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Abstract. Several templates for 2D and 3D structured mesh refinement are pre-

sented. The templates have the property that the minimum number of irregular 

points or edges (mesh singularities) are added. For a given set of external division 

numbers a variety of interior meshes can be generated.  

The positions of the internal vertices in the template are calculated explicitly 

using an extended transfinite mapping scheme, which has previously been shown 

to be equivalent to iterative iso-parametric smoothing. Since calculating the block 

vertex positions requires the solution of a small number of linear equations, the 

optimum mesh in the interior of the template can be evaluated very cheaply be-

fore the block structured mesh is generated. 

Keywords: Multiblock Quad and Hex Meshing, Quad and Hex Mesh Refine-

ment, Mesh Smoothing. 

1 Introduction 

Despite huge advances in the state of the art of unstructured mesh generation, e.g. [1], 

there is still a demand for the generation of structured multi-block meshes. A number 

of authors [2]–[4] have explored the use of medial axis techniques, since these tend to 

offer meshes which have close to the minimum number of mesh irregularities or ‘sin-

gularities’. Other techniques such as frame fields have gained attention, but it was noted 

in [5] that it is necessary to take into account the global structure of hexahedral meshes. 

This implies tracking the position and connectivity of singular edges in 3D. 

After a multi-block decomposition has been created, adjustment of edge division 

numbers to achieve an adequate mesh size distribution is required. Frequently mesh 

sizing requirements in one area leads to the propagation of an overly dense mesh else-

where, requiring the insertion of ‘steerbacks’ or additional block topology to create 

transition meshes and local mesh refinement [6]. Solution errors may indicate a need 

for adaptive refinement of an existing blocking, which is similarly difficult.  

One way to avoid this complexity is to implement a non-conformal refinement strat-

egy, using multi-point constraints at incompatible interfaces. This has the benefit of 
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producing higher quality elements in the refinement regions with no propagation 

through the remaining mesh. However, this can introduce errors at the mismatching 

interface and is unsuitable for many applications [7]. 

Current conformal mesh adaptation strategies for quad and hex elements are gener-

ally template-based operations focused on 2-refinement or 3-refinements strategies [8]. 

Schneider [9] used a refinement strategy to subdivide quad elements and hex elements 

in the refinement region using a quadtree refinement, maintaining associativity by in-

serting templates in the transition zone. Ebeida [10] introduced a parallel realization of 

Schneider’s 2-refinement strategy for unstructured meshes, whilst Qian [11] extended 

this approach for non-manifold conformal mesh generation. Other work [12] incorpo-

rated conformal refinement and coarsening strategies by combining template-based op-

erations with localized coarsening and quality improvement in a single workflow. 

While these techniques provide topological mesh adaptation focusing directly on mesh 

elements they can also be applied to the ‘coarser’ block decomposition. The issue is 

that they are generally implemented using a 2-refinement or 3-refinement strategy, 

meaning arbitrary element numbers require further refinement and the combination of 

templates that may introduce large numbers of unnecessary singularities.  

 

Fig. 1. Two and three refinement templates [9] 

The aim of the present work was to identify some generic ways in which an existing 

block decomposition can be refined to produce meshes which better match mesh den-

sity variations. For a given region the minimum necessary number of singular points 

can be established geometrically, Fogg et al. [13]. Fogg also showed that if additional 

2D singularities are to be added, a positive (5-valent) and negative (3-valent) pair must 

be added simultaneously. 

Therefore, in 2D, mesh refinement can be accomplished by incrementally adding 

pairs of positive-negative singularities to an existing block decomposition. It will be 

shown that, for a singularity pair, the optimum position of the singular points for a given 

mesh density can be calculated explicitly. It will also be shown that there are a range of 

mesh distributions that can satisfy external division number constraints, and it is possi-

ble to choose the optimum arrangement at low computational cost.  

Other general block arrangements and 3D refinements are also presented. 

