
Exact fast parallel intersection of large 3-D
triangular meshes

Salles Viana Gomes de Magalhães, W. Randolph Franklin and Marcus Vinícius
Alvim Andrade

Abstract We present 3D-EPUG-OVERLAY, a fast, exact, parallel, memory-efficient,
algorithm for computing the intersection between two large 3-D triangular meshes
with geometric degeneracies. Applications include CAD/CAM, CFD, GIS, and addi-
tive manufacturing. 3D-EPUG-OVERLAY combines 5 separate techniques: multiple
precision rational numbers to eliminate roundoff errors during the computations;
Simulation of Simplicity to properly handle geometric degeneracies; simple data
representations and only local topological information to simplify the correct pro-
cessing of the data and make the algorithm more parallelizable; a uniform grid
to efficiently index the data, and accelerate testing pairs of triangles for intersec-
tion or locating points in the mesh; and parallel programming to exploit current
hardware. 3D-EPUG-OVERLAY is up to 101 times faster than LibiGL, and com-
parable to QuickCSG, a parallel inexact algorithm. 3D-EPUG-OVERLAY is also
more memory efficient. In all test cases 3D-EPUG-OVERLAY’s result matched
the reference solution. It is freely available for nonprofit research and education at
https://github.com/sallesviana/MeshIntersection .

1 Introduction

The classic problem of intersecting two 3-D meshes has been a foundational compo-
nent of CAD systems for some decades. However, as data sizes grow, and parallel

Salles Viana Gomes de Magalhães
Universidade Federal de Viçosa (MG) Brasil, e-mail: sallesviana@gmail.com

W. Randolph Franklin
Rensselaer Polytechnic Institute, Troy NY, USA 12180, e-mail: mail@wrfranklin.org

Marcus V.A. Andrade
Universidade Federal de Viçosa (MG) Brasil, e-mail: marcus.ufv@gmail.com

1

2 Magalhães, Franklin, and Andrade

execution becomes desirable, the classic algorithms and implementions now exhibit
some problems.

1. Roundoff errors. Floating point numbers violate most of the axioms of an alge-
braic field, e.g., (a+b)+ c 6= a+(b+ c). These arithmetic errors cause topolog-
ical errors, such as causing a point to be seen to fall on the wrong side of a line.
Those inconsistencies propagate, causing, e.g., nonwatertight models. Heuristics
exist to ameliorate the problem, and they work, but only up to a point. Larger
datasets mean a larger probability of the heuristics failing.

2. Special cases (geometric degeneracies). These include a vertex of one object
incident on the face of another object. In principle, simple cases could be enu-
merated and handled. However, some widely available software fails. There are
a few reasons.

a. The number of special cases grows exponentially with the dimension. In 2-D,
when intersecting a infinite line l with a polygon, (at least) the following
cases occur with respect to the line’s intersection with a finite edge e of the
polygon: l crosses e’s interior, l is coincident with e, and l is incident on a
vertex v of e, and the other edge e′ incident on v is either coincident with
l, on the same side of l as e, or on the opposite side of l as e. In 3-D, the
problem is much worse, so that a complete enumeration may be infeasible.

b. One technique is to reduce the number of cases by combining them. E.g.,
when comparing point p against line l, the three cases of above, on, and
below may be compressed into two: above or on and below. The problem
is to do this in a way that results in higher level functions that call this as a
component executing correctly. E.g., does intersecting two polylines where
a vertex of one is coincident with a vertex of the other still work?

3. Another problem is that current data structures are too complex for easy paral-
lelization. Efficient parallelization prefers simple regular data structures, such
as structures of arrays of plain old datatypes. If the platform is an Nvidia GPU,
then warps of 32 threads are required to execute the same instruction (or be idle).
Ideally, the data used by adjacent threads is adjacent in memory. That disparages
pointers, linked lists, and trees.

Some components of 3D-EPUG-OVERLAY have been presented earlier. PIN-
MESH preprocesses a 3D mesh so that point locations can be performed quickly [31].
EPUG-OVERLAY overlays 2D meshes [30].

Background: Kettner et al [27] studied failures caused by roundoff errors in geo-
metric problems. They also showed situations where epsilon-tweaking failed. (That
uses an ε tolerance to consider two values x and y to be equal if |x− y| ≤ ε .) Snap
rounding arbitrary precision segments into fixed-precision numbers, Hobby [24], can
also generate inconsistencies and deform the original topology. Variations attempting
to get around these issues include de Berg et al [6], Hersberger [23], and Belussi et al
[2]. Controlled Perturbation (CP), Melhorn [34], slightly perturbs the input to remove
degeneracies such that the geometric predicates are correctly evaluated even using

Exact fast parallel intersection of large 3-D triangular meshes 3

floating-point arithmetic. Adaptive Precision Floating-Point, Shewchuk [39], exactly
evaluates predicates (e.g. orientation tests) using the minimum necessary precision.

Exact Geometric Computation (EGC), Li [29], represents mathematical objects
using algebraic numbers to perform computations without errors. E.g.,

√
2 can be

represented exactly as the pair (x2−2, [1,2]), interpreted as the root of the polynomial
x2− 2 that lies in the interval [1, 2]. However this is slow. Even determining the

sign of an expression such as
√√√

5+1+
√√

5−1− 4
√

2
√

5+4 is nontrivial.
(Answer: 0.)

One technique to accelerate algorithms based on exact arithmetic is to employ
arithmetic filters and interval arithmetic, Pion et al [38], such as embodied in CGAL
[4]. Arithmetic operations are applied to the intervals. If the sign of the exact result
can be inferred based on the sign of the bounds of the interval, its value is returned.
Otherwise, the predicate is re-evaluated using exact arithmetic.

Current freely available implementations: One technique for overlaying 3-D
polyhedra is to convert the data to a volumetric representation (voxelization), per-
haps stored as an octree, Meagher [33], and then perform the overlay using the
converted data. This approach has some advantages: first, the volumetric model can
be created using any precision, and so, if the application does not demand a high
precision, this algorithm can be used to compute a fast approximation of the overlay.
Furthermore, it is trivial to perform a robust overlay of volumetric representations.
However, the volumetric representation is usually not exact, and the overlay results
are usually approximate. Also, oblique surfaces cannot be represented exactly, which
impacts fluid flow and visualization. Also, the data structure size tends to grow at
least quadratically with the desired resolution. Pavić et al. [37] present an efficient
algorithm for performing this kind of overlay.

