triangula-
tion adapted to the geometry details. The edge details are not refined unless a
close smaller detail induces its refinement.

• We use the simple (constrained) Delaunay triangulation associated with the
PSLG data, as an intuitive edge distribution function, to prove termination and
optimal size property, instead of using the local feature size function introduced
by Ruppert [14].

• Our algorithm does not require the edge encroachment test used in Ruppert’s al-
gorithm, but a simple test based on triangle constrained edges.

• The mathematical properties of the mesh operations allows us to prove that 30o

triangulations are obtained for constrained angles≥ 30o. Note that Ruppert algo-
rithm requires 90o constrained angles [14], and modified algorithm of Shewchuk
requires constrained angles ≥ 60o [16].

2 Previous results

The iterative longest edge bisection of individual triangles was studied by Rosenberg
and Stenger [13] and by Stynes [18, 19]. This process produces a finite number of
non-similar triangles with a bounded smallest angle, while the proportion of good
triangles (quasiequilateral triangles) increases as the refinement proceeds.

Definition 1. Given a triangle t(ABC) of vertices A, B, C, and edges AB≥ BC≥CA,
the longest-edge bisection of t (or simply bisection of t) is performed by joining the
midpoint M of AB with the opposite vertex C (see Fig. 2 (a)).
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Fig. 2 (a) Longest-edge bi-
section of triangle t(ABC) (b)
First longest edge bisections
that define a quasiequilateral
triangle t(ABC).
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Definition 2. Triangle t(ABC) of edges AB≥ BC ≥CA is quasiequilateral if AC ≥
max{AB/2,CM} and MC ≥ BC/2 (see Fig 2 (b)).

Note that for quasiequilateral triangles (see Figure 2 (b)) after the first median
MC is introduced, the next longest edge bisections only produce medians parallel
to the edges of the initial triangle ABC, which implies that at most, four similarly
distinct triangles are produced. Furthermore the following results hold [13, 18, 19] :

A1. Given any triangle t0 of smallest angle α0, the iterative longest edge bisection of
t0 and its descendants produces a finite set S(t0) of similarly distinct triangles.
Furthermore each triangle t in S(t0) has smallest angle αt such that αt ≥ α0/2.

A2. For any quasiequilateral triangle tqeq, the triangle set S(tqeq) has at most, four
similarly distinct triangles, all of which are also quasiequilateral.

A3. For any non quasiequilateral triangle t0, consider the sequence of triangle sets Q j
defined as follows: Q0 = {t0}, and for j≥ 1, Q j is obtained by longest edge bisec-
tion of the triangles of Q j−1. Then the triangle sets Q j improve with j as follows:
both the percentage of quasiequilateral triangles and the area of t0 covered by
these triangles, monotonically increase as the iterative refinement proceeds.

The triangulations obtained by the Lepp bisection algorithm are conforming and
inherit properties A1, A2, A3 as follows: the iterative local/global use of the Lepp
bisection algorithm (and previous longest edge algorithms) produces sequences of
nested, refined and conforming triangulations {τ j} such that B1, B2 hold [10, 3]:

B1. For any triangle t0 in τ0, the refined triangles nested in t0 belong to a finite set
S(t0) of similarly distinct triangles, all of which have smallest angle α ≥ α0/2,
where α0 is the smallest angle of t0.

B2. The refined triangulations {τ j} improve with j in the following senses: both the
percentage of quasiequilateral triangles, and the area covered by these triangles,
increase as the refinement proceeds.

More recently Bedregal and Rivara [3] proved that there exists a close relationship
between quasiequilateral triangles and terminal triangles (the proportion of terminal
triangles increases as quasiequilateral triangles increases), which imply B3. Further-
more bounds on the number of triangle partitions performed inside a triangle in a
Lepp sequence [3] (assertion B4) together with B3, implies B5.

B3. The proportion of terminal triangles increases (approaching 1) as the refinement
proceeds and the average length of Lepp(t) tends to be 2 as the refinement pro-
ceeds. Furthermore the Lepp Delaunay algorithms inherit the same properties.
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B4. The number of longest edge bisections performed in the interior of a triangle
t to make it conforming in a refining Lepp sequence, is constant and less than
3 in most cases. This constant is bounded by O(log2(1/α)) for triangles with
arbitrary smallest angle α .

