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Abstract. Finite-element flow solvers can utilize high-order meshes to achieve 
improved accuracy over traditional linear meshes. High order meshes are gener-
ally created by elevating linear meshes. For high Reynold’s number viscous 
flows, the linear mesh is tightly clustered to no-slip surfaces. For curved bound-
aries the high-order mesh must also curve to match the geometry curvature. An 
optimization-based node perturbation scheme is described that used a two-com-
ponent cost function to optimize the high order mesh. The first component uses 
element Weighted Condition Number (WCN) to enforce element shape. The sec-
ond component uses a normalized Jacobian to enforce element size and validity. 
The method is applied to several complex linear meshes with highly curved 
boundaries and tightly clustered normal spacing. 
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1 Introduction 

Significant advances have been made in finite-element (FE) techniques for Computa-
tional Fluid Dynamics (CFD) in recent years [1, 2, 3]. Finite-element techniques offer 
increased accuracy over traditional CFD methods, such as finite-volume, with fewer 
degrees of freedom and increased efficiency. Two popular approaches are Streamline 
Upwind/Petrov-Galerkin (SU/PG) and Discontinuous Galerkin (DG). Both approaches 
achieve stable solution by using upwind methods. SU/PG modifies the Galerkin 
weighting functions to achieve upwinding. DG applies flux jump conditions at element 
boundaries to approximate a Riemann solution. Linear meshes (polynomial degree 1) 
result in 2nd order accurate solutions. Higher order accuracy is achieved by introducing 
additional vertices (new degrees of freedom) to the element edges, faces and interiors 
that contribute to the integration of the governing equations. Arbitrary polynomial order 
is possible, however typical CFD applications tend to use orders of polynomial degrees 
2 (P2), 3 (P3) or 4 (P4). 

Elevating a linear mesh to a higher degree is relatively straightforward. The new 
vertices are inserted into the element at predefined locations, such as equally spaced for 
Lagrangian-based interpolation schemes. SU/PG methods are continuous, so the nodes 
shared by adjacent elements are not distinct. DG methods duplicate edge and face 
nodes, so each element has its own copy. This duplication is typically performed by the 
flow solver, so the task of mesh generation is to create the continuous version of the 
high-order mesh. 
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CFD solutions for viscous computations require clustering of the nodes towards no-
slip boundaries in the mesh to properly resolve the viscous boundary layer. This creates 
high aspect ratio elements near the boundary. If the boundary is curved this complicates 
the mesh elevation process and requires the elements themselves to be curved. Mesh 
curving has been attempted in a number of ways to alleviate mesh tangling issues asso-
ciated with curving meshes, with varying degrees of success. Interpolation methods, 
such as mean value coordinates [4] and radial basis functions [5] have been used. The 
more successful approaches tend to use solid mechanics analogies where the mesh is 
treated as an elastic solid that deforms due to forces acting on the boundaries [6, 7]. 
Manipulation of the stiffness model or thermo-elastic properties helps maintain valid 
elements in the mesh interior. More severe cases of high curvature and tight viscous 
clustering still present challenges. Other efforts focus on the solution to the Winslow 
equations to perform the interior mesh curving [8]. This approach is a natural applica-
tion of Winslow smoothing techniques as a copy of the unperturbed, elevated mesh 
serves as the computational mesh. The solution to the Winslow equations then forces 
the interior of the physical mesh to take on the same character of the computational 
mesh, i.e. smooth variation of the spacing and element volume across the physical do-
main. However, more severely curved cases still present challenges requiring strategies 
such as freezing the original linear nodes. 

A mesh optimization method was presented at IMR25 [9]. The method attempts to 
optimize a cost related to a distortion measure from an isotropic state, which would be 
insufficient for viscous mesh curving. An alternate approach for viscous mesh curving 
was first published in 2016 [10]. This approach relies on a node perturbation/smoothing 
process first utilized for general isotropic unstructured mesh smoothing [11]. The basic 
algorithm was generalized for prescribing desired element shapes and extended to the 
four basic element types [12, 13]. Further enhancements to the original curving tech-
nique have been made to integrate with a geometry kernel and enforce positive Jacobi-
ans for FE simulations. Surface nodes are projected onto CAD surfaces using a light-
weight geometry kernel, Project Geode. The cost function controlling the node pertur-
bations has been expanded to include a normalized Jacobian component that ensures 
valid positive Jacobians are produced. Details of the mesh curving process are pre-
sented. Several examples with a high degree of curvature and tightly clustered viscous 
meshes are included. 