For exactly computing overlays, a common strategy is to use indexing to accelerate
operations such as computing the triangle-triangle intersection. For example, Franklin
[12] uses a uniform grid to intersect two polyhedra, Feito et al [11] and Mei et al
[35] use octrees, and Yongbin et al [41] use Oriented Bounding Boxes trees (OBBs)
to intersect triangulations. Although those algorithms do not use approximations,
robustness cannot be guaranteed because of floating point errors. For example, Feito
et al [11] use a tolerance to process floating-point numbers, but this is error-prone.

Another algorithm that does not guarantee robustness is QuickCSG, Douze et
al [9], which is designed to be extremely efficient. QuickCSG employs parallel
programming and a k-d-tree index to accelerate the computation. However, it does
not handle special cases (it assumes vertices are in general position), and does not
handle the numerical non-robustness from floating-point arithmetic, Zhou et al [42].
To reduce errors caused by special cases, QuickCSG allows the user to apply random
numerical perturbations to the input, but this has no guarantees.

Even if an algorithm using floating-point arithmetic can intersect two specific
meshes consistently (i.e., without creating topological impossibilities or crashing),
some output coordinates may not be exactly representable as floating-point numbers.

Although small errors may sometimes be acceptable, they accumulate if several
inexact operations are performed in sequence. This gets even worse in CAD and

4 Magalhães, Franklin, and Andrade

GIS where it is common to compose operations. For use when exactness is required,
Hachenberger et al [21] presented an algorithm for computing the exact intersec-
tion of Nef polyhedra. A Nef polyhedron is a finite sequence of complement and
intersection operations on half-spaces. Although dating from the 1970s, only in the
2000s were concrete algorithms developed, and then embodied into CGAL [4]. One
application is the SFCGAL [36] backend to the PostGIS DBMS. SFCGAL wraps the
CGAL exact representation for 2-D and 3-D data, allowing PostGIS to perform exact
geometric computations. Although these algorithms are exact, they are slow, Leconte
et al [28]. Also, in most cases, the data must be converted into the Nef format.

Bernstein et al [3] presented an algorithm that tries to achieve robustness in
mesh intersection by representing the polyhedra using binary space partitioning
(BSP) trees with fixed-precision coordinates. It can intersect two such polyhedra by
only evaluating fixed-precision predicates. However, in 3D, the BSP representation
often has superlinear size, because the partitioning planes intersect so many objects.
Also, converting BSPs back to more widely used representations (such as triangular
meshes) is slow and inexact.

Recently, Zhou [42] presented an exact and parallel algorithm for performing
booleans on meshes. The key is to use the concept of winding numbers to disam-
biguate self-intersections on the mesh. Their algorithm first constructs an arrangement
with the two (or more) input meshes, and then resolves the self-intersections in the
combined mesh by retesselating the triangles such that intersections happen only on
common vertices or edges. The self-intersection resolution eliminates not only the
triangle-triangle intersections between triangles of the different input meshes, but also
between triangles of the same mesh. As a result, their algorithm can also eliminate
self-intersections in the input meshes, repairing them. Finally, a classification step is
applied to compute the resulting boolean operations.

That algorithm is freely available and distributed in the LibiGL package, Jacobson
et al [25]. Its implementation employs CGAL’s exact predicates. The triangle-triangle
intersection computation is also accelerated using CGAL’s bounding-box-based
spatial index. LibiGL is not only exact, but also much faster than Nef Polyhedra.
However, it is still slower than fast inexact algorithms such as QuickCSG.

2 Our techniques

Our solution to the above problems combines the following five techniques.

Big rational numbers: Representing a number as the quotient of two integers, each
represented as an array of groups of digits, is a classic technique. The fundamental
limitation is that the number of digits grows exponentially with the depth of the
computation tree. Our relevant computation comprises comparing the intersection of
two lines defined by their endpoints against a plane defined by three vertices. So, this
growth in precision is quite tolerable.

Exact fast parallel intersection of large 3-D triangular meshes 5

The implementation challenges are harder. Many C++ implementations of new
data structures automatically construct new objects on a global heap, and assume
the construction cost to be negligible. That is false for parallel programs processing
large datasets. Constructing and destroying heap objects has a superlinear cost in the
number of objects on the heap. Parallel modifications to the heap must be serialized.

Therefore we carefully construct our code to minimize the number of times that a
rational variable needs to be constructed or enlarged. This includes minimizing the
number of temporary variables needed to evaluate an expression.

Furthermore, we use interval arithmetic as a filter to determine when evaluation
with rationals is necessary.

v

Fig. 1 Difficult test case for
3-D point location.

Simulation of Simplicity: Simulation of Simplicity
(SoS), Edelsbrunner et al [10], addresses the problem
that, “sometimes, even careful attempts at capturing all
degenerate cases leave hard-to-detect gaps”, Yap [40].
Figure 1 is a challenging case. It consists of two pyra-
mids with central vertices incident at a common vertex v.
v is non-manifold and is on 8 faces, 4 from each pyramid.
It is not easy to determine which of the 8 faces should
intersect the ray that would be run up from v in order
to locate v. In the subproblem of point location, RCT
gets this point location case wrong; PINMESH is correct
because of SoS, Magalhães et al [31].

SoS symbolically perturbs coordinates by adding infinitesimals of different orders.
The result is that there are no longer any coincidences, e.g., three points are never
collinear. A positive infinitesimal, ε , is smaller than any positive real number (but
greater than zero). That violates the Archimedean property for the real field, but
we don’t need this independent axiom. A second order infinitesimal, ε2, is smaller
than any first order infinitesimal. Etc. Linear combinations of reals and infinitesimals
work. In 1-D, SoS can be realized by indexing all the input variables of both input
objects, and then modifying them thus:

xi→ xi + ε
(2i) (1)

A coordinate’s perturbation depends on its index. The efficient implementation of
SoS is to examine its effects on each predicate and then to recode the predicate to
have the same effect, but without the need to use infinitesimals. E.g., xi ≤ x j becomes
(xi < x j)∨ ((xi = xi)∧ (i > j)).