B5. Lepp bisection algorithm produces optimal size triangulations.

Finally, the properties of Delaunay terminal triangles [10, 17], play a crucial
role in Lepp Delaunay algorithms, and specifically in the algorithm of this paper.
Couples of Delaunay terminal triangles ABC, ABD (see Figure 3) are neighbor tri-
angles that simultaneously satisfy that AB is the common longest edge of the both
triangles, and that triangles ABC and ABD are locally Delaunay which implies that
vertex D is outside the circumcircle of triangles ABC. Both conditions together im-
ply that vertex D must belong to the shadowed region R limited by the circumcircle
of triangle ABC and the circles of vertices A, B and radius AB. In the case that ]
ACB = 120o, R reduces to one point D′ (triangle AD′B is equilateral). Consequently
for ] ACB > 120o, R is empty and the following results hold:

Theorem 1. For any pair of Delaunay terminal triangles t1, t2 sharing a terminal
edge AB it holds:
a) Largest angle (ti) ≤ 2π/3 for i=1,2
b) At most one of the triangles t1, t2 is obtuse

Fig. 3 Delaunay terminal
triangles ABC, ABD; vertex D
belongs to region R.
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Since the algorithm of this paper inserts points in the interior of couples of De-
launay terminal triangles, only triangles with largest angle less than or equal to 120o

can become a terminal triangle throughout the algorithm processing.

Definition 3. We will say that t is a PD terminal triangle (potentially a Delaunay
terminal triangle) if the largest angle(t)≤ 120o.
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3 The tuned algorithm

We first introduce the following mesh operation: for bad quality terminal triangle t
with constrained second longest edge CB, the constrained Delaunay insertion of the
midpoint of CB is performed (see Figure 4). This operation reduces the number of
interior points inserted close to the constrained edges. Note that the previous Lepp
Delaunay midpoint algorithm requires this operation to guarantee convergence [10].
The previous Lepp Delaunay centroid algorithm does not use this operation since the
centroid selection avoids the introduction of collinear points, but introduces more
points than the tuned algorithm of this paper [11].

Fig. 4 For constrained second
longest edge CB, the midpoint
of CB is constrained Delaunay
inserted in the mesh.
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Algorithm Tuned Terminal Triangles Centroid Delaunay Algorithm
Input: CDT τ associated with PSLG data, angle tolerance θtol
Out put: Refined triangulation τ f with angles ≥ θtol .

1: Find S set of bad quality triangles
2: for each t in S (while S 6=∅) do
3: while t remains unrefined do
4: Use Lepp(t) to find Delaunay terminal triangles t1, t2 and terminal edge E
5: if E is constrained (this includes t2 null) then
6: Perform Constrained Delaunay insertion of midpoint of E
7: else
8: if there exists t (t1 or t2) such that αt < θtol and

second longest edge L is constrained then
9: Perform constrained Delaunay insertion of midpoint of L

10: else
11: Compute centroid Q of terminal triangles, and perform constrained

Delaunay insertion of Q
12: end if
13: end if
14: Update S
15: end while
16: end for
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4 Better angle bounds on first bisections of triangles

We show that the first longest edge bisection of a triangle produces a better triangle
tB (see Figure 5) and a bad obtuse triangle tOB [17]. Assume the triangle of Figure 5
where AB≥ BC ≥ AC with the notation shown in this figure.

Fig. 5 Notation for longest
edge bisection. Angles in
longest edge bisection of
triangle ABC with AB ≥
BC ≥ AC.
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It is rather easy to see that if t is a right angled triangle then α1 = α0, β1 = β0,
AM = CM, while if t is an acute triangle then α1 < α0, β1 < β0, AM < CM; and
if t is an obtuse triangle then α1 > α0, β1 > β0, AM >CM. These properties allow
proving most of the assertions of Lemma 1 [17]. The bound on α1 follows from the
strong property A1.