2 Laplacian smoothing and iso-parametric mapping 

The ‘midpoint subdivision’ technique for decomposing a convex polygon into a series 

of 2D quadrilateral blocks, or a 3D polyhedron with convex edges and trivalent vertices 

into hexahedral bricks, has been presented by Li et al. [14]. By joining a face midpoint 

to all the edge midpoints, one quad is generated at every vertex of the original polygon, 
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Fig. 2b) and c). By adjusting the internal mesh division numbers, e.g. 𝑛0, 𝑛1,  𝑛2 in 

Fig. 2c), a range of external division numbers can be satisfied. 

In a subsequent paper [15], efficient mapping methods were developed for determin-

ing nodal positions in the resulting mesh based on an extension to transfinite mapping, 

and it was shown that the result is identical to that obtained by iterative iso-parametric 

smoothing. 

From eqn. (7) of Li et al. [15], the position of a node 𝒙 at the centre of a k-sided face, 

Fig. 2, can be identified using 

∑
𝒃𝑟+𝒃𝑟+1−𝒂𝑟

𝑛𝑟𝑛𝑟+1

𝑘−1
0 − ∑

1

𝑛𝑟𝑛𝑟+1

𝑘−1
0 𝒙 = 𝟎, 

where 𝒃𝒓 is the point on edge 𝑟 that the face midpoint is connected to, and 𝒂𝒓 is the 

opposite corner joining edges 𝑟 and 𝑟 + 1. 𝑛𝑟 is the number of elements (division num-

ber) on the radial edge joining the centre point 𝒙 to edge 𝑟.  

An alternative form, shown below, allows the position of the face midpoint 𝒙 to be 

found from 

∑
1

𝑛𝑟𝑛𝑟+1
𝒂𝒓

𝑘−1
0 −∑ (

1

𝑛𝑟𝑛𝑟+1
+

1

𝑛𝑟−1𝑛𝑟
)𝒃𝒓 +

𝑘−1
0 ∑

1

𝑛𝑟𝑛𝑟+1

𝑘−1
0 𝒙 = 𝟎. 

Here 𝑛𝑟−1 is the radial division number of the edge preceding edge 𝑟 in a clockwise 

traversal of the boundary, whilst 𝑛𝑟+1 is the radial division number of the following 

edge. 

So, for a 3-sided face, Fig. 2c) for example, 

[+
1

𝑛0𝑛1
+

1

𝑛1𝑛2
+

1

𝑛2𝑛0
− (

1

𝑛0𝑛1
+

1

𝑛2𝑛0
) 

− (
1

𝑛1𝑛2
+

1

𝑛0𝑛1
) − (

1

𝑛2𝑛0
+

1

𝑛1𝑛2
) +∑

1

𝑛𝑟𝑛𝑟+1

2

𝑟=0

]

{
  
 

  
 
𝒂𝟎
𝒂𝟏
𝒂𝟐
𝒃𝟎
𝒃𝟏
𝒃𝟐
𝒙 }
  
 

  
 

= 𝟎 

This representation is potentially useful when some of the positions are unknown, for 

example in a network of primitives with common edges. 

3 Adding a singularity pair to an existing block 

Adding a positive and negative singularity to an existing block can be thought of as 

partitioning the quad block into a 3-sided and a 5-sided region, Fig. 2a). The difficulty 

is that, even when the singularities are directly connected, the midpoint on the common 

edge (𝑏2 in the triangle and 𝑏0 in the pentagon) affects the position of both face mid-

points. 
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a) Singularity pair with 
internal and external 
division numbers 

b) Positive singularity in a 
pentagon 

c) Negative 
singular-
ity in a 
triangle 

Fig. 2. A pair of singularities in a quad block 

In the equation for the triangular region, Fig. 2c), the positions of 

{𝒂𝟎 𝒂𝟏 𝒂𝟐 𝒃𝟎 𝒃𝟏 } are known and can be moved to the right-hand side, 

so we end up with two unknown positions for the triangle midpoint 𝒙𝒕 and the edge 

midpoint 𝒃𝟐 which is shared with the pentagon, as 

[− (
1

𝑛2𝑛0
+

1

𝑛1𝑛2
) ∑

1

𝑛𝑟𝑛𝑟+1

2
𝑟=0 ] {

𝒃𝟐
𝒙𝒕 
} = 𝒓𝒉𝒔𝟎. 