2 Mesh Curving Process 

The mesh curving process assumes a valid linear mesh has been created, as opposed to 
actually curving the mesh during mesh creation. In addition, any curved boundaries 
require the underlying shape be defined in a Computer Aided Design (CAD) model. As 
the linear mesh is elevated and as the mesh nodes are smoothed, adherence to the ge-
ometry is enforced. 
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2.1 Project Geode 

Project Geode is a fourth generation, solid modeling and geometry kernel written in 
C++. It is an integral part of the commercial mesh generation software, Pointwise [14]. 
A lightweight version is available for queries such as point projections. Use of Project 
Geode by the mesh curving process is made robust and efficient by segregating the 
geometric entities into CAD groups and using a mesh linkage that defines the required 
geometric entities for each mesh node. Project Geode with the mesh linkage are used 
by the mesh curving program to perform closest point projections for curved surface 
edge and interior vertices. 

CAD Groups 
The geometric entities are sorted into collections of surfaces (NURBS) and curves 

(B-SPLINES) required by the various mesh surface faces and edge curves. Each group 
gets stored in a binary split (BSP) tree for fast searches. As a surface mesh interior or 
edge node is moved it will be projected to the appropriate CAD group in the associated 
BSP. This provides for efficient projections and robustness. Robustness in the sense 
that mesh nodes on the top side of a thin geometry, such as a wing trailing edge, are 
projected to a different CAD group than the mesh nodes on the bottom side of the thin 
geometry. 

Mesh Linkage 
The associativity between the mesh entities (points, curves and surface meshes) and 

the underlying geometry is typically discarded when the final linear mesh is exported 
to a file. An open source schema is under development that provides information to re-
associate mesh entities with the appropriate geometric entity. The schema recognizes 
and leverages the hierarchical nature of mesh topology, e.g. edges (and their points) are 
constrained to CAD curves while faces are constrained to CAD surfaces. Furthermore, 
by allowing a CAD group to contain many CAD entities, the schema provides mesh 
linkage for cases where mesh topology does not match CAD topology. This schema 
will be available for any mesh generator to use to write the mesh linkage file. The mesh 
linkage can then be used by the mesh adaptive or mesh elevation code with the geom-
etry file (IGES, STEP, etc.) to perform the necessary geometric queries of the CAD 
geometry. 

2.2 Mesh Elevation and Initial Perturbation Field 

High-order meshes are typically obtained by introducing new nodes on edges, faces and 
in the interior of elements. The number of new nodes added is dependent on the desired 
order of accuracy. A hybrid linear mesh is usually comprised of tetrahedra with 4 nodes, 
pyramids with 5 nodes, prisms with 6 nodes and hexahedra with 8 nodes. All these 
nodes are located at corners of the elements. These are designated P1 elements as they 
are used with basis functions defined by first order polynomials, i.e. planar solution 
variation across the element. Adding mid-edge nodes to each linear edge in the P1 
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mesh, mid-face nodes to quadrilateral faces in the P1 mesh and a centroidal node for 
hexahedral P1 elements will create P2 elements. P3 and P4 elements are created in a 
similar fashion, increasing the number of nodes on each edge, face and element interior. 
The maximum polynomial order permitted in this endeavor is P4. The CGNS number-
ing convention is used to identify the ordering of the new nodes in each element [15]. 

Each new node associated with a boundary edge is projected to its CAD curve group 
using Project Geode. Each new node associated with a boundary surface is projected to 
its CAD surface group using Project Geode. For viscous meshes with tight clustering 
this can invert elements close to convex curved surfaces requiring some form of 
smoothing to untangle the mesh. To minimize the tangling and provide a better initial-
ization of the interior, a perturbation field is created based on the boundary node per-
turbations.  