Lemma 1. The following angle bounds hold [17].m

(a) α1 ≥ α0/2, α2 ≥ 90o, β2 ≤ 90o, β1 ≥ π/6, β1 ≥ α1
(b) β2 = α0 +α1 ≥ 3α0/2
(c) if t is obtuse, then α1 > α0 and β2 ≥ 2α0
(d) if t is acute, then α1 < α0 and tB is acute

Next we introduce the taxonomy of Figure 6, which is a variation of those pre-
sented in references [17, 9]. This is obtained by fixing the longest edge AB of tri-
angle ABC considering AB ≥ BC ≥CA, and studying which is the longest edge of
triangle AMC and the longest edge of triangle CMN (see Figure 2 (a)) according to
the position of vertex C. Thus, the half circle of vertex M and radius AM separates
obtuse and acute triangles. Arcs AR and MR respectively correspond to isosceles
triangles with edges AM =CM and edges AC = AM; while arc ZW corresponds to
the circle of center Ñ (where AÑ = AB/3) and radious AÑ, corresponding to the
triangles for which CB = 2CM. The set of quasiequilateral triangles is the union of
region R1 (acute triangles) and region R2 (obtuse triangles). Finally arc AW corre-
sponds to points C for which the largest angle is equal to 120◦, defined by the circle
of center W ′ and radious WW ′, where points W,W ′ are symmetric with respect to
line AB. By studying the boundaries of regions R1 and R2 it is easy to see that
R1

⋃
R2 correspond to quasiequilateral triangles and that most of these triangles

(vertex C by above line SW ) have the smallest angles ≥ 30◦. Only for vertex C in
region SZW , smallest angle > 27.88◦ (the worst case corresponds to C = Z where
tg(α0(Z)) =

√
7/5). Note that most of the triangles of R3 also have the smallest

angle ≥ 30◦.
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Lemma 2. (a) For quasiequilateral triangles in region T SWX, α0 ≥ 30o; (b) For
quasiequilateral triangles in region SZW, α0 > 27.88.

Next we extend the notation of Figure 5. We will call α0(t), α1(t) to the angles α0,
α1 obtained by longest edge bisection of t(ABC); in addition we call α0(tB), α1(tB)
to the α0, α1 angles obtained by longest edge bisection of tB.

Lemma 3. Given any triangle t, then:
(a) If α0 ≤ 30o, then α1 ≥ 0.79α0 and β2 ≥ 1.79α0. Furthermore, the ratio α0/α1

increases (α1 approaching α0) while α0 decreases.
(b) If α0 ≥ 30o, then α0(tB)≥ 30o and tB is quasiequilateral.
(c) If t is quasiequilateral with α0 ≥ 30o, then α0(tB)≥ 30o and α0(tOB)≥ 27.88o.
(d) If t is a PD-terminal triangle then tB is a PD-terminal triangle, and α0(tB) ≥

Min{3/2α0(t),30o}. Furthermore, if α0 ≥ 20o, then smallest angle(tB)≥ 30o.

Fig. 6 Taxonomy on longest
edge bisection of triangles
t(ABC) with AB≥ BC ≥CA.
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Proof. The proof of item (a) follows by studying the case of acute triangles of region
UAS in Figure 6, where the worst case corresponds to point U for which α1 ≈
23.79o. To prove assertion (d) we consider the case where t is acute. Note that in
Figure 5, α0(tB) = Min{β0,β1,β2}, where β2 ≥ 3/2α0(t). On the other hand, β0 is
the smallest angle of tB in Figure 6, when edge AM is the shortest edge of the tB,
which occurs for acute t with C either in region R1 or in region R2; and the worst
case occurs for the equilateral triangle where β2 = 30o (see Figure 5). Assertion (b)
follows from Lemma 1, while assertion (c) follows from Lemma 2. ut

In Lemma 4 we further quantify the notion that the triangle tB in Figure 5 is a
better triangle than t following the ideas of reference [17]. In Lemma 5 we further
characterize PD-terminal triangles. The non PD terminal triangles correspond to
very obtuse triangles of region WAM in Figure 6
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Lemma 4. If tB is acute and α0 ≤ 30o, then α1(tB)≥ min{1.4α0(t),30o}.

The proof is rather complex and can be found in reference [17].

