
Multiblock mesh refinement by adding mesh singularities

Cecil G Armstrong1[0000-0001-8695-5016], Li Tak Sing2, Christopher Tierney1[0000-0003-3341-

6902] and Trevor T Robinson1[0000-0002-6595-6308]

1 School of Mechanical and Aerospace Engineering, Ashby Building, Belfast, BT9 5PY, UK
2 School of Science and Technology, The Open University of Hong Kong, Homantin, Kow-

loon, HK

{c.armstrong, christopher.tierney, t.robinson}@qub.ac.uk,

tsli@ouhk.edu.hk

Abstract. Several templates for 2D and 3D structured mesh refinement are pre-

sented. The templates have the property that the minimum number of irregular

points or edges (mesh singularities) are added. For a given set of external division

numbers a variety of interior meshes can be generated.

The positions of the internal vertices in the template are calculated explicitly

using an extended transfinite mapping scheme, which has previously been shown

to be equivalent to iterative iso-parametric smoothing. Since calculating the block

vertex positions requires the solution of a small number of linear equations, the

optimum mesh in the interior of the template can be evaluated very cheaply be-

fore the block structured mesh is generated.

Keywords: Multiblock Quad and Hex Meshing, Quad and Hex Mesh Refine-

ment, Mesh Smoothing.

1 Introduction

Despite huge advances in the state of the art of unstructured mesh generation, e.g. [1],

there is still a demand for the generation of structured multi-block meshes. A number

of authors [2]–[4] have explored the use of medial axis techniques, since these tend to

offer meshes which have close to the minimum number of mesh irregularities or ‘sin-

gularities’. Other techniques such as frame fields have gained attention, but it was noted

in [5] that it is necessary to take into account the global structure of hexahedral meshes.

This implies tracking the position and connectivity of singular edges in 3D.

After a multi-block decomposition has been created, adjustment of edge division

numbers to achieve an adequate mesh size distribution is required. Frequently mesh

sizing requirements in one area leads to the propagation of an overly dense mesh else-

where, requiring the insertion of ‘steerbacks’ or additional block topology to create

transition meshes and local mesh refinement [6]. Solution errors may indicate a need

for adaptive refinement of an existing blocking, which is similarly difficult.

One way to avoid this complexity is to implement a non-conformal refinement strat-

egy, using multi-point constraints at incompatible interfaces. This has the benefit of

2

producing higher quality elements in the refinement regions with no propagation

through the remaining mesh. However, this can introduce errors at the mismatching

interface and is unsuitable for many applications [7].

Current conformal mesh adaptation strategies for quad and hex elements are gener-

ally template-based operations focused on 2-refinement or 3-refinements strategies [8].

Schneider [9] used a refinement strategy to subdivide quad elements and hex elements

in the refinement region using a quadtree refinement, maintaining associativity by in-

serting templates in the transition zone. Ebeida [10] introduced a parallel realization of

Schneider’s 2-refinement strategy for unstructured meshes, whilst Qian [11] extended

this approach for non-manifold conformal mesh generation. Other work [12] incorpo-

rated conformal refinement and coarsening strategies by combining template-based op-

erations with localized coarsening and quality improvement in a single workflow.

While these techniques provide topological mesh adaptation focusing directly on mesh

elements they can also be applied to the ‘coarser’ block decomposition. The issue is

that they are generally implemented using a 2-refinement or 3-refinement strategy,

meaning arbitrary element numbers require further refinement and the combination of

templates that may introduce large numbers of unnecessary singularities.

Fig. 1. Two and three refinement templates [9]

The aim of the present work was to identify some generic ways in which an existing

block decomposition can be refined to produce meshes which better match mesh den-

sity variations. For a given region the minimum necessary number of singular points

can be established geometrically, Fogg et al. [13]. Fogg also showed that if additional

2D singularities are to be added, a positive (5-valent) and negative (3-valent) pair must

be added simultaneously.

Therefore, in 2D, mesh refinement can be accomplished by incrementally adding

pairs of positive-negative singularities to an existing block decomposition. It will be

shown that, for a singularity pair, the optimum position of the singular points for a given

mesh density can be calculated explicitly. It will also be shown that there are a range of

mesh distributions that can satisfy external division number constraints, and it is possi-

ble to choose the optimum arrangement at low computational cost.

Other general block arrangements and 3D refinements are also presented.

2 Laplacian smoothing and iso-parametric mapping

The ‘midpoint subdivision’ technique for decomposing a convex polygon into a series

of 2D quadrilateral blocks, or a 3D polyhedron with convex edges and trivalent vertices

into hexahedral bricks, has been presented by Li et al. [14]. By joining a face midpoint

to all the edge midpoints, one quad is generated at every vertex of the original polygon,

3

Fig. 2b) and c). By adjusting the internal mesh division numbers, e.g. 𝑛0, 𝑛1, 𝑛2 in

Fig. 2c), a range of external division numbers can be satisfied.