Because each type of predicate needs to be analyzed and recoded, we construct
our algorithm to use only one type of predicate: the sign of a 3×3 determinant, or
equivalently the order of 4 vertices in 3-D.

Minimal topology: The minimal explicit topology required for computing some
property of an object depends on the desired property. E.g., testing for point location
in a polygon requires only the set of unordered edges. That is still true for multiple
and nested components. For computing the area and other mass properties, the set of

6 Magalhães, Franklin, and Andrade

ordered edges (where we know each edge’s inside side) suffices. Alternatively, the
set of vertices and their neighborhoods is sufficient, Kankanhalli et al [26], Franklin
[14]. That means for each vertex, knowing its location, the directions of the two
adjacent edges, and which adjacent sector is inside. A sufficient representation of a
3-D mesh comprises the following:

1. the array of vertices, (vi), where each vi = (xi,yi,zi).
2. the array of tetrahedra or other polyhedra, ti, used solely to store properties such

as density, and
3. the array of augmented oriented triangular faces (fi), where fi =(vi1,vi2,vi3, ti1, ti2).

The tetrahedron or polyhedron ti1 is on the positive side of the face fi =
(vi1,vi2,vi3); ti2 on the negative.

It is unnecessary to store any further relations, such as from face to adjacent face,
from vertex to adjacent face, edge loops, or face shells.

Note that there are no pointers or lists; we need only several structures of arrays.
If the tetrahedra have no properties, then the tetrahedron array does not need to
exist, so long as the tetrahedra, which we are not storing explicitly, are consistently
sequentially numbered. The point is to minimize what types of topology need to be
stored.

Uniform grid: The uniform grid, Akman et al [1], Franklin et al [13, 15, 17] is used
as an initial cull so that, when two objects are tested for possible intersection, then
the probability of intersecting is bounded below by a positive number. Therefore,
the number of pairs of objects tested for intersection that do not actually intersect
is linear in the number that do intersect. Thus the expected execution time is linear
in the output size. Frey and George [18] contains a comprehensive description of
spatial data structures.

Our basic algorithm goes as follows.

1. Choose a positive integer g for the grid resolution as a function of the statistics
of the input data. Typically, 10 ≤ g ≤ 1000. The goal is for each grid cell, as
described later, to have a constant number of intersections with input objects.

2. Superimpose a 3-D grid of g×g×g cells on the input data.
3. Each cell will contain an abstract data structure of the set of input objects

intersecting it. Call it the cell intersection set.
4. For each input object, determine which cells it intersects, and insert it into each

of those cells’ sets.

A careful concrete implementation of this abstraction is critical. We tested several
choices; details are in Magalhães [7]. We also tested an octree, but our uniform grid
implementation is much faster.

We also used a second level grid for some cells. This allowed us to use an
approximation to determine which faces intersected each cell: enclosing oblique
faces with a box and then marking all the cells intersecting that box, which is more
cells than necessary.

Exact fast parallel intersection of large 3-D triangular meshes 7

OpenMP: Because the data structures are simple and the algorithms are regular, they
are easily parallelizable with OpenMP to run on a multicore Intel Xeon. This should
also parallelize well on an NVIDIA GPU, as we have done for other algorithms,
Hedin et al [22], Franklin et al [16].

3 3-D mesh intersection

3D-EPUG-OVERLAY exactly intersects 3-D meshes. Its input is two triangular
meshes M0 and M1. Each mesh contains a set of 3-D triangles representing a set of
polyhedra. The output is another mesh where each represented polyhedron is the
intersection of a polyhedron from M0 with another one from M1. The key is the
combination of five techniques described later. Extra details are in Magalhães et al
[7, 8, 30, 31, 32].

Data representation: The input is a pair of triangular meshes in 3-D (E3). Both
meshes must be watertight and free from self-intersections. The polyhedra may
have complex and nonmanifold topologies, with holes and disjoint components. The
two meshes may be identical, which is an excellent stress test, because of all the
degeneracies.

There are two types of output vertices: input vertices, and intersection vertices
resulting from intersections between an edge of one mesh and a triangle of the
other. Similarly, there are two types of output triangles: input triangles and triangles
from retesselation. The first contains only input vertices while the second may
contain vertices generated from intersections created during the retesselation of
input triangles. An intersection vertex is represented by an edge and the intersecting
triangle. For speed, its coordinates are cached when first computed.

Implementing intersection with simple geometric predicates: To simplify the
implementation of the symbolic perturbation, we developed two versions of each ge-
ometric function. The first one focused on efficiency, and was implemented based on
efficient algorithms available in the literature. The second one focused on simplicity,
and was implemented using as only a few orientation predicates.

The idea is that, during the computation, the first version of each function is called.
If a special case is detected, then the second version is called. In order to make sure
the special cases are properly handled we only need to implement the perturbation
scheme on these predicates.

The mesh intersection algorithm: This computation uses only local information.
The algorithm has 3 basic steps and a uniform grid is employed to accelerate the
computation:

1. Intersections between triangles of one mesh and triangles of the other mesh are
detected and the new edges generated by the intersection of each pair of triangles
are computed.

8 Magalhães, Franklin, and Andrade

2. A new mesh containing the triangles from the two original meshes is created
and the original triangles are split (retesselated) at the intersection edges. I.e.,
if a pair of triangles in this resulting mesh intersect, then this intersection will
happen necessarily on a common edge or vertex.

3. A classification is performed: triangles that shouldn’t be in the output are re-
moved and the adjacency information stored in each triangle is updated to ensure
that the new mesh will consistently represent the intersection of the two original
ones.

A two-level 3-D uniform was employed in 3D-EPUG-OVERLAY to acceler-
ate two important steps of the algorithm: the detection of intersections between
pairs of input triangles, and the point location algorithm employed in the triangle
classification.

After computing the intersections between each pair of triangles, the next step is
to split the triangles where they intersect, so that after this process all the intersections
will happen only on common vertices or edges. After the intersections between the
triangles are computed, the triangles from one mesh that intersect triangles from the
other one are split into several triangles, creating meshes M′0 and M′1.

