
Terminal star operations algorithm for
tetrahedral mesh improvement

Fernando Balboa, Pedro Rodriguez-Moreno and Maria-Cecilia Rivara

Abstract We discuss an innovative, simple and effective Lepp terminal-star al-
gorithm for improving tetrahedral meshes. For each bad quality tetrahedron, one
branch of the longest edge propagating path (Lepp) is followed to find an associated
terminal star, which is a set of tetrahedra that share a common longest edge (termi-
nal edge). Three alternative improvement mesh operations are considered: simple
insertion of the centroid Q of the terminal star, or swapping of the terminal edge,
or longest edge bisection. The operation that most improves the mesh is performed
whenever significant improvement is achieved. Empirical study shows that, using
the dihedral angle quality measure, this simple procedure reduces the bad quality
tetrahedra by at least a tenth, with low time cost.

1 Introduction

Lepp bisection algorithms and previous longest edge algorithms were designed for
local refinement of triangulations in two and three dimensions, for adaptive finite
element applications [10, 11, 12, 14]. In three dimensions, for each target tetrahe-
dron t to be refined, the Lepp bisection algorithm follows a longest edge propagating
path (Lepp) to find a set of largest (terminal) edges, each of them shared by a set
of terminal tetrahedra (terminal star). All the tetrahedra are refined by their longest-

Fernando Balboa
Universidad de Chile, Department of Computer Science, Santiago, 8370456, Chile, e-mail: fer-
nando@balboa.cl
Pedro Rodriguez-Moreno
Universidad del Bio-Bio, Department of Information Systems, Concepcion, 4051381, Chile e-mail:
prodrigu@biobio.cl
Maria-Cecilia Rivara
Universidad de Chile, Department of Computer Science, Santiago, 8370456, Chile, e-mail:
mcrivara@dcc.uchile.cl

1

2 Fernando Balboa, Pedro Rodriguez-Moreno and Maria-Cecilia Rivara

edge (bisection by the plane defined by the midpoint of the longest edge and the two
opposite vertices).

In two dimensions the longest edge bisection guarantees the construction of re-
fined triangulations that maintain the quality of the input mesh, improving the av-
erage triangle quality [10, 14]; and producing optimal size triangulations [1]. Even
when the extension of these properties to three dimensions have not been theoret-
ically proved, empirical evidence shows that the three dimensional algorithm be-
haves analogously to the two dimensional algorithm in practice, as shown by Rivara
and Levin [11]. Applications of these algorithms have been discussed by Williams
[19], Jones and Plassmann [7], Castaños and Savage [2], Rivara et al [15].

Lepp Delaunay algorithms for improving two and three dimensional meshes have
also been developed [12, 13, 14] which show good practical behavior. Recently, Ri-
vara and Rodriguez-Moreno [17], studied a two dimensional terminal triangles cen-
troid algorithm, proving that the algorithm terminates by producing graded, opti-
mal size, 30 degrees triangulations for planar straight line graph (PSLG) geometries
with constrained angles greater than or equal to 30 degrees. The mesh improve-
ment algorithm of this paper generalizes some of the ideas presented in [17] to three
dimensions, and is based on some of the ideas presented in [13].

1.1 Previous algorithms versus our mesh improvement algorithm.

Previous algorithms for three dimensional mesh improvement, based on smooth-
ing, swapping, optimization techniques and point insertions have been discussed by
Freitag and Ollivier-Gooch [6], Klingner and Shewchuk [8], Dassi et al. [4], Mis-
ztal et al. [9]. All these algorithms require good distribution of points inside the
input mesh. In what follows we will focus the discussion on the algorithms of these
papers. Other algorithms have also been developed such as a sliver exudation algo-
rithm discussed by Edelsbrunner and Guoy [5]; and an algorithm based on optimal
Delaunay triangulations developed by Chen and Holst [3].