All new high-order nodes are initially placed at locations linearly extrapolated from 
the boundary node perturbations. The process will be described using a two-dimen-
sional section of a Q2 mesh, shown in Fig. 1. The mesh is a collection of quadrilateral 
elements, but triangles are permitted. In three dimensions all four basic element types 
are permitted. The high order nodes are depicted in blue. The high order boundary node 
is red. The boundary geometry is the green curve. The projection of the boundary high 
order node is shown in Fig. 2. 

 
Fig. 1. Section of mesh with Q2 interior and 
boundary nodes. 

 
Fig. 2. Perturbation vector for boundary Q2 
node. 

 
Fig. 3. Closest locations on linear mesh. 

 
Fig. 4. Interior node perturbations. 

Each interior node locates the nearest boundary segment or boundary node of the 
unperturbed mesh, shown in Fig. 3. A surface perturbation vector is computed at these 

Q2 boundary node

Q2 interior nodes

Q2 boundary perturbation

Closest surface location on linear mesh Interior perturbation transferred and scaled.
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locations by interpolating from the endpoint perturbations. The original linear nodes 
will have a zero-perturbation vector. This perturbation vector  is transferred to the inte-
rior node using a linearly decaying function, shown in Equation (1). The distance from 
the interior node to the boundary location is ds. The factor decays rapidly away from 
the boundary. 

 !"##⃗ = !&####⃗ ∗ ()*(1.0,
012#####⃗ 0

34
)  (1) 

 This perturbation field greatly improves the initial curved mesh in the convex and 
concave regions. Only an extremely small percentage of elements for more complex 
configurations are invalid prior to smoothing. The resulting initial mesh for the two-
dimensional example case is shown in Fig. 5. 

 
Fig. 5. Final initialized node locations. 

The three-dimensional perturbation field is created in a similar manner using a multi- 
step process. Each surface high order node has been projected to the appropriate edge 
curve or geometry surface using Project Geode. This may not be adequate for surfaces 
that are planar, but the boundary edges are highly curved. So, the first step considers 
the boundary mesh patches and projects each surface mesh interior point to all other 
surface patches. If the new perturbation vector is larger than the existing vector, then it 
is replaced. The volume interior points are then processed by locating the nearest sur-
face node or element. The interpolated perturbation at that location is transferred to the 
interior location using Equation (1). 

2.3 Optimization-based Smoothing 

The smoothing method used on the high-order mesh is a node perturbation scheme that 
attempts to optimize a two-component cost function. The two components are evalu-
ated on the elements and distributed to the nodes. Both components have optimal values 
at 1 and indicate element inversion at values of 0 and lower. The first component is 
based on Weighted Condition Number (WCN) [11] and the second component is based 
on a normalized Jacobian. The linear combination of components, shown in Equation 
(2), is controlled via the a parameter that can vary between 0 and 1. The WCN compo-
nent is required to maintain element shape but cannot ensure positive Jacobians. The 
Jacobian component does not maintain the shape but is sometimes required to enforce 

Initialized node locations.
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positive Jacobians. Together they seek to enforce the proper shape and size of the ele-
ments.  

 
6 = 7689: + (1 − 7)6=>9        (2) 

 
The diagrams in Fig. 6 are used to illustrate the locations where each component would 
be calculated for a two-dimensional triangle. The extension to three dimensions is 
straightforward. For clarity, the triangular element is straight-sided but that is certainly 
not required. The upper-left image shows a P2 triangle with the high-order nodes lo-
cated at the mid-edges. The WCN cost component is computed on the linear sub-ele-
ments, shown in the lower left image. This cost component only affects the nodes that 
define the sub-element. The normalized Jacobian cost component is computed at the 
survey points shown on the right side of the figure. The Jacobian computation involves 
all real nodes (linear and high-order) in the element, so it affects all nodes of the ele-
ment. When operating on pyramids, prisms and hexahedra the WCN cost component is 
computed on a tetrahedral element constructed at each corner of these elements. The 
normalized Jacobian cost component is computed over the entire element using similar 
equally spaced survey points.  

 
Fig. 6. P2 triangle with the sub-elements and Jacobian survey locations. 