Similarly, the equation describing the face and edge midpoints in the pentagon re-

duces to  

[− (
1

𝑛0𝑛1
+

1

𝑛4𝑛0
) ∑

1

𝑛𝑟𝑛𝑟+1

4
𝑟=0 ] {

𝒃𝟎
𝒙𝒑
} = 𝒓𝒉𝒔𝟏. 

𝒃𝟐 in the triangle and 𝒃𝟎 in the pentagon are of course the same point. 

 

Fig. 3. Quad with common boundary point at the centre. The points are as labelled in Fig. 2b) 
and c). 

The last step is to calculate the position of triangle point 𝒃𝟐 using the same transfi-

nite mapping equations. With reference to Fig. 3, and using the convention that red 

points are on the triangle and black points are on the pentagon, the corner points of the 

4-sided region surrounding the common edge midpoint 𝑏2 are  
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[𝒃𝟏 𝒃𝟏 𝒃𝟒 𝒃𝟎], 
whilst the edge midpoints are 

[𝒙𝒕 𝒂𝟏 𝒙𝒑 𝒂𝟐], 
and the triangle and pentagon midpoints are 𝒙𝒕 and 𝒙𝒑 respectively. 

Collecting known terms and moving them to the RHS gives 3 vector equations in 3 

unknown positions as 

[
. . 0
0 0 .
. . .

] {
𝒃𝟐
𝒙𝒕

𝒙𝒑
} = {

𝒓𝒉𝒔𝟎

𝒓𝒉𝒔𝟏

𝒓𝒉𝒔𝟑
} 

Once these equations are solved to find the face midpoints and the common edge 

midpoint, all the other nodes can be found using Li’s existing algorithm. 

4 Division numbers 

With the arrangement of the triangle and pentagon shown in Fig. 2 there are 6 internal 

division numbers. If target external division numbers on the block are required, this 

means solving an integer programming problem, but here we will proceed initially by 

specifying the internal division numbers. On the external edges of the block, the corner 

and edge midpoint nodes of the triangle and pentagon can be identified. If the division 

numbers or edge meshes are changed then the position of the face midpoints and the 

common edge midpoint can be re-calculated as above. 

Fig. 4 and Fig. 5 show the block corner points calculated using these equations for 

two different sets of division numbers. The negative singularity, the positive singularity 

and the common edge midpoint are at nodes 13, 14 and 12 respectively in Fig. 4 and 

nodes 21, 22 and 20 in Fig. 5. 

 

Fig. 4. Labelled corners and midpoints. In-
ternal division numbers n = [1,1,1,1,1,1] 

 

Fig. 5. Internal division numbers = 
[1,1,1,1,3,3] 
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5 Common edge nodes 

After the division numbers have been set, nodes must be generated on the common 

edge between the triangle and pentagon.  

The nodes on the common edge between nodes 9 and 37 in Fig. 6 can be derived 

using the standard transfinite mapping equations. Based on the position of nodes (0, 4, 

5, 6), and nodes (3, 29, 28, 27) representing two opposite logical block edges, the posi-

tion of nodes 50 and 51 can be calculated since (0, 37, 3) and (6, 44, 27) form the other 

two sides of a logical 4-sided region. For example, the position of node 50 can be cal-

culated using the equation: 

(
1

7

1

14

1

16

1

8
− (

1

7
+

1

8
) − (

1

7
+

1

14
) − (

1

14
+

1

16
) − (

1

16
+

1

8
))   