In a subsequent paper [15], efficient mapping methods were developed for determin-

ing nodal positions in the resulting mesh based on an extension to transfinite mapping,

and it was shown that the result is identical to that obtained by iterative iso-parametric

smoothing.

From eqn. (7) of Li et al. [15], the position of a node 𝒙 at the centre of a k-sided face,

Fig. 2, can be identified using

∑
𝒃𝑟+𝒃𝑟+1−𝒂𝑟

𝑛𝑟𝑛𝑟+1

𝑘−1
0 − ∑

1

𝑛𝑟𝑛𝑟+1

𝑘−1
0 𝒙 = 𝟎,

where 𝒃𝒓 is the point on edge 𝑟 that the face midpoint is connected to, and 𝒂𝒓 is the

opposite corner joining edges 𝑟 and 𝑟 + 1. 𝑛𝑟 is the number of elements (division num-

ber) on the radial edge joining the centre point 𝒙 to edge 𝑟.

An alternative form, shown below, allows the position of the face midpoint 𝒙 to be

found from

∑
1

𝑛𝑟𝑛𝑟+1
𝒂𝒓

𝑘−1
0 −∑ (

1

𝑛𝑟𝑛𝑟+1
+

1

𝑛𝑟−1𝑛𝑟
)𝒃𝒓 +

𝑘−1
0 ∑

1

𝑛𝑟𝑛𝑟+1

𝑘−1
0 𝒙 = 𝟎.

Here 𝑛𝑟−1 is the radial division number of the edge preceding edge 𝑟 in a clockwise

traversal of the boundary, whilst 𝑛𝑟+1 is the radial division number of the following

edge.

So, for a 3-sided face, Fig. 2c) for example,

[+
1

𝑛0𝑛1
+

1

𝑛1𝑛2
+

1

𝑛2𝑛0
− (

1

𝑛0𝑛1
+

1

𝑛2𝑛0
)

− (
1

𝑛1𝑛2
+

1

𝑛0𝑛1
) − (

1

𝑛2𝑛0
+

1

𝑛1𝑛2
) +∑

1

𝑛𝑟𝑛𝑟+1

2

𝑟=0

]

{

𝒂𝟎
𝒂𝟏
𝒂𝟐
𝒃𝟎
𝒃𝟏
𝒃𝟐
𝒙 }

= 𝟎

This representation is potentially useful when some of the positions are unknown, for

example in a network of primitives with common edges.

3 Adding a singularity pair to an existing block

Adding a positive and negative singularity to an existing block can be thought of as

partitioning the quad block into a 3-sided and a 5-sided region, Fig. 2a). The difficulty

is that, even when the singularities are directly connected, the midpoint on the common

edge (𝑏2 in the triangle and 𝑏0 in the pentagon) affects the position of both face mid-

points.

4

a) Singularity pair with
internal and external
division numbers

b) Positive singularity in a
pentagon

c) Negative
singular-
ity in a
triangle

Fig. 2. A pair of singularities in a quad block

In the equation for the triangular region, Fig. 2c), the positions of

{𝒂𝟎 𝒂𝟏 𝒂𝟐 𝒃𝟎 𝒃𝟏 } are known and can be moved to the right-hand side,

so we end up with two unknown positions for the triangle midpoint 𝒙𝒕 and the edge

midpoint 𝒃𝟐 which is shared with the pentagon, as

[− (
1

𝑛2𝑛0
+

1

𝑛1𝑛2
) ∑

1

𝑛𝑟𝑛𝑟+1

2
𝑟=0] {

𝒃𝟐
𝒙𝒕
} = 𝒓𝒉𝒔𝟎.

Similarly, the equation describing the face and edge midpoints in the pentagon re-

duces to

[− (
1

𝑛0𝑛1
+

1

𝑛4𝑛0
) ∑

1

𝑛𝑟𝑛𝑟+1

4
𝑟=0] {

𝒃𝟎
𝒙𝒑
} = 𝒓𝒉𝒔𝟏.

𝒃𝟐 in the triangle and 𝒃𝟎 in the pentagon are of course the same point.

Fig. 3. Quad with common boundary point at the centre. The points are as labelled in Fig. 2b)
and c).

The last step is to calculate the position of triangle point 𝒃𝟐 using the same transfi-

nite mapping equations. With reference to Fig. 3, and using the convention that red

points are on the triangle and black points are on the pentagon, the corner points of the

4-sided region surrounding the common edge midpoint 𝑏2 are

5

[𝒃𝟏 𝒃𝟏 𝒃𝟒 𝒃𝟎],
whilst the edge midpoints are

[𝒙𝒕 𝒂𝟏 𝒙𝒑 𝒂𝟐],
and the triangle and pentagon midpoints are 𝒙𝒕 and 𝒙𝒑 respectively.