In practice the smoothing is applied in one or more stages. In the first stage only the 
WCN component is used. This is less expensive to compute and provides robustness 
during mesh untangling at the beginning of the smoothing process. After the first stage 
the normalized Jacobians are evaluated within each element using a dense survey grid 
created using number of subdivisions equal to the element polynomial degree times a 
specified maximum factor, such as 4 for the lower right image. If negative Jacobians 
are detected, then the second stage is performed with both cost components and the 
survey grid density corresponds to the polynomial degree, such as 2 for the triangle in 
the upper left image. If negative Jacobians still exist, then the survey grid density in-
creases for the next stage. Experience has shown the third stage is seldom needed for 
P2 meshes but needed more for P3 and P4 meshes. The higher polynomial orders permit 

P2 Triangle

Sub-elements 
for WCN cost

Survey points
for Jacobian cost

2 divisions

4 divisions

8 divisions
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inflections in the edges and surfaces which can contribute to negative Jacobians. In-
creasing the survey grid density identifies more regions of the element that might con-
tain small or negative Jacobian values. 

WCN smoothing was originally developed for linear mesh smoothing. Each high 
order element can be subdivided into a collection of linear sub-elements. CWCN is com-
puted on these sub-elements where a desired shape is known from the elevated but 
unperturbed mesh. Enforcing sub-element shapes will require edge curving near surface 
curvature but will maintain straight elements away from the surface. Cost values com-
puted on the sub-elements contributes to average and minimum values at the nodes of 
each sub-element. 

The CWCN component takes on two forms, depending on the local Jacobian, Equa-
tions (3). If the Jacobian is negative the cost is the Jacobian. If the Jacobian is positive 
the cost is the inverse of the weighted condition number. The delineation at a value of 
zero is required because the second form does not recognize when the element is in-
verted. These two forms are C0 continuous at a value of 0. 
 

689: = ?													AB			?	 ≤ 	0.0 
   (3) 

689: =
1

D6*
			AB			?	 > 		0.0 

 
The Jacobian, J, defined in Equation (4) is the magnitude of the determinant of the 
Jacobian matrix, A, formed by inserting the components of the three edge vectors, u, v 
and w emanating from the corner of the linear sub-element. A right-hand-rule conven-
tion is assumed in the construction of the matrix. 

? = F
GH IH JH
GK IK JK
GL IL JL

F           (4) 

 
The second form of the cost function in Equation (3) is based on the weighted condition 
number, WCN, given in Equation (5). The bracketed quantities are the Frobenius norms 
of the matrix products. The [A] matrix is the actual Jacobian matrix from Equation (4). 
The [W] matrix is the weight matrix that transforms the reference corner (a right-angled 
corner with unit length edges) to the desired corner shape. 
 

D6* =
M>8NOMM8>NOM

P
                (5) 

 
The weight matrix, [W], defines the desired shape. It is constructed from the six edges 
of a corner tetrahedron, shown in Fig. 7 using the unperturbed (computational) coordi-
nates. If the physical coordinates used in [A] were unperturbed from the computational 
coordinates the resulting CWCN would be unity. For smoothing of high order meshes the 
sub-elements of the high-order element are evaluated using Equations (3). The eleva-
tion and projection processes deform elements near curved boundaries. The CWCN com-
ponents attempts to recover the original sub-element shapes. 
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Fig. 7. The weight matrix can be formed from the edge lengths of the corner. 

The Jacobian component of the cost function, CJAC, is a normalized Jacobian computed 
at numerous survey points within each element, Equation (6). The numerator is the 
value of the Jacobian, computed using Equation (7), at a given survey point in the ele-
ment using the physical coordinates. The denominator is the value of the Jacobian at 
the same location using the computational (unperturbed) coordinates. The derivative 
components of the shape factors, Ni, are obtained from basis functions for each element 
type and polynomial order. 
 

6=>9 = ()*(	1,
=Q

=R
 )    (6) 
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The Jacobian component of the cost function, CJAC, attempts to recover the original 
Jacobian magnitude of the unperturbed mesh. The possible range of values is negative 
infinity to 1. The ratio is capped at 1 so larger physical Jacobians are permitted. In 
essence, this cost component attempts to recover the size of the original element. This 
form of Jacobian is preferred over other quality measures typically encountered in 
curved meshes, such as scaled Jacobian. The scaled Jacobian will not respect the vis-
cous clustering. It measures the deviation of the Jacobian within the element. In the 
optimization process this would drive the mesh towards isotropic element shapes. 