(

 
 
 
 
 

𝒑
𝟎

𝒑
𝟔

𝒑
𝟐𝟕

𝒑
𝟑

𝒑
𝟑𝟕

𝒑
𝟒

𝒑
𝟒𝟒

𝒑
𝟐𝟗)

 
 
 
 
 

  

+(
1

8
+

1

16
+

1

7
+

1

14
)  (𝒑𝟓𝟎) = 𝟎  

 Similarly, the position of nodes (49, 48, 47) can be found based on the 4-sided region 

[(0, 9, 1), (1, 17, 18, 19, 20), (20, 44, 40), (40, 41, 42, 43, 0)]. Fig. 6 shows the position 

of these nodes derived for a given set of division numbers. 

Once the position of all the boundary nodes for both primitives is established, the 

generation of the radial edge meshes and the quad mesh for each block can proceed as 

described in Li’s original algorithm. Fig. 7 shows the resulting mesh.  

 

Fig. 6. Nodes on the common edge for the template of Fig. 2 with internal division numbers 

[3,4,3,4,4,4]. 
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Fig. 7. Final mesh. 

 

For a fixed set of external division numbers, the common edge midpoint is different 

when 𝑛2 is varied, but if the sum 𝑛2 + 𝑛3 is fixed the singular points and the resulting 

element mesh are the same. Fig. 8 and Fig. 9 indicate the different block geometries 

and division numbers for two variations where 𝑛2 + 𝑛3 = 5. Thus 𝑛2 and 𝑛3 are not 

independent variables. 

 

 

 

Fig. 8. Blocks for internal divisions n = 
[4,3,1,4,3,3]. The external numbers are [12, 
6, 7, 11]. 

 

 

Fig. 9. n = [4,3,4,1,3,3]. Same external divi-
sion numbers. The singular points 37 and 38 
and the final mesh are the same as in Fig. 8. 
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6 Division number constraints 

From Fig. 2, the internal and external division numbers are related by 

[

1 0 1 1 1 0
0 1 0 0 0 1
1 0 0 0 1 0
0 1 1 1 0 1

]

{
 
 

 
 
𝑛0
𝑛1
𝑛2
𝑛3
𝑛4
𝑛5}
 
 

 
 

= {

𝑁0
𝑁1
𝑁2
𝑁3

} 

Summing the rows of the matrix on the left-hand side implies 

2(𝑛0 + 𝑛1 + 𝑛2 + 𝑛3 + 𝑛4 + 𝑛5) = 𝑁0 + 𝑁1 +𝑁2 + 𝑁3 

which is the expected constraint that the sum of the external division numbers is even. 

The matrix also implies that 

𝑛2 + 𝑛3 = 𝑁0 − 𝑁2 = 𝑁3 − 𝑁1 

This is a measure of the distance between the singularities. Note that it also requires 

that the difference in division numbers between opposite sides should be the same. As 

shown above, the same mesh is generated if the sum (𝑛2 + 𝑛3) is the same. 

The division number constraints also imply 

𝑁0 + 𝑁1 −𝑁3 = 𝑛0 + 𝑛4 = 𝑁2 

This constraint can also be seen by inspecting Fig. 2.  

Therefore, the mesh can be parameterized by the position of the edge midpoint on 

𝑁2. Varying 𝑛0 whilst keeping the sum 𝑛0 + 𝑛4 constant produces the different blocks 

below for the same external division numbers. 

 

n=[3,3,3,2,4,3] 

 

 
n=[4,3,3,2,3,3] 

 

 
n=[5,3,3,2,2,3] 

Fig. 10. Range of blocks obtained with the external division numbers [12, 6, 7, 11] whilst vary-

ing 𝑛0 for the same 𝑛0 + 𝑛4. 