In a known paper in the mesh generation field, Freitag and Ollivier-Gooch [6],
presented a complete empirical study on the use of sequences of three dimensional
swapping and smoothing techniques, combined with five alternative (rather com-
plex) optimization strategies. This paper also included a set of recommendations to
adequately combine (non trivial) sequences of mesh operations to deal with differ-
ent mesh improvement issues. Computational testing considers application meshes
with good distribution of interior points.

Later, Klingner and Shewchuk [8] discussed a mesh improvement method which
combines the mesh operations of Freitag and Ollivier-Gooch, with a set of additional
mesh operations (insertion of a new point into a bad quality tetrahedron, two opera-
tions for improving boundary tetrahedra, multiphase operations and compound op-
erations) and intensive use of optimization. They succeeded in generating very good
meshes (with high computational cost), by assuming that “the spacing of the input
vertices in the input mesh is already correct”. Based on the operations of Klingner

Terminal star operations algorithm for tetrahedral mesh improvement 3

and Shewchuk, Dassi et al. [4] discussed an optimization method (without using
point insertions) to improve the mesh, for geometries formed by unions / intersec-
tions of right parallelepipeds with random points in its interior; while Misztal et al.
[9] discussed the inclusion of a new multi-face retriangulation operation that can be
performed in the boundary of the mesh.

In this paper we propose a simple and efficient mesh improvement algorithm
that uses a Lepp path to find a terminal star (set of tetrahedra that share a common
longest edge) over which two alternative improvement operations are performed: a
new simple centroid insertion operation, or terminal edge swapping, whenever the
mesh is locally improved. Our algorithm is more general than previous methods,
since this can be also applied to meshes with bad distribution of interior points.

2 Lepp bisection and Lepp centroid algorithms

In two dimensions, Lepp(t), the longest edge propagating path of a triangle t [12,
14], is a sequence of increasing triangles that allows for finding a unique local largest
edge in the mesh (terminal edge) shared by two terminal triangles (one triangle for
a boundary terminal edge). For an illustration see Figure 1 (a). In 3-dimensions
Lepp(t) corresponds to a multidirectional searching process [12, 13] that allows for
finding a set of terminal edges.

Definition 1. E is a terminal edge in a tetrahedral mesh τ if E is the longest edge of
every tetrahedron that shares E. In addition, we call terminal star TS(E) to the set of
tetrahedra that shares a terminal edge E.

Definition 2. For any tetrahedron t0 in τ , Lepp(t0) is recursively defined as follows:
(a) Lepp(t0) includes every tetrahedron t that shares the longest edge of t0 with t,
and such that longest edge of t is greater than the longest edge of t0; (b) For any
tetrahedron ti in Lepp(t0), this Lepp(t0) also contains every tetrahedron t that shares
the longest edge of ti and where longest edge of t is greater than longest edge of ti.

Note that Lepp(t0) is a 3D submesh which has a finite and variable number of
associated terminal-edges and terminal stars, as illustrated in Figure 1 (b). In the
full Lepp bisection algorithm, for each tetrahedron t to be refined, the algorithm
computes Lepp(t) and finds an associated set W of terminal edges. Then for each
terminal edge E in W, the longest edge bisection of every tetrahedron of the termi-
nal star TS(E) is performed, which corresponds to a local refinement operation that
maintains a conforming mesh (where the intersection of pair of adjacent tetrahedra
is either a common vertex, or a common edge, or a common face). This process is
repeated until the target tetrahedron t is refined.

One path Lepp bisection algorithm. In this paper we consider algorithms based
on partial Lepp computation, following one Lepp branch until one terminal edge is
found, according to the following definition:

4 Fernando Balboa, Pedro Rodriguez-Moreno and Maria-Cecilia Rivara

Definition 3. For any tetrahedron t0, of longest edge L0, compute One Branch Lepp(t0)
as follows:

a) OneBranch Lepp(t0) includes t0. Then define processing tetrahedron tproc equal
to t0 (of longest edge Lproc).

b) Add to OneBranch Lepp(t0) one tetrahedron t with the greatest longest edge Lt ,
selected between the set of tetrehedra that share edge Lproc and having longest
edge Lt greater than Lproc.

c) Repeat for tproc equal to t, while there exists a tetrahedron t in step (b).