CJAC is computed at the survey points within each element. Each value computed 
contributes to the average and minimum value recorded for each node in the element. 
The number of survey points within an element can vary. For the smoothing operation 
it is an equally spaced array of locations derived by specifying the number of divisions 
on an edge. For instance, if the number of divisions is 2 for a P2 element then the 
locations will be the corner nodes plus the high-order nodes. Three divisions for P3 
elements would also result in calculations at the corners and the high-order nodes. Num-
ber of divisions higher than the polynomial order are possible, but generally not re-
quired to achieve a valid mesh and would increase the computational cost significantly. 
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Nodal values of the cost, C, are computed using a blending of the cost for the ele-
ments surrounding each node, Equation (8). The blending combines the worst cost 
value, Cw ,with the arithmetic average of the element cost values, CAvg. This ensures 
the worst value has significant weight as a surrounding element is inverted or nearly 
inverted. 

 ^ = 1 − 6_ 

 6 = ^6_ + (1 − ^)6>`a (8) 

Smoothing proceeds in an iterative manner where each node is perturbed in the di-
rection of increasing cost, driving towards the ideal value of 1. The direction is deter-
mined using operator overloaded math functions which compute values and sensitivi-
ties in the same operation. The sensitivity vector is used in a gradient based algorithm 
to advance the mesh. The step size is limited to a fraction of the local inscribed radius 
for each element. A user-specified threshold cost value, such as 0.8, is used to activate 
nodes in the mesh for optimization. Only nodes whose cost is below this threshold and 
their immediate neighbors are computed and moved during any given iteration. Each 
element connected to an activated node is also activated during the smoothing iteration. 
This dramatically improves the performance of the scheme as most of the mesh will 
have a unit cost value. Only nodes in the vicinity of curved boundaries will have lower 
cost values. Smoothing stops when all nodal cost values exceed the threshold, or the 
specified number of iterations are completed. 

The cost threshold can greatly influence the curving process run time and resulting 
quality. Lower values may permit excessive kinks in the edges oriented in the normal 
direction from curved boundaries, especially very close to the surface. Higher threshold 
values will increase the run times for curving but will produce higher quality meshes. 
The default threshold value is 0.8 but higher values approaching 0.95 are commonly 
used. The a parameter is automatically calculated to be the polynomial degree minus 
one over the polynomial degree. This would produce values of 1/2, 2/3 and 3/4 for Q2, 
Q3 and Q4 meshes. In extreme cases this parameter has been lowered to 0.3 – 0.4 to 
ensure valid Jacobians are produced. These meshes included some highly curved sur-
face and interior edges as a result. 

3 Results 

A collection of example cases is shown with multiple curved boundaries and viscous 
clustering toward these boundaries. The cases increase in size from a small generic 
shape to a complex air vehicle. All curved boundary shapes are defined using CAD 
geometry. Surface evaluations are performed using the CAD geometry and Project Ge-
ode projection calls. Images were created using the Gmsh application [16] as a mesh 
viewer for P2, P3 and P4 meshes for the first two cases and ParaView [17] for the final 
case P2 meshes. 
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In each case the resulting mesh is valid with no negative Jacobians resulting at the 
densest survey grid. The minimum combined cost values are greater than 0.5 and ap-
proach or exceed the threshold values of 0.9 – 0.95. For those cases where the combined 
cost is lower the normalized Jacobian minimum value is in the range from 0.1 – 0.3. 

3.1 Weeble 

The first case is a small mesh created on the geometry shown in Fig. 8. It is a surface 
with convex and concave features separated by sharp edges. The outer boundary is a 
simple sphere. The linear mesh, shown in Fig. 9, has 4,876 points and 28,821 tetrahedra. 
The mesh on the weeble, shown in Fig. 10, is very coarse. The volume mesh is clustered 
towards the surface with a normal spacing equal to 1e-04. The maximum element aspect 
ratio is 5,246 for an element on the surface. 

 

 
Fig. 8. Surface geometry for 
weeble. 

 
Fig. 9. Outer boundary linear 
surface mesh for weeble. 