Lemma 5. Given any PD-terminal triangle t. Then:
a) If t is acute and α0 ≤ 30o, then tOB is a non-PD terminal triangle.
b) If t is obtuse and α0 > 22o, then tOB can be a PD terminal triangle.

Proof. Part a) follows from the fact that for acute triangles α1 < α0, which in turn
implies α1 +α2 < 60o and consequently tOB is a non-PD terminal triangle. Part b)
follows from the fact that for obtuse triangles, α1 > α0. In [12] it was proved that
largest angle equal to 120o and α1 +α0 = 60o implies that α0 > 22o. Thus, only
for some triangles with α0 > 22o it can hold α1 +α0 > 60o and tOB can be a PD
terminal triangle. ut

5 Improvement properties of the centroid insertion

In what follows we consider that triangle t is good if α0 ≥ 30o. The algorithm of
this paper in general performs (constrained) Delaunay insertion of the centroid Q of
couples of Delaunay terminal triangles (both triangles with largest angle ≤ 120o).
To analyze triangle improvement, the following intermediate simple centroid inser-
tion is needed: consider the centroid Q of a couple of Delaunay terminal triangles
as shown in Figure 7. The simple centroid insertion is then performed by joining
Q with the four vertices, instead of performing longest edge bisections. This ope-
ration corresponds to a Laplacian smoothing of the terminal edge midpoint M and
improves the triangles obtained by longest edge bisection. Note that the Laplacian
smoothing works very well for convex geometries [6, 7], and couples of terminal
triangles always define a convex quadrilateral.

Lemma 6. The simple centroid insertion has the following properties: (i) It im-
proves the worst angle obtained by the longest edge bisection; (ii) It avoids the
reproduction of a bad quality triangle; (iii) It improves the lightly bad angles ob-
tained by the longest edge bisection of good triangles.

Fig. 7 Centroid refinement of
terminal triangles ABC, ADB.
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6 Algorithm analysis

Consider a general PSLG (planar straight line graph) geometry, defined by a set
of points, edges and eventually polygonal objects defining exterior boundaries and
interior holes. Any PSLG geometry has edge details and non-edge details. Edge
details are small edges in the PSLG data, while non edge details are defined by two
close isolated interior points, an isolated point close to an input edge, two edges
with close points, constrained angles either over the boundaries or interior to the
geometry, and vertices over these angles. For an illustration see Figure 8 (a).

Fig. 8 (a) PSLG geometry;
(b) constrained Delaunay
triangulation identifies edge
details and non edge details.

(a) (b)

Note that the constrained Delaunay triangulation of the input PSLG data intui-
tively defines an edge distribution function to which an optimal size good quality
triangulation should be adapted. More specifically this identifies edge details and
non-edge details by means of skinny triangles with associated (constrained or non
constrained) small edges, very obtuse triangles with largest angled vertex close to
an edge data, and triangles with constrained smallest angle. Figure 8 (b) shows the
constrained Delaunay triangulation of the example of Figure 8 (a). We will prove
that the algorithm of section 5 produces a graded quality mesh with smaller good
quality triangles around the PSLG geometry details. The following Lemma assures
that 30o constrained angles always produce quality triangles:

Lemma 7. Let t be any triangle with 30o constrained angle. Then (a) If t is obtuse,
the longest edge bisection of t produces quality triangles (part (c) of Lemma 1); (b)
If t is acute the tuned algorithm inserts three points in the constrained edges, as
shown in Figure 9 to produce quality triangles (δ is the worst angle > 34o).

Fig. 9 Worst case of acute
isosceles 30o triangle.
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Theorem 2. Consider any PSLG geometry with constrained angles ≥ 30o and the
input constrained Delaunay triangulation τ0 associated with the PSLG data. Then
for angle tolerance θtol = 30o,
(a) The algorithm finishes with a graded 30o constrained Delaunay triangulation.
(b) The final triangulation is size optimal.

Proof. Given θtol = 30o, consider the bad triangles with angles less than 30o. To
prove part (a), we will study five cases of triangles processing:

Case 1. Non PD terminal triangles. Each bad quality triangle t (with largest angle
> 120o either with one or two bad angles) is a non PD terminal triangle and conse-
quently is eliminated by swapping edge AB either by processing t or by processing
a Lepp-neighbor bad quality triangle. This operation produces locally more equila-
teral triangles.