Retesselation was implemented with orientation predicates, Magalhães [7], which
reduced to implementing 164 functions. A Wolfram Mathematica script was devel-
oped to create the code for all the predicates.

Experiments: 3D-EPUG-OVERLAY was implemented in C++ and compiled using
g++ 5.4.1. For better parallel scalability, the gperftools Tcmalloc memory allocator
[20], was employed. Parallel programming was provided by OpenMP 4.0, multiple
precision rational numbers were provided by GNU GMPXX and arithmetic filters
were implemented using the Interval_nt number type provided by CGAL for interval
arithmetic. The experiments were performed on a workstation with 128 GiB of
RAM and dual Intel Xeon E5-2687 processors, each with 8 physical cores and 16
hyper-threads, running Ubuntu Linux 16.04.

We evaluated 3D-EPUG-OVERLAY, by comparing it against three state-of-the-art
algorithms:

1. LibiGL [42], which is exact and parallel,
2. Nef Polyhedra [4], which is exact, and
3. QuickCSG [9], which is fast and parallel, but not exact, and does not handle

special cases.

Our experiments showed that 3D-EPUG-OVERLAY is fast, parallel, exact, eco-
nomical of memory, and handles special cases.

Datasets: Experiments were performed with a variety of non self-intersecting and
watertight meshes; see Figure 2 and Table 1. The ones with suffix tetra were tetrahe-
dralized with GMSH [19]. The sources of the data are as follows: Barki (Clutch2kf,
Casting10kf, Horse40kf, Dinausor40kf, Armadillo52kf, Camel69kf, Cow76kf),
AIM@SHAPE (Camel, Bimba, Kitten, RedCircBox, Ramesses, Vase, Neptune),
Stanford (Armadillo), Thingi10K (461112, 461115, 226633), Thingi10k+GMSH

Exact fast parallel intersection of large 3-D triangular meshes 9

Table 1 Test datasets.

Mesh Verts Tris Polys Mesh Verts Tris Polys
(×103) (×103) (×103) (×103) (×103) (×103)

Clutch2kf 1 2 - Casting10kf 5 10 -
Horse40kf 20 40 - Dinausor40kf 20 40 -
Armadillo52kf 26 52 - Camel 35 69 -
Camel69kf 35 69 - Cow76kf 38 76 -
Bimba 75 150 - Kitten 137 274 -
Armadillo 173 346 - 461112 403 805 -
461115 411 822 - RedCircBoxa 701 1403 -
Ramesses 826 1653 - Ramesses Rot. 826 1653 -
Ramesses Tran. 826 1653 - Vase 896 1793 -
226633 1226 2452 - Neptune 2004 4008 -
Neptune Tran. 2004 4008 - 914686Tetra 66 605 281
68380Tetra 107 1067 506 Armad.Tetrab 340 3377 1602
Arm.Tet.bTran. 340 3377 1602 518092Tetra 603 5938 2814
461112Tetra 842 8495 4046
* meshes with the suffix Tetra have been tetrahedralized; * Rot. and Tran. mean, respectively,
that the mesh has been rotated or translated; a Red Circular Box; b tetrahedralized version
of the Armadillo mesh.

(914686Tetra, 68380Tetra, 518092Tetra, 461112Tetra), and Stanford+GMSH (Ar-
mad.Tetra).

Table 2 presents the pairs of meshes used in the intersection experiments, the
number of input triangles, the number of triangles in the resulting meshes and the
uniform grid size.

Fig. 2 Some test meshes.

Figure 3 shows one test, which took 0.2 seconds.

Arithmetic filters and other optimizations: To evaluate the effect of different op-
timizations, we profiled two key steps: the creation of the uniform grid and the
detection of intersections between pairs of triangles. These experiments were per-
formed with the Neptune and Neptune translated meshes using a uniform grid with
first level resolution 643 and second level resolution 163. We evaluated various ver-

10 Magalhães, Franklin, and Andrade

Table 2 Pairs of meshes intersected.

triangles (×103) Grid size
M0 M1 M0 M1 Out G1 G2

a

Casting10kf Clutch2kf 10 2 6 64 2
Armadillo52kf Dinausor40kf 52 40 25 64 4
Horse40kf Cow76kf 40 76 24 64 4
Camel69kf Armadillo52kf 69 52 16 64 4
Camel Camel 69 69 81 64 4
Camel Armadillo 69 331 43 64 4
Armadillo Armadillo 331 331 441 64 8
461112 461115 805 822 808 64 8
Kitten RedCircBox 274 1402 246 64 8
Bimba Vase 150 1792 724 64 8
226633 461112 2452 805 1437 64 8
Ramesses RamessesTrans 1653 1653 1571 64 16
Ramesses RamessesRotated 1653 1653 1691 64 16
Neptune Ramesses 4008 1653 1112 64 16
Neptune NeptuneTrans 4008 4008 3303 64 16
68380Tetra 914686Tetra 1067 605 9393 64 2
ArmadilloTetra ArmadilloTetraTran.3377 3377 61325 64 4
518092Tetra 461112Tetra 5938 8495 23181 64 4
a resolution of the first level grid, second level grid.

(a) Visually overlaid (b) Intersection

Fig. 3 Intersecting Casting10kf with Clutch2kf

sions of the algorithm, and observed that the biggest impacts on speed were caused
by using a good allocator, by using an interval arithmetic filter for the rational com-
putations, and by coding the rational arithmetic expressions to minimize memory
allocations.

The importance of the uniform grid: This accelerates the detection of pairs of trian-
gles that intersect. To evaluate this idea, we compared it against an implementation
using the CGAL method for intersecting dD Iso-oriented Boxes. Both algorithms
are exact and employ arithmetic filters with interval arithmetic. Indeed, this CGAL
algorithm is employed by LibiGL to accelerate the triangle-triangle intersection
detection step of its mesh intersection method.

Exact fast parallel intersection of large 3-D triangular meshes 11

The CGAL method is sequential, and employs a hybrid approach composed of a
sweep-line and a streaming algorithm to detect intersections between pairs of Axis
Aligned Bounding Boxes. Thus, pairwise intersections of triangles can be detected
by filtering the pairs of intersecting bounding-boxes, and then testing the triangles
for intersection. Since the CGAL exact kernel was not thread-safe, even the triangle-
triangle intersection tests were performed sequentially. Since our uniform grid was
designed to be parallel, we evaluated it using 32 threads.