 
Fig. 10. Weeble surface lin-
ear mesh. 

The P2, P3 and P4 meshes, are shown in Fig. 11, Fig. 12 and Fig. 13, respectively. The 
P2 contains 38,404 points. The P3 mesh has 129,073 points. And the P4 mesh has 
305,370 points. The surfaces are smooth, and the sharp edges are retained and curved. 

 

 
Fig. 11. Weeble P2 mesh 
with crinkle cut through the 
centerline. 

 
Fig. 12. Weeble P3 mesh 
with crinkle cut through the 
centerline. 

 
Fig. 13. Weeble P4 mesh 
with crinkle cut through the 
centerline. 

 

Gmsh - /Users/karman/Documents/Cases/weeble/weebleTet-P9.msh

Modules
Geometry
Mesh
Solver

O X Y Z 1:1 S  Done reading '/Users/karman/Documents/Cases/weeble/weebleTet-P2.msh'

Gmsh - /Users/karman/Documents/Cases/weeble/weebleTet-P9.msh

Modules
Geometry
Mesh
Solver

O X Y Z 1:1 S  Done reading '/Users/karman/Documents/Cases/weeble/weebleTet-P3.msh'

Gmsh - /Users/karman/Documents/Cases/weeble/weebleTet-P9.msh

Modules
Geometry
Mesh
Solver

O X Y Z 1:1 S  Done reading '/Users/karman/Documents/Cases/weeble/weebleTet-P4.msh'
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Magnified views of the cut through the volume meshes without the nodes displayed are 
shown in Fig. 14 through Fig. 16. The interior edges show a high degree of curving off 
the lower sharp edge. The P4 mesh shows an inflection in the edges just above the lower 
sharp edge on the surface. 

 

 
Fig. 14. P2 volume edges 
near surface. 

 
Fig. 15. P3 volume edges 
near surface. 

 
Fig. 16. P4 volume edges 
near surface. 

Hybrid versions of the meshes containing tetrahedra, pyramid, prisms and hexes were 
also curved, Fig. 17 through Fig. 19. The quadrilateral surface elements are coarser than 
the triangular elements from the all-tetrahedral mesh.  

 

 
Fig. 17. P2 hybrid volume 
mesh. 

 
Fig. 18. P3 hybrid volume 
mesh. 

 
Fig. 19. P4 hybrid volume 
mesh. 

3.2 Generic Nozzle 

The next example is a slightly bigger mesh with a significant amount of curvature on 
the surface. The generic nozzle geometry is shown in Fig. 20. The outer nozzle surface 

Gmsh - /Users/karman/Documents/Cases/weeble/weebleTet-P9.msh

Modules
Geometry
Mesh
Solver

O X Y Z 1:1 S  Done reading '/Users/karman/Documents/Cases/weeble/weebleTet-P2.msh'

Gmsh - /Users/karman/Documents/Cases/weeble/weebleTet-P9.msh

Modules
Geometry
Mesh
Solver

O X Y Z 1:1 S  Done reading '/Users/karman/Documents/Cases/weeble/weebleTet-P3.msh'

Gmsh - /Users/karman/Documents/Cases/weeble/weebleTet-P9.msh

Modules
Geometry
Mesh
Solver

O X Y Z 1:1 S  Done reading '/Users/karman/Documents/Cases/weeble/weebleTet-P4.msh'

Gmsh - /Users/karman/Documents/Cases/weeble/weebleMixed-P<.msh

Modules
Geometry
Mesh
Solver

O X Y Z 1:1 S  Done reading '/Users/karman/Documents/Cases/weeble/weebleMixed-P2.msh'

Gmsh - /Users/karman/Documents/Cases/weeble/weebleMixed-P<.msh

Modules
Geometry
Mesh
Solver

O X Y Z 1:1 S  Done reading '/Users/karman/Documents/Cases/weeble/weebleMixed-P3.msh'