Remark. Note that by using Definition 3, in most cases we expect to reach the
largest terminal edge in the Lepp submesh.

Algorithm 1 One Path Lepp Bisection Algorithm (τ , S)
Input: τ mesh of tetrahedra; S set of tetrahedra to be refined
Output: refined mesh τ f
while S 6= φ do

For each tetrahedron t0 ∈ S.
while t0 remains in the mesh do

Compute OneBranch Lepp(t0), terminal edge E and terminal star TS(E)
Perform longest edge bisection of each tetrahedron in terminal star TS(E)

end while
end while

E2

E
4

t0

t1
t2

t3 t4

t5

(a)

t

(b)

E1

E
3

0 Lepp(t)

A

B

Fig. 1 (a) Lepp in 2-dimensions: Lepp(t0) = t0, t1, t2, t3, t4, t5, AB is the terminal edge; (b) Lepp(t)
in 3-dimensions has several terminal edges Ei

One path Lepp centroid algorithm. Here we introduce the simple centroid al-
gorithm in three dimensions. Instead of selecting the terminal edge midpoint, the
centroid Q of the terminal star T S(E) is computed. Then Q is simply inserted in the
mesh by joining Q with the exterior triangular faces of T S(E), whenever this is a
valid three dimensional mesh operation. The algorithm is as follows:

Terminal star operations algorithm for tetrahedral mesh improvement 5

Algorithm 2 One Path Lepp Centroid Algorithm (τ , S)
Input: τ mesh of tetrahedra; S set of tetrahedra to be refined
Output: refined mesh τ f
while S 6= φ do

For each tetrahedron t0 ∈ S
while t0 remains in the mesh do

Compute OneBrach Lepp(t0), terminal edge E and terminal star T S(E)
Compute centroid Q of terminal star T S(E)
if simple insertion of Q is valid operation then

Perform simple insertion of centroid Q
else

Perform longest edge bisection of the tetrahedra in TS(E)
end if

end while
end while

As reported in [11, 13], refinement algorithms based on the bisection of tetrahe-
dra tends to improve the meshes in practice. Experimentation with the Lepp centroid
algorithm in the context of this research, shows better behavior than pure longest
edge bisection algorithms. However, without considering smart operations, the mesh
size increases too much to be competitive for mesh improvement. In the new algo-
rithm of this paper, only smart centroid insertions are performed whenever local
mesh improvement is attained.

Simple centroid insertion. It is worth noting that the simple centroid insertion is
related with smart laplacian smoothing as follows: assume that the terminal edge
midpoint M is inserted in the mesh by longest edge bisection of the tetrahedra of the
terminal star; then the laplacian smoothing of vertex M is equivalent to the simple
insertion of centroid Q.

3 Swapping of the terminal edge

According to the definition, each terminal star is formed by a variable number of
tetrahedra sharing a common longest edge. Consequently, each terminal star is a
polyhedron very appropriate for performing edge swapping in a tetrahedral mesh.
A full discussion on edge swapping operations can be found in reference [6]. Note
that for a set of N tetrahedra sharing an edge, the edge swapping operation replaces
the N tetrahedra by a set of 2N-4 tetrahedra. Thus, for N = 3, 4, 5, 6, the associated
swapping operations to be used correspond to 3-2, 4-4, 5-6, 6-8 tetrahedra; and so
on. In section 5.3 we include a statistical discussion on the practical use of these
operations in our improvement algorithm.

6 Fernando Balboa, Pedro Rodriguez-Moreno and Maria-Cecilia Rivara

4 Selective (terminal tetrahedra) centroid / swapping algorithm

The algorithm is formulated in terms of three alternative terminal star operations:
simple centroid insertion, terminal star swapping, longest edge bisection (applied to
constrained terminal edge). Each one of these operations modifies the interior of the
terminal star producing a new tetrahedra set. The algorithm chooses the best opera-
tion whenever this locally improves the mesh by using a given factor; otherwise this
continues by processing another target tetrahedron.