Collecting known terms and moving them to the RHS gives 3 vector equations in 3

unknown positions as

[
. . 0
0 0 .
. . .

] {
𝒃𝟐
𝒙𝒕

𝒙𝒑
} = {

𝒓𝒉𝒔𝟎

𝒓𝒉𝒔𝟏

𝒓𝒉𝒔𝟑
}

Once these equations are solved to find the face midpoints and the common edge

midpoint, all the other nodes can be found using Li’s existing algorithm.

4 Division numbers

With the arrangement of the triangle and pentagon shown in Fig. 2 there are 6 internal

division numbers. If target external division numbers on the block are required, this

means solving an integer programming problem, but here we will proceed initially by

specifying the internal division numbers. On the external edges of the block, the corner

and edge midpoint nodes of the triangle and pentagon can be identified. If the division

numbers or edge meshes are changed then the position of the face midpoints and the

common edge midpoint can be re-calculated as above.

Fig. 4 and Fig. 5 show the block corner points calculated using these equations for

two different sets of division numbers. The negative singularity, the positive singularity

and the common edge midpoint are at nodes 13, 14 and 12 respectively in Fig. 4 and

nodes 21, 22 and 20 in Fig. 5.

Fig. 4. Labelled corners and midpoints. In-
ternal division numbers n = [1,1,1,1,1,1]

Fig. 5. Internal division numbers =
[1,1,1,1,3,3]

6

5 Common edge nodes

After the division numbers have been set, nodes must be generated on the common

edge between the triangle and pentagon.

The nodes on the common edge between nodes 9 and 37 in Fig. 6 can be derived

using the standard transfinite mapping equations. Based on the position of nodes (0, 4,

5, 6), and nodes (3, 29, 28, 27) representing two opposite logical block edges, the posi-

tion of nodes 50 and 51 can be calculated since (0, 37, 3) and (6, 44, 27) form the other

two sides of a logical 4-sided region. For example, the position of node 50 can be cal-

culated using the equation:

(
1

7

1

14

1

16

1

8
− (

1

7
+

1

8
) − (

1

7
+

1

14
) − (

1

14
+

1

16
) − (

1

16
+

1

8
))

(

𝒑
𝟎

𝒑
𝟔

𝒑
𝟐𝟕

𝒑
𝟑

𝒑
𝟑𝟕

𝒑
𝟒

𝒑
𝟒𝟒

𝒑
𝟐𝟗)

+(
1

8
+

1

16
+

1

7
+

1

14
) (𝒑𝟓𝟎) = 𝟎

 Similarly, the position of nodes (49, 48, 47) can be found based on the 4-sided region

[(0, 9, 1), (1, 17, 18, 19, 20), (20, 44, 40), (40, 41, 42, 43, 0)]. Fig. 6 shows the position

of these nodes derived for a given set of division numbers.

Once the position of all the boundary nodes for both primitives is established, the

generation of the radial edge meshes and the quad mesh for each block can proceed as

described in Li’s original algorithm. Fig. 7 shows the resulting mesh.

Fig. 6. Nodes on the common edge for the template of Fig. 2 with internal division numbers

[3,4,3,4,4,4].

7

Fig. 7. Final mesh.

For a fixed set of external division numbers, the common edge midpoint is different

when 𝑛2 is varied, but if the sum 𝑛2 + 𝑛3 is fixed the singular points and the resulting

element mesh are the same. Fig. 8 and Fig. 9 indicate the different block geometries

and division numbers for two variations where 𝑛2 + 𝑛3 = 5. Thus 𝑛2 and 𝑛3 are not

independent variables.

Fig. 8. Blocks for internal divisions n =
[4,3,1,4,3,3]. The external numbers are [12,
6, 7, 11].

Fig. 9. n = [4,3,4,1,3,3]. Same external divi-
sion numbers. The singular points 37 and 38
and the final mesh are the same as in Fig. 8.

8

6 Division number constraints

From Fig. 2, the internal and external division numbers are related by

[

1 0 1 1 1 0
0 1 0 0 0 1
1 0 0 0 1 0
0 1 1 1 0 1

]

{

𝑛0
𝑛1
𝑛2
𝑛3
𝑛4
𝑛5}

= {

𝑁0
𝑁1
𝑁2
𝑁3

}

Summing the rows of the matrix on the left-hand side implies

2(𝑛0 + 𝑛1 + 𝑛2 + 𝑛3 + 𝑛4 + 𝑛5) = 𝑁0 + 𝑁1 +𝑁2 + 𝑁3

which is the expected constraint that the sum of the external division numbers is even.