Similarly 

𝑛1 + 𝑛5 = 𝑁1 
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so the mesh can also be parameterized by where the positive singularity is attached to 

𝑁1. Fig. 11 shows the variation in block geometry for 3 different values of 𝑛1 for 𝑛1 +
𝑛5 = 6. 

 

n=[4,5,3,2,3,1] n=[4,3,3,2,3,3] n=[4,1,3,2,3,5] 

Fig. 11. Range of blocks obtained with the external division numbers [12, 6, 7, 11] whilst vary-

ing 𝑛1 for the same 𝑛1 + 𝑛5 

In summary, for a fixed set of external division numbers, the internal mesh of the tem-

plate can be varied to create a wide range of meshes with different block shapes, internal 

element distributions etc. 

7 Choosing the optimum internal divisions 

The three unknown positions (for the positive singularity, the negative singularity and 

the common edge midpoint) can be found at low computational cost by solving 3 linear 

equations for 2D vectors.  

For a given set of external division numbers, there are 2 parameters which can be 

used to vary the internal division numbers, whilst maintaining the same external divi-

sion numbers: 

1. The position where the positive singularity is attached to 𝑁1, i.e. varying 𝑛1 for a 

given 𝑛1 + 𝑛5 

2. The position where the positive singularity is attached to 𝑁2, i.e. varying 𝑛0 for a 

given 𝑛0 + 𝑛4 

Given that it is possible to compute the position of the singular points cheaply, it is 

feasible to estimate the mesh distortion, either exhaustively or for a substantial sample 

of the parametric variations. In this study, the minimum corner angle of all the blocks 

meeting at the singularities was used as the quality measure. Fig. 12 show the best and 

worst quality of internal blocks for a fixed set of external division numbers.  
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n=(2, 2, 3, 4, 5, 4) 

 
n = [6, 1, 3, 4, 1, 5] 

Fig. 12. The best (left) and worst (right) set of blocks obtained with the external division num-

bers [14,6,7,13] for all parametric variations 

Since the division numbers are known before any mesh is generated, the total number 

of elements can be calculated. For the block arrangement in Fig. 2, the total number of 

elements is 

𝑛𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑛0 ∗ 𝑛1 + 𝑛0 ∗ 𝑛2 + 𝑛1 ∗ 𝑛2 + 𝑛0 ∗ 𝑛3 + 𝑛1 ∗ 𝑛3 + 𝑛1 ∗ 𝑛4 + 𝑛4 ∗ 𝑛5
+ 𝑛0 ∗ 𝑛5 

The number of elements required to achieve the same maximum mesh density in a reg-

ular mesh would be 

𝑛𝑟𝑒𝑔𝑢𝑙𝑎𝑟 = max(𝑁0, 𝑁2) ∗ max (𝑁1, 𝑁3) 

Fig. 13 shows the minimum corner angle at the singularities for the meshes with this 

set of external division numbers. The chart also shows the ratio Size=
𝑛𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛

𝑛𝑟𝑒𝑔𝑢𝑙𝑎𝑟
.  

 

Fig. 13. Variations in mesh quality and size for all parametric variations of external division 

numbers [14,6,7,13]  
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8 A pair of singularities which aren’t directly connected 

Fig. 14 shows a potentially more useful transition which also has 6 internal division 

numbers, but without the redundant constraints between 𝑁0 − 𝑁2 and 𝑁1 − 𝑁3. By var-

ying the internal division numbers, transitions like the previous one can be imple-

mented. However, it also allows steerback transitions from 𝑁2 to 𝑁0. 