For each tetrahedra set (tetrahedra in the terminal star, tetrahedra obtained by
simple centroid insertion, tetrahedra obtained by terminal edge swapping, tetrahedra
obtained by longest edge bisection), we use a function Quality(set) that computes
a worst dihedral angle measure as follows. For each tetrahedron t in the set, we
compute Dangle as

Dangle = Min{α,180◦-β}

where α , β are the smallest and the largest dihedral angles respectively for tetra-
hedron t, with the conditions α ≤ θ1 and β ≥ θ2. Note that θ1,θ2 are user given
tolerance parameters for the smallest and largest dihedral angles (see the algorithm
3). Then the Quality(set) function is equal to the smallest Dangle value for the tra-
hedra in the set. The algorithm can be schematically described as follows.

Algorithm 3 Selective Centroid Swap Algorithm (τ , θ2, θ2)
Input: tetrahedral mesh τ , θ2, θ2 are tolerances for smallest and largest dihedral angles
Output: improved mesh τ f
Find S set of tetrahedra with dihedral angle ≤ θ2 or dihedral angles ≥ θ2.
for each tetrahedron t in S do

while t remains in mesh do
compute OneBranch Lepp(t), terminal edge E, terminal star TS
compute Qualilty(TS)
compute centroid Q and Qualilty(insertion)
(Qualilty is 0 if insertion is not a valid operation)
compute swapping of TS and Qualilty(Swap)
if Qualilty(insertion) > Qualilty(Swap) and Qualilty(insertion > Factor ∗ Qualilty(TS))
then

Perform insertion of centroid Q
else

if Qualilty(swap) > Factor ∗ Qualilty(TS) then
Perform swapping of the terminal tetrahedra

else
set Nothing equal to true

end if
end if
if Nothing is true and Quality(bisection) > Factor ∗ Quality(TS) then

perform longest edge bisection of TS
end if

end while
end for

Terminal star operations algorithm for tetrahedral mesh improvement 7

Several remarks are in order:

• We have adjusted the improvement parameter Factor to 1.1. Thus, the local oper-
ation is accepted if a 10% of improvement is achieved with respect to the terminal
tetrahedra set.

• After one step of the preceding algorithm is performed, certain tetrahedra remain
in the mesh, for which the improvement task did not succeed. Then a next step
of the algorithm is performed for an actualized set S. The process finishes either
if all the tetrahedra in S can not be improved, or after a user fixed number of
steps is performed. In practice, after five refinement steps with Factor = 1.1 are
performed, no significant mesh improvement is achieved.

• It is worth noting that the algorithm does not include special operations for im-
proving boundary tetrahedra.

• We follow one branch of the Lepp path, according to the Definition 3, to find a
terminal star. In practice the results are not different by using alternative Lepp
branches.

• We have used a quality criterion that mixes smallest and largest dihedral angles.
We use dihedral angles since this is the most used measure in practical mesh
generation [7, 8].

5 Empirical study

Taking as a basis, three dimensional Lepp-based C++ code, developed by Rodriguez-
Moreno [18], our (terminal star operations) improvement algorithm was imple-
mented in a notebook computer with intel core i7 6500U processor without using
parallelism of any kind. To study the practical behavior of the algorithm we have
considered the complex test problems of Figure 2, and different sets of random
points (inside a box).

5.1 Comparison of centroid / swap algorithm with only centroid
and with only swap techniques

We compared the full algorithm, which chooses the best (smart) operation between
insertion and swapping, against only (smart) insertion and only (smart) swapping.
For all the test problems of Figure 2, the full algorithm performs better than the
algorithms based on isolated operations. Table 1 illustrates the extreme dihedral
angle distribution for the final meshes of the three techniques for the elephant case.
Note that, as expected, when only swapping is performed, the final mesh size is
smaller than that obtained for the combined Insert / Swap algorithm.