Table 3 presents these comparative experiments, performed on 6 pairs of meshes.
The number of intersections detected is not necessarily the same in the two algorithms
because our algorithm implements Simulation of Simplicity. E.g., co-planar triangles
never intersect.

CGAL is better at culling pairs of non-intersecting bounding-boxes and so per-
forms fewer intersection tests. However, since the uniform grid is lightweight and
parallelizes well, its pre-processing time is much smaller (up to 134 times faster,
which is much more than the degree of parallelism), and this difference is never
recaptured. Indeed, except for the intersection of the Armadillo with itself, even if
CGAL took 0 seconds to detect the intersections the total time spent by the uniform
grid method would still be smaller.

The only situation where the intersection detection time was much larger than
the pre-processing time was in the intersection of the Armadillo mesh with itself. In
this situation the uniform grid was still faster than CGAL for two reasons: first, the
number of intersection tests performed by the two methods was similar. Second, the
intersection computation done by the uniform grid method is performed in parallel.

The worst performance for both methods happened during the intersection of
the Armadillo mesh with itself. There are many coincidences (co-planar triangles
being tested for intersection, triangles intersecting other triangles on the edges, etc).
These coincidences lead to arithmetic filter failures (because the result of some of
the orientation predicates is 0 and, thus, the intervals representing these results are
likely to have different signs for their bounds), which lead to exact computations
with rationals. Furthermore, coincidences lead to the use of SoS predicates (which
we have not optimized yet) when using the uniform grid.

Comparing 3D-EPUG-OVERLAY to other methods: We compared 3D-EPUG-
OVERLAY against other three algorithms using the pairs of meshes presented in
Table 2. The resulting running times (in seconds, excluding I/O) are presented in
Table 4. Since the CGAL exact intersection algorithm deals with Nef Polyhedra, we
also included the time it spent converting the triangulating meshes to this representa-
tion and to convert the result back to a triangular mesh (it often takes more time to
convert the dataset than to compute the intersection). Both times are reported to let
the user choose.

We can see that 3D-EPUG-OVERLAY was up to 101 times faster than LibiGL.
The only test cases where the times spent by LibiGL were similar to the times spent
by 3D-EPUG-OVERLAY were during the computation of the intersections of a
mesh with itself (even in these test cases 3D-EPUG-OVERLAY was still faster than
LibiGL). In this situation, the intersecting triangles from the two meshes are never in

12 Magalhães, Franklin, and Andrade

Table 3 Comparing the times (in seconds) for detecting pairwise intersections of triangles using
CGAL (sequential) versus using a uniform grid (parallel).

CGAL

faces (×103) # int.a Int.testsb Time (s)

M0 M1 M0 M1 (×103) (×103) Pre.proc.c Inter.d

Camel Armadillo 69 331 3 14 0.32 0.01
Armadillo Armadillo 331 331 4611 5043 1.27 259.23
Kitten RedC.Boxe 274 1402 3 13 2.33 0.01
226633 461112 2452 805 23 128 7.18 0.08
Ramesses Ram.Tran.f1653 1653 36 237 12.38 0.17
Neptune Nept.Tran.g4008 4008 78 647 36.24 0.47

Uniform grid

faces (×103) # int.a Int.testsb Time (s)

M0 M1 M0 M1 (×103) (×103) Pre.proc.c Inter.d

Camel Armadillo 69 331 3 33 0.06 0.02
Armadillo Armadillo 331 331 50 5351 0.25 63.80
Kitten RedC.Boxe 274 1402 3 27 0.08 0.02
226633 461112 2452 805 23 307 0.16 0.05
Ramesses Ram.Tran.f1653 1653 36 866 0.16 0.10
Neptune Nept.Tran.g4008 4008 78 5087 0.27 0.35
a number of intersections detected; b number of intersection tests performed;
c pre-processing time; d time spent testing pairs of triangles for intersection;
e Red Circular Box; f Ramesses Translated; g Neptune Translated.

general position, and thus the computation has to frequently trigger the SoS version
of the predicates, which we haven’t not optimized yet. In the future, we intend to
optimize this.

However, LibiGL also repairs meshes (by resolving self-intersections) during the
intersection computation, which 3D-EPUG-OVERLAY does not attempt.

Because of the overhead of Nef Polyhedra and since it is a sequential algorithm,
CGAL was always the slowest. When computing the intersections, 3D-EPUG-
OVERLAY was up to 1,284 times faster than CGAL. The difference is much higher
if the time CGAL spends converting the triangular mesh to Nef Polyhedra is taken
into consideration: intersecting meshes with 3D-EPUG-OVERLAY was up to 4,241
times faster than using CGAL to convert and intersect the meshes.

While 3D-EPUG-OVERLAY was faster than QuickCSG in most of the test
cases (mainly the largest ones), in others QuickCSG was up to 20% faster than
3D-EPUG-OVERLAY. The relatively small performance difference between 3D-
EPUG-OVERLAY and an inexact method (that was specifically designed to be very
fast) indicates that 3D-EPUG-OVERLAY presents good performance allied with
exact results. Besides reporting errors during the experiments detached with a * in

Exact fast parallel intersection of large 3-D triangular meshes 13

Table 4 Times, in seconds, spent by different methods for intersecting pairs of meshes. QuickCSG
reported errors during the intersections whose times are flagged with *. The tetrahedral mesh tests
(last three rows) used only 3D-EPUG-OVERLAY.