Case 2. Bad PD terminal triangles. Consider a couple of non constrained Delaunay
terminal triangles. Let t(ABC) with AB ≥ BC ≥ AC be the worst triangle in the
couple with α0 < 30o. Then:
• According to part(a) of Lemma 3, the longest edge bisection of t introduces mid-
point M of AB and a better triangle tB(ACM) with α0(tB) ≥ 1.79α0, and a bad ob-
tuse triangle tOB. The simple centroid insertion of Q corresponds to the Laplacian
smoothing of point M, which improves the worst angles of tOB (introduced by the
longest edge bisection) and avoids the repetition of a triangle similar to triangle
ABC. This operation can be seen as a first step of the Delaunay insertion of point Q.

Fig. 10 Triangle ABC with
α0 < 30o. Better triangle ACQ
and CQB are obtained with
respect to the longest edge
bisection.
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• The centroid Q is Delaunay inserted in the mesh (see Figure 10). If triangle CQB
is a non PD terminal triangle, then triangle CQB is eliminated (and improved) by
swapping edge CB, either when Q is Delaunay inserted (if there exists a vertex
inside the (big) circumcircle of triangle CMB), or by later processing CBQ, or by
processing a neighbor bad quality triangle. If triangle CQB is a PD terminal triangle
and still bad, then by processing triangle CQB this can become a terminal triangle
and the centroid Q̃ of CQB and its neighbor triangle is inserted, which improves the
angles.
• According to part (d) of Lemma 3, for α0 < 20o, CAQ can still be bad. Then for
small α0, a finite sequence of points Qi can be inserted in the mesh until a good
triangle CAQn is obtained (see Figure 11). The process finishes without refining
edge AC (AC is a local smallest edge), unless a close smaller edge induces neighbor
refinement. See the termination analysis for more details.
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Fig. 11 Points Qi are intro-
duced until triangle CAQn is
good.
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Case 3. Terminal triangles with constrained edges. For Delaunay terminal trian-
gles with constrained terminal edge, the constrained Delaunay insertion of the ter-
minal edge midpoint is performed and the improvement process continues. For bad
triangles with constrained second edge E, the simple constrained Delaunay inser-
tion of midpoint of E is performed, which accelerates convergence (section 3).
Case 4. Couples of good Delaunay terminal triangles. For couples of good quality
Delaunay terminal triangles with smallest angles ≥ 30o, the centroid Q of the ter-
minal quadrilateral is inserted, which produces more equilateral triangles than those
obtained by longest edge bisection. This is equivalent to a Laplacian smoothing of
the terminal edge midpoint introduced by the longest edge bisection of the termi-
nal triangles. This operation improves eventual angles less than 30o that could have
been introduced by the longest edge bisection.
Case 5. Triangles with 30o constrained angles. Here, good quality triangles are
obtained inside t by inserting one or three points over the constrained edges.

Termination. The proof on termination is based on the fact that for skinny triangles,
the smallest edge AC is never refined, unless there exists a smaller bad quality trian-
gle t∗ such that Lepp(t∗) contains triangle AQnC (see Figure 12). Thus the algorithm
stops when every triangle of local smallest edge in τ0 becomes good (smallest an-
gle ≥ 30o), and every remaining intermediate bad quality triangle t is processed or
eliminated by edge swapping; and every intermediate almost good terminal triangle
is improved by centroid insertion. This produces a good quality triangulation graded
around the PSLG geometry details.

Optimal size property. This follows from the termination reasoning together with
the fact that the average Lepp size tends to be 2 as the refinement proceeds. ut

Fig. 12 Neighbor triangle
ACF induces refinement of
triangle AQnC to obtain a
graded refined triangulation
around edge FA.

nQ

A

F

C

B

Theorem 3. The algorithm is order independent, where the mesh size is approxi-
mately the same by processing the bad triangles in arbitrary order.