8 Fernando Balboa, Pedro Rodriguez-Moreno and Maria-Cecilia Rivara

Fig. 2 Test problems

Table 1 Comparison of Insert/Swap with only Insert and only Swap. Elephant mesh

Case < 5◦ < 10◦ < 20◦ < 30◦ >150◦ >160◦ >170◦ Mesh Size

Initial 0.08 0.54 3.9 10.51 1.6 0.54 0.07 1905
Insert/Swap 0 0 0.39 3.63 0.16 0.017 0 2834
Insert 0 0.05 1.38 6.54 0.48 0.09 0 3092
Swap 0 0.07 2.04 7.8 0.67 0.14 0 1819

5.2 Improvement performance of the centroid / swap algorithm

Here we present improvement results for the algorithm of section 4, for the nine test
problems of Figure 2 and for one random points mesh. Table 2 summarizes the mesh
sizes (initial and final meshes) for these problems, Table 3 includes the refinement
time, and Table 4 shows the distribution of the extreme dihedral angles for each
one of these problems both for the initial and final meshes. Figure 3 shows the final
dihedral angle distributions as compared with the dihedral angle distribution of the
initial meshes.

Terminal star operations algorithm for tetrahedral mesh improvement 9

Table 2 Mesh Sizes.
Mesh sizes (# tetrahedra)

Mesh Retinal Elephant P N090 Angel
Size Initial 1374 1905 926 2623 13509

Final 2663 2834 1080 10014 24822

Mesh Helmet Dragon Spine Triceratops Rand2000
Size Initial 1268 7209 3089 46202 13016

Final 2105 12104 7338 85379 31030

Table 3 Refinement time.
Refinement Time (seconds)

Retinal Elephant P N090 Angel
Time 5.7 1.59 0.20 18.52 63.88

Helmet Dragon Spine Triceratops Rand2000
Time 1.74 31.5 24.91 116.98 77.13

Table 4 Distribution of extreme dihedral angle

%Dihedral Angles

Mesh <5◦ <10◦ <20◦ <30◦ >150◦ >160◦ >170◦

Retinal Initial 0.06 1.8 10.46 22.31 3.71 0.92 0.13
Final 0 0.06 1.87 8.12 0.99 0.12 0

Elephant Initial 0.008 0.54 3.9 10.51 1.6 0.54 0.07
Final 0 0 0.39 3.63 0.16 0.017 0

P Initial 0.25 0.41 1.94 5.45 0.76 0.41 0.14
Final 0 0 0.062 1.33 0.016 0 0

N090 Initial 6.46 12.73 24.22 31.48 10.08 6.58 2.16
Final 0.73 2.24 6.93 13.95 2.99 1.33 0.29

Angel Initial 0.04 0.64 5.01 12.1 1.44 0.43 0.047
Final 0.005 0.034 0.56 4.41 0.21 0.039 0.007

Helmet Initial 0.005 0.47 3.4 9.96 0.85 0.25 0.026
Final 0 0.056 0.46 4.18 0.16 0.055 0

Dragon Initial 0.053 0.74 5.64 13.19 1.95 0.61 0.067
Final 0.007 0.075 0.91 5.07 0.43 0.091 0.007

Spine Initial 1.56 5 13.19 21.36 4.49 2.48 0.77
Final 0.1 0.36 2.15 7.98 0.84 0.29 0.075

Triceratops Initial 0.15 0.99 5.52 11.7 1.88 0.72 0.15
Final 0.015 0.07 0.59 4.27 0.28 0.067 0.015

Rand2000 Initial 1.98 4.34 10.55 18.13 4.41 2.7 1.23
Final 0.36 0.99 2.49 6.65 1.37 0.84 0.4

10 Fernando Balboa, Pedro Rodriguez-Moreno and Maria-Cecilia Rivara

Fig. 3 Histogram of dihedral angles for the input mesh (in blue) and for the output mesh (in red).