 

 

 

 
 

 

+ve singularity 

 

 

 
-ve singularity 

Fig. 14. A more flexible transition 

The division number constraints are 

[

1 1 1 1 0 0
0 1 0 0 1 1
1 0 0 1 0 0
0 0 1 0 1 1

]

{
 
 

 
 
𝑛0
𝑛1
𝑛2
𝑛3
𝑛4
𝑛5}
 
 

 
 

= {

𝑁0
𝑁1
𝑁2
𝑁3

} 

Solving this gives 

𝑛2 =
𝑁𝑜 − 𝑁1 − 𝑁2 +𝑁3

2
 

𝑛1 =
𝑁𝑜 + 𝑁1 − 𝑁2 −𝑁3

2
 

𝑛4 + 𝑛5 =
−𝑁𝑜 + 𝑁1 + 𝑁2 + 𝑁3

2
 

 The position of the pentagon edge midpoint on the top edge can be moved by chang-

ing 𝑛0 whilst keeping the total 𝑛0 + 𝑛3 = 𝑁2.  

The value of 𝑛4 + 𝑛5 determines how close the two singularities are – if this is large 

the singularities are close together. Note that 𝑛4 ≥ 0 and 𝑛5 ≥1. The resulting con-

straint that  

−𝑁𝑜 + 𝑁1 + 𝑁2 + 𝑁3 ≥ 1 

tells us that, if for example we have a boundary layer with a dense mesh that feeds into 

a far field with a much coarser mesh, once 𝑁0 gets too big we need to add another 
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singularity pair. Fig. 15 show how the internal division numbers can be adjusted to 

obtain mesh transitions in different directions. 

The points which need to be constrained to be the same between the pentagon and 

the triangle are the two singular points and the two points which act as edge midpoints 

for both the triangle and the pentagon. This gives 4 vector equations to determine the 

positions of the positive and negative singularities and the two triangle edge midpoints. 

As for the first transition described above, the set of internal division numbers to give 

the best mesh quality can be computed cheaply for a given block shape. 

 

 

Fig. 15. Three adjacent blocks with singularity pairs adjusted to obtain a mesh transition bottom-

right (left), bottom-t4op (middle) and bottom-left (right) 

9 3D Transitions 

3D transitions can be constructed as 2D extrusions of mesh singularity arrangements 

such as are shown in Fig. 2 or Fig. 14. 

A genuine 3D partitioning is shown in Fig. 16, where a single split is used to partition 

the block into two of the mesh-able primitives identified in [2]. Each can be meshed by 

midpoint subdivision [14], where each face midpoint is connected to a body midpoint. 

The result is a positive / negative singularity pair on 3 faces of the block, with a regular 

mesh on the remaining 3 faces. This can be regarded as the 3D equivalent of Fig. 2. 

 

  

 

Fig. 16. 3D block refinement 

The implementation shown in Fig. 16 was created using a simple Abaqus Python script 

This employed the following steps:  

1. a hard geometry partition was created from a plane defined by points on 3 edges of 

the original block. The location of these points is the nodal position which gives the 
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desired edge division numbers and mesh size in each of the primitives. It can there-

fore be used to produce different mesh distributions. 

2. Both the resulting primitives, the tetrahedron and the cube-with-a chip-off, are 

meshed using the implementation of midpoint subdivision within Abaqus.  

The Abaqus implementation enforces any necessary division number constraints on 

block edges in the model after midpoint subdivision. In 2D, once the radial division 

numbers from the singular points at the face centers are chosen, the total edge division 

numbers are defined and the task of the integer programming is to choose the set of 

radial division numbers which best fits the target external division numbers.  

In 3D [15], once the radial division numbers from the singular point at the center of 

a primitive volume to the face centers are chosen, the radial division numbers from the 

singular points on the faces to the face edges and the external edge division numbers 

are defined. The cube-with-a chip-off has 7 faces so it contributes 7 radial division 

numbers. The tetrahedron has 4 faces, but with this refinement template all 3 division 

numbers on the common face in Fig. 16 must be the same. It is also expected, as was 

shown in Section 6, that it is the total division number between the singularities which 

will be significant rather than the two division numbers to the partitioning face. There-

fore, there are 7 radial division numbers available to satisfy the 12 edge division num-

bers of the original cube. Note that if a structured mesh was imposed, only 3 unique 

edge division numbers are available.  