Time (s)

CGAL

M0 M1 3D-Epug LibiGL ConvertaIntersectbQuickCSG

Casting10kf Clutch2kf 0.2 1.3 4.2 1.1 0.1*
Armadillo52kf Dinausor40kf 0.1 3.0 38.0 21.5 0.1
Horse40kf Cow76kf 0.1 3.2 51.1 24.2 0.1
Camel69kf Armadillo52kf 0.1 3.2 54.3 25.7 0.1
Camel Camel 13.9 18.0 62.7 230.6 0.9*
Camel Armadillo 0.2 11.7 189.9 80.0 0.3
Armadillo Armadillo 67.0 88.1 339.7 1,198.2 4.1*
461112 461115 0.8 58.9 753.2 473.2 1.1
Kitten RedCircBox 0.3 28.6 819.8 329.6 1.1
Bimba Vase 0.6 58.0 971.7 455.7 1.1
226633 461112 0.9 96.0 1,723.7 905.5 2.2*
Ramesses Ram.Tran.c 1.3 93.0 1,558.8 946.1 2.4*
Ramesses Ram.Rot.d 2.1 122.0 1,577.3 989.8 2.4
Neptune Ramesses 1.2 118.1 3,535.5 1,535.6 4.1
Neptune Nept.Tran.e 2.7 220.2 5,390.7 2,726.2 6.1
68380Tet.f 914686Tet.g 51.3 - - - -
Armad.Tet.h Arm.Tet.Tran.i 263.3 - - - -
518092Tetra 461112Tetra 136.6 - - - -
a time converting the meshes to CGAL Nef Polyhedra;
b time intersecting the Nef Polyhedra; c Ramesses Translated; d Ramesses Rotated;
e Neptune Translated; f 68380Tetra; g 914686Tetra; h ArmadilloTetra;
i ArmadilloTetra Translated.

Table 4, QuickCSG also failed in some situations where errors were not reported
(this will be detailed later).

Finally, we also performed experiments with tetra-meshes. Each tetrahedron in
these meshes is considered to be a different object and, thus, the output of 3D-EPUG-
OVERLAY is a mesh where each object represents the intersection of two tetrahedra
(from the two input meshes). These meshes are particularly hard to process because
of their internal structure, which generates many triangle-triangle intersections. For
example, during the intersection of the Neptune with the Neptune translated datasets
(two meshes without internal structure), there are 78 thousand pairs of intersecting
triangles and the resulting mesh contains 3 million triangles. On the other hand, in the
intersection of 518092_tetra (a mesh with 6 million triangles and 3 million tetrahedra)
with 461112_tetra (a mesh with 8 million triangles and 4 million tetrahedra) there are
5 million pairs of intersecting triangles and the output contains 23 million triangles.

14 Magalhães, Franklin, and Andrade

To the best of our knowledge, LibiGL, CGAL and QuickCSG were not designed
to handle meshes with multi-material and, thus, we couldn’t compare the running
time of 3D-EPUG-OVERLAY against them in these test cases.

We also evaluated the peak memory usage of each algorithm. 3D-EPUG-
OVERLAY was: almost always smaller than LibiGL, with the difference increasing as
the datasets became larger; smaller than QuickCSG in every case where QuickCSG
returned the correct answer; and much smaller than CGAL. A typical result was the
intersection of Neptune (4M triangles) with Ramesses (1.7M triangles): 3D-EPUG-
OVERLAY used 2.6GB, LibiGL used 6.7GB, and CGAL 84GB. The largest example
that 3D-EPUG-OVERLAY processed, 518092Tetra (6M triangles) with 461112Tetra
(8.5M triangles) used 43GB. Magalhães [7] contains detailed results.

Correctness evaluation: 3D-EPUG-OVERLAY was developed on a solid foundation
(i.e., all computation is exact and special cases are properly handled using Simulation
of Simplicity) in order to ensure correctness. However, perhaps its implementation
has errors? Therefore, we performed extensive experiments comparing it against
LibiGL (as a reference solution). We employed the Metro tool, Cignoni et al [5],
to compute the Hausdorff distances between the meshes being compared. Metro
is widely employed, for example, to evaluate mesh simplification algorithms by
comparing their results with the original meshes.

Let e(p,S) be the minimum Euclidean distance between the point p and the
surface S. [5] defines the one sided distance E(S1,S2) between two surfaces S1 and
S2 as: E(S1,S2) = maxp∈S1 e(p,S2). The Hausdorff distance between two surfaces S1
and S2 is the maximum between E(S1,S2) and E(S2,S1). The Metro implementation
employs an approximation strategy that samples points on the surface of the meshes
in order to estimate the Hausdorff distance. In all experiments we employed the
default parameters (where 10 points are sampled per face).

Since Metro is not exact (all the computation is performed using double variables),
we use the distance between meshes only as evidence that our implementation is
correct. In every test, the difference between 3D-EPUG-OVERLAY and LibiGL was
reported as 0. In some situations the difference between LibiGL and CGAL was a
small number (maximum 0.0007% of the diagonal of the bounding-box). We guess
this is because the exact results are stored using floating-point variables, and different
strategies are used to round the vertices to floats and write them to the text file.

QuickCSG, on the other hand, generated errors much larger than CGAL: in the
worst case, the difference between QuickCSG output and LibiGL was 0.13% of the
diagonal of the bounding-box). Magalhães [7] contains detailed results.

Visual inspection: We also visually inspected the results using MeshLab. Even
though small changes in the coordinates of the vertices cannot be easily identified by
visual inspection (and even the program employed for displaying the meshes may
have roundoff errors), topological errors (such as triangles with reversed orientation,
self-intersections, etc) often stand out.

Even when QuickCSG did not report a failure, results were frequently inconsistent,
with open meshes, spurious triangles or inconsistent orientations.

Exact fast parallel intersection of large 3-D triangular meshes 15

Figure 4 shows the intersection of Bimba and the Vase. The first part is the
complete overlay mesh, as computed by 3D-EPUG-OVERLAY. The second is a
detail of an error-prone output region, computed correctly by 3D-EPUG-OVERLAY.
The third part shows the same region computed by QuickCSG. Note the errors along
the edges.

Fig. 4 Intersection of the Bimba and Vase meshes computed by 3D-EPUG-OVERLAY and
QuickCSG, showing only 3D-EPUG-OVERLAY computing a region correctly.

Figure 5 (a) presents a zoom in the output of QuickCSG for the intersection of the
Ramesses dataset with Ramesses Translated: some triangles are oriented incorrectly.
These errors may be created either by floating-point errors or because QuickCSG
doesn’t handle the coincidences.

To mitigate this later problem, QuickCSG provides options where the user can
apply a random perturbation in the input dataset. In contrast to the symbolic pertur-
bations of Simulation of Simplicity, these numerical perturbations are not guaranteed
to work, and the user has to choose a maximum range. A too-small range may not
eliminate all errors while a too-big range may modify the mesh too much. Figures 5
displays the results from perturbations with maximum range 10−1, and 10−6. None
of these perturbations removed all errors and the bigger perturbation (10−1) even
added undesirable artifacts to the output. Similar problems in QuickCSG have been
reported by [42].