Terminal star operations algorithm for tetrahedral mesh improvement 11

5.3 Performance behavior of the terminal star operations

We have performed a complete statistical study on the frequency of the three op-
erations (centroid insertion, star swapping and nothing) over the terminal stars of
different sizes. Firstly, we studied the distribution of the different types of terminal
stars (according to their sizes), over all the meshes, finding that the distribution is
analogous for all of them. Figure 4 summarizes these results (in average) for all the
meshes. Then we studied the percentage of the three operations performed over each
type of terminal star by our refinement algorithm. Figure 5 summarizes (in average)
these results.

Several remarks are in order:

• 70% of the terminal stars have size < 6.
• For most of the stars of size 3, edge swapping is performed.
• The option of doing nothing (to skip the improvement operations) increases with

the star size.
• For star sizes ≥ 6, a small amount of improvement operations is performed.

Fig. 4 Size distribution of the terminal stars (in average for all meshes)

12 Fernando Balboa, Pedro Rodriguez-Moreno and Maria-Cecilia Rivara

Fig. 5 Local mesh operations (centroid insertion, star swapping, nothing) as a function of the
terminal star size.

6 Algorithms comparison

Here we compare our results with those of Klingner and Shewchuk [8], who pro-
vided an empirical study (with computing times) for three alternative mesh improve-
ment strategies over a Mac Pro 2.66 GHz Intel Xeon processor, comparable to our
hardware. The more recent references [4, 9] did not provide run times. A direct
comparison of the computing times shows that our algorithm is 15 to 50 times faster
than those of Klingner and Shewchuk. Our algorithm, for a mesh of 12000 tetra-
hedra takes 31 seconds and for a mesh of 85000 tetrahedra takes 116 seconds. In
exchange the methods of reference [8], for a mesh of 11000 tetrahedra take 497 to
940 seconds, and for a mesh of 50000 tetrahedra take 950 to 5823 seconds. Cer-
tainly, better quality meshes are obtained by the methods of reference [8], but these
can be only applied to input meshes with good distribution of points.

It is worth noting that our improvement algorithm is more general than previ-
ous methods, which can be applied to any valid input mesh independently of the
distribution of interior points. Furthermore our algorithm always improves the dis-
tribution of dihedral angles independently of the meshing problem.

7 Concluding remarks

• We have presented an innovative, simple, and effective algorithm for mesh im-
provement, which works locally over sets of tetrahedra sharing local largest edges
in the mesh (terminal stars). This takes advantage of the interesting properties of
terminal stars both for point insertion and for terminal edge swapping.

• The method works well both for initial complex meshes having a small number
of interior points (elephant, retinal, angel geometries) and for bad meshes having
a good distribution of interior points. This is a clear ad-vantage, with respect to
previous methods, which require a good distribution of interior points to work
[6, 8, 9].

Terminal star operations algorithm for tetrahedral mesh improvement 13

• In our opinion the method has great potential to become the basis of a solid
algorithm for three dimensional mesh improvement by adding adequate local
operations for improving boundary tetrahedra and intelligent simplification tech-
niques.

• As expected, for the random point meshes, it is more appropriate to use smooth-
ing operations and simplification operations than inserting points.

• The computational cost is low (less than 20 seconds for most problems and 117
seconds for the most difficult retinal geometry). This can be highly de-creased
at least in the following two senses: (a) Terminal edge swapping operations are
critical and expensive operations, whose implementation can be optimized fol-
lowing the guidelines discussed in reference [6]; (b) The computational work can
be constrained to terminal stars of size = 6 according to the analysis of section 3.

• The algorithms are very appropriate for parallelization.
• In a next version of this paper we plan to study the algorithm behavior with other

tetrahedra quality measures.

Acknowledgements Work partially supported by Departamento de Ciencias de la Computacin,
Universidad de Chile, and research Project DIUBB 172115 4/R, Universidad del Bo Bo. We are
grateful to the referees who contributed to the improvement of this paper.