Proof. The set of terminal edges introduces a mesh partition so that every triangle
in the partition reaches the same terminal edge. ut
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7 Empirical study and concluding remarks

In Table 1 we compare our algorithm with results reported by Shewchuk [16] on
Ruppert’s algorithm (without the off-center preprocess of Üngor). Next we present
results on the behavior of the Delaunay centroid algorithm for the six geometries of
the Figure 13. Table 2 includes final mesh sizes for θtol = 30o,33o,34o,35o obtained
with our algorithm. See the final triangulations for θtol = 30o for these examples in
Figure 13. Table 3 compares the number of triangles obtained with our software,
with respect to those obtained with the current version of Triangle [15] which pro-
cesses skinny and oversized triangles in order, and includes a boundary preprocess
technique due to Üngor [5] to minimize the size of the final triangulation. A ne-
gative number means our software introduces less triangles than Triangle, while the
-∞ symbol means that Triangle does not converge.

Table 1: Algorithms comparison, Key test case, θtol = 33o

Del centroid algorithm Ruppert’s algorithm [16]

Triangle processing without order without order Ordering triangles

Final Mesh size 229 450 249

It should be noted that: (i) our results are not far from those obtained by the
current optimized version of Triangle; (ii) our software works properly until θtol =
35o for all the test cases, while Triangle fails for 50% of the test cases (-∞ symbol)
for θtol = 35o; iii) Note that for the key test case and θtol = 33o, our algorithm
produces a final triangulation with 229 triangles against 450 triangles obtained with
pure Ruppert algorithm (first-come first split bad quality triangle) and 249 triangles
by always processing the worst existing triangle, as reported by Shewchuk [16].

Table 2: Mesh sizes for Delaunay centroid algorithm as a function of θtol

Superior Neuss Square Chesapeake Long Key
lake geometry bay rectangle geometry

size(τ0) size(τ0) size(τ0) size(τ0) size(τ0) size(τ0)
528 3,070 9 14,262 2 54

θtol size(τ f ) size(τ f ) size(τ f ) size(τ f ) size(τ f ) size(τ f )

30 1,835 8,338 54 36,803 19 170
33 2,273 9,939 65 45,883 22 229
34 2,512 11,054 70 52,027 25 262
35 3,017 12,742 81 63,138 27 349
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Fig. 13: Quality meshes for θtol = 30o (a) Superior lake shape; (b) Neuss shape; (c)
Square with skinny triangles; (d) Chesapeake bay shape; (e) Long rectangle; (f) Key
shape.

Table 3: Percentage of triangles added with respect to current version of Trianglea.

Superior Neuss Square Chesapeake Long Key
θtol lake geometry bay rectangle geometry

30 0.44 13.18 24.07 4.82 -15.79 22.94
33 -5,28 12,01 16.92 2.41 0.00 10.92
34 -5.29 -2.70 20.00 3.61 -68.00 -8.78
35 -∞ -∞ 24.69 -∞ -207.41 5.44

a Triangle processes skinny and oversized triangles in order and uses a boundary preprocess step.
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Furthermore, for all the test cases, the average Lepp size is less than 3 from
the beginning and quickly becomes less than 2.5, as the refinement proceeds. The
algorithm is an easy to implement, order independent, robust method, suitable for
use in adaptive finite element methods where good quality meshes are needed to
assure convergence. With an adequate triangle data structure that keeps information
on neighbor triangle, the refinement is of cost O(N) where N is the number of points
inserted.

In three dimensions, Balboa, Rodriguez-Moreno and Rivara [1] have introduced
a simple and effective mesh improvement algorithm for tetrahedral meshes, which
generalizes some of the ideas presented in this paper. Note that for any tetrahedron
t, Lepp(t) corresponds to a submesh with several (more than two) terminal edges,
and associated terminal stars. We call terminal star to a set of tetrahedra that share a
common (terminal) largest edge in the mesh. Two new terminal star operations are
alternatively used in the mesh improvement algorithm: the simple centroid insertion
of the terminal star (that generalizes the simple centroid insertion of section 5 in two
dimensions), and swapping of the terminal edge as described by Freitag and Olliver-
Gooch [8], but selectively applied to the terminal stars. The operation that most
improves the mesh is performed whenever significant improvement is achieved. For
more details see reference [1]
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