Gmsh - /Users/karman/Documents/Cases/weeble/weebleMixed-P<.msh

Modules
Geometry
Mesh
Solver

O X Y Z 1:1 S  Done reading '/Users/karman/Documents/Cases/weeble/weebleMixed-P4.msh'  -  1 Error : Click to show messages [ ... FaceClosureFull not implemented for prisms of order 4 ... ]
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contains convex curvature and a sharp break in slope about ¾ of the length of the sur-
face. The interior nozzle surface contains smooth convex and concave curvature. The 
linear mesh, shown in Fig. 21, has 86,817 points and 506,623 tetrahedra. The mesh is 
clustered to the nozzle surface with a wall spacing of 1e-03. The maximum aspect ratio 
is 385.6 located on the inner wall near the convex curvature region. A magnified view 
of the surface meshes is shown in Fig. 22. The challenging aspect of this case is the 
nozzle base region, magnified in Fig. 23. It has convex curvature in the plane on the 
interior edge and concave curvature on the outer edge. This requires more than just 
projecting the high-order nodes to the surface. It requires smoothing on the surface to 
create valid curved triangular elements. The smoothing process works on all nodes in 
the mesh, boundary nodes and interior volume nodes. Any tangling on the surface will 
be corrected as the volume mesh is smoothed. The boundary nodes are not processed 
separately from the interior nodes. 

 

 
Fig. 20. Generic nozzle surface geometry. 

 
Fig. 21. Generic nozzle linear mesh. 

 
Fig. 22. Magnified view of surface mesh in-
side and outside of nozzle. 

 
Fig. 23. Zoomed in view of nozzle base re-
gion. 

Crinkle cuts through the centerline of the P2, P3 and P4 meshes are shown in Fig. 24 
through Fig. 26. The only noticeable difference is at the concave shoulder on the interior 
side of the nozzle. The P2 surface has a slight bulge that is not seen in the P3 and P4 
meshes. This occurred because the length of the elements in the region spanned the 
transition from the horizontal flat piece to the converging section. The P2 mesh posi-
tioned the interior edge node mid-way between the corner nodes while the upstream 
node was on the flat section. The quadratic surface (P2) creates the bulging section. The 
P3 and P4 meshes show no bulge. 
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Fig. 24. Crinkle cut through P2 mesh. 

 
Fig. 25. Crinkle cut through P3 mesh. 

 
Fig. 26. Crinkle cut through P4 mesh. 

The nozzle base region for each mesh is shown in Fig. 27 through Fig. 29. All three 
meshes show the same character. The clustering in the plane to the inner and outer 
curves is maintained. The triangular elements in the middle of the base tend to maintain 
the straight-edged shapes. 
 

Gmsh - /Users/karman/Documents/Cases/NASA_Glenn/Unstructured/smc-coarse-tet-P;.msh

Save Clear Autoscroll messagesO X Y Z 1:1 S  Done reading '/Users/karman/Documents/Cases/NASA_Glenn/Unstructured/smc-coarse-tet-P2.msh'

Gmsh - /Users/karman/Documents/Cases/NASA_Glenn/Unstructured/smc-coarse-tet-P;.msh

Save Clear Autoscroll messagesO X Y Z 1:1 S  Done reading '/Users/karman/Documents/Cases/NASA_Glenn/Unstructured/smc-coarse-tet-P3.msh'

Gmsh - /Users/karman/Documents/Cases/NASA_Glenn/Unstructured/smc-coarse-tet-P;.msh

Save Clear Autoscroll messagesO X Y Z 1:1 S  Done reading '/Users/karman/Documents/Cases/NASA_Glenn/Unstructured/smc-coarse-tet-P4.msh'
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Fig. 27. Base region of P2 mesh. 

 
Fig. 28. Base region of P3 mesh. 

 
Fig. 29. Base region of P4 mesh. 

The volume elements near the base deform to match the surface shape, shown in Fig. 
30. The crinkle cut through an X coordinate is just ahead of the base and reveals convex 

Gmsh - /Users/karman/Documents/Cases/NASA_Glenn/Unstructured/smc-coarse-tet-P;.msh

Save Clear Autoscroll messagesO X Y Z 1:1 S  Done reading '/Users/karman/Documents/Cases/NASA_Glenn/Unstructured/smc-coarse-tet-P2.msh'

Gmsh - /Users/karman/Documents/Cases/NASA_Glenn/Unstructured/smc-coarse-tet-P;.msh