Rotation invariance: We also validated 3D-EPUG-OVERLAY by verifying that its
result does not change when the input meshes are rotated. I.e., a pair of meshes were
rotated around the same point, intersected, and the resulting mesh was rotated back.
To ensure exactness, we chose a rotation angle with rational sine and cosine. We
evaluated all the pairs in Table 2. For each pair, we performed a rotation around the
x axis and, then, a rotation around the y axis (the origin was defined as the center
of the joint bounding-box of the two meshes). We chose rotation angle θ such that
sinθ = 400/10004 and cosθ = 9996/10004. θ ≈ 2.29 degrees.

16 Magalhães, Franklin, and Andrade

(a) (b) (c)

Fig. 5 Detail of the intersection of Ramesses with Ramesses Translated generated by QuickCSG
using different ranges for the numerical perturbation: (a) no perturbation, (b) 10−1, and (c) 10−6.

In all the experiments Metro reported that the resulting meshes were equal (i.e.,
the Hausdorff distance was 0.000000) to the corresponding ones obtained without
rotation.

In addition, we intersected each mesh from Table 2 with a rotated version of itself.
This is a notoriously difficult case for CAD systems because the large number of
intersections and small triangles. Each mesh M was rotated around the center of
its bounding-box using the above θ , and intersected with its original version, using
both LibiGL and 3D-EPUG-OVERLAY. In every experiment the Hausdorff distance
between the two outputs was 0.000000. That is, we can quickly process cases that
can crash CAD systems.

Limitations: Even though the computations are performed exactly, common file
formats for 3D objects such as OFF represent data using floating-point numbers. Con-
verting 3D-EPUG-OVERLAY’s rational output into floats may introduce errors since
most rationals cannot be represented exactly. Possible solutions include avoiding
the conversion (i.e., always employing multiple-precision rationals in the representa-
tions), or using heuristics such [42] to try to choose floats for each coordinate so that
the approximate output will not only be similar to the exact one, but also it will not
present topological errors.

A limitation of symbolic perturbation is that the results are consistent considering
the perturbed dataset, not necessarily considering the original one [10]. Thus, if the
perturbation in the mesh resulting from the intersection is ignored, the unperturbed
mesh may contain degeneracies such as triangles with area 0 or polyhedra with
volume 0 (these polyhedra would have infinitesimal volume if the perturbation was
not ignored). More details are in [7].

Summary: 3D-EPUG-OVERLAY is an algorithm and implementation to intersect
a pair of 3D triangular meshes. It is simultaneously the fastest, free from roundoff er-
rors, handles geometric degeneracies, parallelizes well, and is economical of memory.
The source code, albeit research quality, is freely available for nonprofit research and
education at https://github.com/sallesviana/MeshIntersection
. We have extensively tested it for errors; we encourage others to test it. It is a
suitable subroutine for larger systems such as 3D GIS or CAD systems. Computing
other kinds of overlays, such as union, difference, and exclusive-or, would require
modifying only the classification step. We expect that 3D-EPUG-OVERLAY could
easily process datasets that are orders of magnitude larger, with hundreds of millions

Exact fast parallel intersection of large 3-D triangular meshes 17

of triangles. Finally, 3D-EPUG-OVERLAY has not nearly been fully optimized, and
could be made much faster.

References

1. V. Akman, W. R. Franklin, M. Kankanhalli, and C. Narayanaswami. Geometric computing and
the uniform grid data technique. Computer Aided Design, 21(7):410–420, 1989.

2. A. Belussi, S. Migliorini, M. Negri, and G. Pelagatti. Snap rounding with restore: An algorithm
for producing robust geometric datasets. ACM Trans. Spatial Algorithms and Syst., 2(1):1:1–
1:36, Mar. 2016.

3. G. Bernstein and D. Fussell. Fast, exact, linear booleans. Eurographics Symp. on Geom.
Process., 28(5):1269–1278, 2009.

4. CGAL, Computational Geometry Algorithms Library. https://www.cgal.org (retrieved Sept
2018).

5. P. Cignoni, C. Rocchini, and R. Scopigno. Metro: Measuring error on simplified surfaces.
Comput. Graph. Forum, 17(2):167–174, June 1998.

6. M. de Berg, D. Halperin, and M. Overmars. An intersection-sensitive algorithm for snap
rounding. Computational Geometry, 36(3):159–165, Apr. 2007.

7. S. V. G. de Magalhães. Exact and parallel intersection of 3D triangular meshes. PhD thesis,
Rensselaer Polytechnic Institute, 2017.

8. S. V. G. de Magalhães, W. R. Franklin, M. V. A. Andrade, and W. Li. An efficient algorithm
for computing the exact overlay of triangulations. In 25th Fall Workshop on Computational
Geometry, U. Buffalo, New York, USA, 23-24 Oct 2015. (extended abstract).

9. M. Douze, J.-S. Franco, and B. Raffin. QuickCSG: Arbitrary and faster boolean combinations
of n solids. PhD thesis, Inria-Research Centre, Grenoble–Rhône-Alpes, France, 2015.

10. H. Edelsbrunner and E. P. Mücke. Simulation of simplicity: a technique to cope with degenerate
cases in geometric algorithms. ACM TOG, 9(1):66–104, 1990.

11. F. Feito, C. Ogayar, R. Segura, and M. Rivero. Fast and accurate evaluation of regularized
boolean operations on triangulated solids. Computer-Aided Design, 45(3):705 – 716, 2013.

12. W. R. Franklin. Efficient polyhedron intersection and union. In Proc. Graphics Interface, pages
73–80, Toronto, 1982.

13. W. R. Franklin. Adaptive grids for geometric operations. Cartographica, 21(2–3):161–167,
Summer – Autumn 1984. monograph 32–33.

14. W. R. Franklin. Polygon properties calculated from the vertex neighborhoods. In Proc. 3rd
Annu. ACM Sympos. Comput. Geom., pages 110–118, 1987.