References

1. C. Bedregal, M.C. Rivara, Longest-edge algorithms for size-optimal refinement of triangu-
lations. Computer-Aided Des. 46, 246-251 (2014)

2. J. Castaños, J. Savage, PARED: a framework for the adaptive solution of PDEs. In High Per-
formance Distributed Computing, 1999. Proceedings The Eighth International Symposium
on IEEE, 133-140 (1999)

3. L. Chen and M. Holst Efficient mesh optimization schemes based on optimal Delaunay trian-
gulations. Computer Methods in Applied Mechanics and Engineering 200, 967–984 (2011)

4. F. Dassi, L. Kamenski, H. Si, Tetrahedral mesh improvement using moving mesh smoothing
and lazy searching flips, 25th International Meshing Roundtable, Procedia Engineering, 163,
302-314 (2016)

5. H. Edelsbrunner, D. Guoy, An experimental study of sliver exudation. Engineering with Com-
puters, 18, 229-240 (2002)

6. L.A. Freitag, C. Ollivier-Gooch, Tetrahedral mesh improvement using swapping and smooth-
ing, Int. J. for Numer. Meth. In Engrg, 40, 3979-4002 (1997)

7. M. Jones, P. Plassmann, Adaptive refinement of unstructured finite-element meshes. Finite
Elem. Anal. Des., 25, 41-60 (1997)

8. B.M. Klingner, J.R. Shewchuk, Aggressive tetrahedral mesh improvement. In Proceedings
16th International Meshing Roundtable, (Springer, Berlin, Heidelberg), 3–23 (2008)

9. M.K. Misztal, J.A. Brentzen, F. Anton, and K. Erleben. Tetrahedral mesh improvement using
multi-face retriangulation. In Proceedings of the 18th International Meshing Roundtable, B.
W. Clark, Ed. Springer Berlin Heidelberg, pp. 539–V555, (2009)

10. M.C. Rivara, Algorithms for refining triangular grids suitable for adaptive and multigrid
techniques, Int. J. Numer. Meth. in Eng, 20, 745–756 (1984)

11. M.C. Rivara, C. Levin, A 3-D refinement algorithm suitable for adaptive and multi-grid tech-
niques, Comm. in Applied Numerical Methods, 8, 281-290 (1992)

14 Fernando Balboa, Pedro Rodriguez-Moreno and Maria-Cecilia Rivara

12. M.C. Rivara, New longest-edge algorithms for the refinement and/or improvement of un-
structured triangulations. International Journal for Numerical Methods in Engineering, 40,
3313-3324 (1997)

13. M.C. Rivara, M. Palma, New LEPP algorithms for quality polygon and volume triangulation:
implementation issues and practical behavior. In Trends in Unstructured Mesh Generation,
S.A. Canann and S. Saigal (Eds.). ASME, AMD-Vol. 220, 1-9, 1997

14. M.C. Rivara, Lepp-bisection algorithms, applications and mathematical properties. Appl.
Numer. Math., 59, 2218-2235 (2009)

15. M.C. Rivara, C. Calderon, A. Fedorov, N. Chrisochoides, Parallel decoupled terminal-edge
bisection method for 3d mesh generation. Eng. Comput., 22, 111-119 (2009)

16. M.C. Rivara, P. Rodriguez, R. Montenegro, G. Jorquera, Multithread parallelization of lepp-
bisection algorithms, Appl. Numer. Math., 62, 473-488 (2012)

17. M.C. Rivara, P.A. Rodriguez-Moreno, Tuned terminal triangles centroid Delaunay algo-
rithm for quality triangulation. In Proceedings 27th International Meshing Roudtable, Al-
buquerque, NM USA, 2018.

18. P. Rodriguez-Moreno, Parallel Lepp-based algorithms for the generation and refinement of
2D and 3D triangulations, PhD thesis, Department of Computer Science, University of Chile,
160 pages, 2015.

19. R. Williams, Adaptive parallel meshes with complex geometry, In Numerical Grid Genera-
tion in Computational Fluid Dynamics and related Fields. Elsevier Science Publishers, 201-
213 (1991)