Save Clear Autoscroll messagesO X Y Z 1:1 S  Done reading '/Users/karman/Documents/Cases/NASA_Glenn/Unstructured/smc-coarse-tet-P3.msh'

Gmsh - /Users/karman/Documents/Cases/NASA_Glenn/Unstructured/smc-coarse-tet-P;.msh

Save Clear Autoscroll messagesO X Y Z 1:1 S  Done reading '/Users/karman/Documents/Cases/NASA_Glenn/Unstructured/smc-coarse-tet-P4.msh'
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curvature on the outside and concave curvature on the inside. The P2 mesh transitions 
from curved edges at the boundary to straight edges in a smooth manner. 

 

 
Fig. 30. Crinkle cut through P2 mesh at nozzle base. 

3.3 High Lift Common Research Model 

The last case is a complex air vehicle, the NASA/Boeing High-Lift Common Research 
Model (HL-CRM) [18]. The geometry is shown in Fig. 31, colored by the different 
components. It contains a fuselage, wing, leading edge slat and two trailing edge flaps. 
The linear mesh contains 5,918,418 nodes and 35,031,781 tetrahedra. This was the 
“coarse” mesh in a sequence. The elevated P2 mesh contains 47,062,366 nodes. 

 

 
Fig. 31. NASA/Boeing High Lift Common Research Model geometry. 

 
Surface meshes are shown in Fig. 32 through Fig. 35. The viscous clustering, evident 
in the symmetry plane of  Fig. 33, had an initial cell height of 0.00175. The total fuse-

Gmsh - /Users/karman/Documents/Cases/NASA_Glenn/Unstructured/smc-coarse-tet-P;.msh

Save Clear Autoscroll messagesO X Y Z 1:1 S  Done reading '/Users/karman/Documents/Cases/NASA_Glenn/Unstructured/smc-coarse-tet-P2.msh'
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lage length was approximately 2500 units long. The maximum aspect ratio in the sym-
metry plane mesh was 8,941, which is indicative of the viscous clustering over the en-
tire aircraft surface. 
 

 
Fig. 32. P2 mesh on HL-CRM aft fuselage. 

 
Fig. 33. P2 mesh on HL-CRM forward fuse-

lage and symmetry plane. 

 
Fig. 34. P2 mesh on HL-CRM flap gap. 

 
Fig. 35. P2 mesh on HL-CRM wing tip 

leading edge. 

The challenging aspect of this case was the viscous clustering and overall size of the 
mesh. The curving computer code is serial and required approximately 13 GBytes. The 
surface resolution was comparable to the resolution typically utilized for linear meshes. 
This results in good resolution of surface curvature which is easily handled by the curv-
ing method.  

4 Conclusions 

A high-order mesh elevation and curving method has been described that is applicable 
to high Reynold’s number viscous cases for finite element CFD solvers. Viscous clus-
tering introduces significant challenges to mesh curving, especially in regions of high 
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surface curvature. The elevation process in convex regions of viscous meshes can in-
validate the high order mesh by inverting volume elements near the curved surface. The 
curving process uses an optimization-based node perturbation scheme to reposition 
nodes. The cost function contains two components. The first component uses a 
Weighted Condition Number function that imposes a desired shape, defined by the el-
evated but unperturbed mesh. The second cost component uses a normalized Jacobian 
that imposes sizing restrictions where the high order mesh has been squeezed but the 
surface curvature. It also guarantees the resulting mesh contains all positive Jacobians; 
a requirement for the finite element solvers.  

Geometry for the curving program is defined by CAD groups (surfaces and edges). 
Surface node projections are performed using a lightweight geometry kernel, Project 
Geode. The CAD groups are stored in separate BSP trees for efficient searches. A mesh 
linkage defines the specific CAD group for each surface mesh node.  

Three example cases were curved; all containing viscous clustering to geometries 
containing high concave and convex surface curvature. High order meshes of polyno-
mial degrees 2, 3 and 4 were generated for the first two cases. A P2 mesh was created 
for the larger aircraft case. Most of the curved meshes were all-tetrahedral meshes. A 
hybrid mesh containing tetrahedra, pyramids, prisms and hexes was generated for the 
first case. All meshes generated were valid with positive Jacobians.  
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