15. W. R. Franklin, N. Chandrasekhar., M. Kankanhalli, M. Seshan, and V. Akman. Efficiency
of uniform grids for intersection detection on serial and parallel machines. In N. Magnenat-
Thalmann and D. Thalmann, editors, New Trends in Computer Graphics (Proc. Computer
Graphics International’88), pages 288–297. Springer-Verlag, 1988.

16. W. R. Franklin and S. V. G. Magalhães. Parallel intersection detection in massive sets of
cubes. In Proceedings of BigSpatial’17: 6th ACM SIGSPATIAL Workshop on Analytics for Big
Geospatial Data, Los Angeles Area, CA, USA, 7-10 Nov 2017.

17. W. R. Franklin, C. Narayanaswami, M. Kankanhalli, D. Sun, M.-C. Zhou, and P. Y. Wu. Uniform
grids: A technique for intersection detection on serial and parallel machines. In Proceedings
of Auto Carto 9: Ninth International Symposium on Computer-Assisted Cartography, pages
100–109, Baltimore, Maryland, 2-7 April 1989.

18. P. J. Frey and P. George. Mesh Generation: Application to Finite Elements, Second Edition.
ISTE Ltd. and Wiley, 2010.

19. C. Geuzaine and J.-F. Remacle. Gmsh: A 3-d finite element mesh generator with built-in
pre-and post-processing facilities. Int. J. for Numerical Methods in Eng., 79(11):1309–1331,
May 2009.

18 Magalhães, Franklin, and Andrade

20. S. Ghemawat and P. Menage. TCMalloc: Thread-caching malloc. http://
goog-perftools.sourceforge.net/doc/tcmalloc.html (retrieved on 13 Nov
2016), 15 Nov 2015.

21. P. Hachenberger, L. Kettner, and K. Mehlhorn. Boolean operations on 3d selective nef com-
plexes: Data structure, algorithms, optimized implementation and experiments. Comupt. Geom.,
38(1):64–99, Sept. 2007.

22. D. Hedin and W. R. Franklin. Nearptd: A parallel implementation of exact nearest neighbor
search using a uniform grid. In Canadian Conference on Computational Geometry, Vancouver
Canada, Aug. 2016.

23. J. Hershberger. Stable snap rounding. Comput. Geom., 46(4):403–416, May 2013.
24. J. D. Hobby. Practical segment intersection with finite precision output. Comput. Geom.,

13(4):199–214, 1999.
25. A. Jacobson, D. Panozzo, et al. libigl: A Simple C++ Geometry Processing Library, 2016.

http://libigl.github.io/libigl/ (Retrieved on 18 Oct 2017).
26. M. Kankanhalli and W. R. Franklin. Area and perimeter computation of the union of a set of

iso-rectangles in parallel. J. Parallel Distrib. Comput., 27(2):107–117, June 1995.
27. L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, and C. Yap. Classroom examples of robustness

problems in geometric computations. Comput. Geom. Theory Appl., 40(1):61–78, May 2008.
28. C. Leconte, H. Barki, and F. Dupont. Exact and Efficient Booleans for Polyhedra. Technical

Report RR-LIRIS-2010-018, LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude
Bernard Lyon 1/Université Lumière Lyon 2/École Centrale de Lyon, Oct. 2010. (Retrieved on
19 Oct 2017).

29. C. Li. Exact geometric computation: theory and applications,. PhD thesis, Department of
Computer Science, Courant Institute - New York University, January 2001.

30. S. V. G. Magalhães, M. V. A. Andrade, W. R. Franklin, and W. Li. Fast exact parallel map
overlay using a two-level uniform grid. In 4th ACM SIGSPATIAL International Workshop on
Analytics for Big Geospatial Data (BigSpatial), Bellevue WA USA, 3 Nov 2015.

31. S. V. G. Magalhães, M. V. A. Andrade, W. R. Franklin, and W. Li. PinMesh – Fast and exact
3D point location queries using a uniform grid. Computer & Graphics Journal, special issue
on Shape Modeling International 2016, 58:1–11, Aug. 2016. (online 17 May). Awarded a
reproducibility stamp, http://www.reproducibilitystamp.com/.

32. S. V. G. Magalhães, M. V. A. Andrade, W. R. Franklin, W. Li, and M. G. Gruppi. Exact intersec-
tion of 3D geometric models. In Geoinfo 2016, XVII Brazilian Symposium on GeoInformatics,
Campos do Jordão, SP, Brazil, Nov. 2016.

33. D. J. Meagher. Geometric modelling using octree encoding. Computer Graphics and Image
Processing, 19:129–147, June 1982.

34. K. Mehlhorn, R. Osbild, and M. Sagraloff. Reliable and efficient computational geometry via
controlled perturbation. In M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, editors, ICALP
(1), volume 4051 of Lecture Notes in Computer Science, pages 299–310. Springer, 2006.

35. G. Mei and J. C. Tipper. Simple and robust boolean operations for triangulated surfaces. CoRR,
abs/1308.4434, 2013.

36. Oslandia and IGN. SFCGAL, 2017. http://www.sfcgal.org/ (Retrieved on 19 Oct
2017).

37. D. Pavić, M. Campen, and L. Kobbelt. Hybrid booleans. Comput. Graph. Forum, 29(1):75–87,
Jan. 2010.

38. S. Pion and A. Fabri. A generic lazy evaluation scheme for exact geometric computations. Sci.
Comput. Program., 76(4):307 – 323, Apr. 2011.

39. J. R. Shewchuk. Adaptive precision floating-point arithmetic and fast robust geometric predi-
cates. Discret. & Comput. Geom., 18(3):305–363, Oct. 1997.

40. C. K. Yap. Symbolic treatment of geometric degeneracies. In M. Iri and K. Yajima, editors,
System Modelling and Optimization: Proc. 13th IFIP Conference, pages 348–358. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1988.

41. J. Yongbin, W. Liguan, B. Lin, and C. Jianhong. Boolean operations on polygonal meshes
using obb trees. In ESIAT 2009, volume 1, pages 619–622. IEEE, 2009.

42. Q. Zhou, E. Grinspun, D. Zorin, and A. Jacobson. Mesh arrangements for solid geometry.
ACM Trans. Graph., 35(4):39:1–39:15, July 2016.