The Abaqus implementation partitions the block volume using a plane, so the ad-

justment of nodal positions using transfinite mapping as described in Sections 3 - 5 is 

not available, but this should be a straightforward item of future work. 

To prevent propagation of the mesh singularity pairs, the same recipe can be applied 

to adjacent blocks. A symmetric replica on one adjacent block limits the influence of 

the mesh singularities to two faces, with the other 4 faces of the double-sized block 

having a regular mesh. Patterns of 4 blocks can be constructed to limit the mesh refine-

ment to one face, whilst 8 would limit the effect to the interior of a volume, with all 

external faces having a regular mesh. 

Discussion 

The illustrations above are for a mesh on a unit cube or block, but the transfinite 

mapping can be applied to any 2D geometry defined by a sequence of 4 edge meshes, 

e.g. Fig. 17. Rotation and reflection transforms can be used to convert the meshes 

shown to different geometries where the external division numbers have different con-

straints e.g. that 𝑁0 < 𝑁2 or 𝑁3 < 𝑁1 in Fig. 2. Graded edge meshes are handled auto-

matically since only the nodal positions are required, and measures of mesh quality can 

be computed before the mesh is generated. 
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Fig. 17. Mesh in distorted block. Same division numbers as in Fig. 8. 

Adaptive refinement of block topology and mesh, based on solution error estimates, is 

an obvious item of future work. There is no fundamental reason why the technique 

should not be applied to arbitrary block networks – in 2D all that is required is the 

number of block vertices connected to a given vertex. The same equations as are uti-

lized to compute the face midpoint positions are then applicable. 

Multiblock meshes are good at estimating sensitivities to a design change, since a 

fixed mesh topology is used. The templates here represent the minimal change in mesh 

topology if a better mesh distribution and solution accuracy is required. The approach 

could be codified into existing multiblock mesh generators. 

The flexible adaptation approach described in this paper enables a wide range of 

external and internal mesh distributions to be accommodated for given block edge di-

vision numbers. This is highlighted in Fig. 18, where it is shown that assigning zero 

divisions to specific block edges enables the 2 and 3 refinement templates from Schnei-

ders to be created. For example, the top left blocking is created by setting n4 as zero.  
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Fig. 18. Reducing block edge to zero division number 

The 3-refinement template, top middle blocking, can then be created by assigning n5 

as zero, and can be used to limit the transition of mesh refinement. In a next step, if n2 

is assigned to be zero then the 2-refinement template is created as shown in the top right 

blocking. This demonstrates the flexibility of the approach described in this paper, e.g. 

setting both n2 and n3 to have zero division numbers generates the structured quadtree 

decomposition shown in the blocking of Fig. 19, whose quality can be controlled by 

altering the division constraints. 

10 Conclusions 

Structured multiblock decompositions are very expensive to create in terms of engi-

neering time. Adapting the mesh density to improve solution quality in a multiblock 

decomposition usually requires a change in block division numbers, which has a global 

effect on the mesh and the solution problem size.  

Local templates for block refinement can be constructed which can be implemented 

cheaply and have only a local effect on mesh density and block structure. For a given 

set of external division numbers on a block, there is a parametric family of solutions 

for the internal division numbers in the refinement template.  
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Using an extended transfinite mapping scheme, a mesh can be generated is equiva-

lent to that which would be generated by iterative iso-parametric smoothing. Whilst the 

quality may be inferior to that generated using more sophisticated smoothing algo-

rithms, the optimum set of internal division numbers and the validity and quality of the 

final mesh can be guaranteed before the mesh is generated. It could therefore serve as 

an initialization step before other smoothing algorithms are applied. 

The template refinement procedure adds the minimum number of mesh singularities 

e.g. a positive and negative singularity pair in 2D. Despite this, a wide range of mesh 

distributions can be accommodated. 

 

 

Fig. 19. 3-refinement adaptation 
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