The matrix also implies that

𝑛2 + 𝑛3 = 𝑁0 − 𝑁2 = 𝑁3 − 𝑁1

This is a measure of the distance between the singularities. Note that it also requires

that the difference in division numbers between opposite sides should be the same. As

shown above, the same mesh is generated if the sum (𝑛2 + 𝑛3) is the same.

The division number constraints also imply

𝑁0 + 𝑁1 −𝑁3 = 𝑛0 + 𝑛4 = 𝑁2

This constraint can also be seen by inspecting Fig. 2.

Therefore, the mesh can be parameterized by the position of the edge midpoint on

𝑁2. Varying 𝑛0 whilst keeping the sum 𝑛0 + 𝑛4 constant produces the different blocks

below for the same external division numbers.

n=[3,3,3,2,4,3]

n=[4,3,3,2,3,3]

n=[5,3,3,2,2,3]

Fig. 10. Range of blocks obtained with the external division numbers [12, 6, 7, 11] whilst vary-

ing 𝑛0 for the same 𝑛0 + 𝑛4.

Similarly

𝑛1 + 𝑛5 = 𝑁1

9

so the mesh can also be parameterized by where the positive singularity is attached to

𝑁1. Fig. 11 shows the variation in block geometry for 3 different values of 𝑛1 for 𝑛1 +
𝑛5 = 6.

n=[4,5,3,2,3,1] n=[4,3,3,2,3,3] n=[4,1,3,2,3,5]

Fig. 11. Range of blocks obtained with the external division numbers [12, 6, 7, 11] whilst vary-

ing 𝑛1 for the same 𝑛1 + 𝑛5

In summary, for a fixed set of external division numbers, the internal mesh of the tem-

plate can be varied to create a wide range of meshes with different block shapes, internal

element distributions etc.

7 Choosing the optimum internal divisions

The three unknown positions (for the positive singularity, the negative singularity and

the common edge midpoint) can be found at low computational cost by solving 3 linear

equations for 2D vectors.

For a given set of external division numbers, there are 2 parameters which can be

used to vary the internal division numbers, whilst maintaining the same external divi-

sion numbers:

1. The position where the positive singularity is attached to 𝑁1, i.e. varying 𝑛1 for a

given 𝑛1 + 𝑛5

2. The position where the positive singularity is attached to 𝑁2, i.e. varying 𝑛0 for a

given 𝑛0 + 𝑛4

Given that it is possible to compute the position of the singular points cheaply, it is

feasible to estimate the mesh distortion, either exhaustively or for a substantial sample

of the parametric variations. In this study, the minimum corner angle of all the blocks

meeting at the singularities was used as the quality measure. Fig. 12 show the best and

worst quality of internal blocks for a fixed set of external division numbers.

10

n=(2, 2, 3, 4, 5, 4)

n = [6, 1, 3, 4, 1, 5]

Fig. 12. The best (left) and worst (right) set of blocks obtained with the external division num-

bers [14,6,7,13] for all parametric variations

Since the division numbers are known before any mesh is generated, the total number

of elements can be calculated. For the block arrangement in Fig. 2, the total number of

elements is

𝑛𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑛0 ∗ 𝑛1 + 𝑛0 ∗ 𝑛2 + 𝑛1 ∗ 𝑛2 + 𝑛0 ∗ 𝑛3 + 𝑛1 ∗ 𝑛3 + 𝑛1 ∗ 𝑛4 + 𝑛4 ∗ 𝑛5
+ 𝑛0 ∗ 𝑛5

The number of elements required to achieve the same maximum mesh density in a reg-

ular mesh would be

𝑛𝑟𝑒𝑔𝑢𝑙𝑎𝑟 = max(𝑁0, 𝑁2) ∗ max (𝑁1, 𝑁3)

Fig. 13 shows the minimum corner angle at the singularities for the meshes with this

set of external division numbers. The chart also shows the ratio Size=
𝑛𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛

𝑛𝑟𝑒𝑔𝑢𝑙𝑎𝑟
.

Fig. 13. Variations in mesh quality and size for all parametric variations of external division

numbers [14,6,7,13]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(2
, 2

, 3
, 4

, 5
, 4

)

(3
, 3

, 3
, 4

, 4
, 3

)

(5
, 5

, 3
, 4

, 2
, 1

)

(5
, 4

, 3
, 4

, 2
, 2

)

(6
, 5

, 3
, 4

, 1
, 1

)

(4
, 5

, 3
, 4

, 3
, 1

)

(6
, 4

, 3
, 4

, 1
, 2

)

(2
, 1

, 3
, 4

, 5
, 5

)

(3
, 5

, 3
, 4

, 4
, 1

)

(1
, 2

, 3
, 4

, 6
, 4

)

(5
, 2

, 3
, 4

, 2
, 4

)

(2
, 5

, 3
, 4

, 5
, 1

)

(1
, 3

, 3
, 4

, 6
, 3

)

(1
, 4

, 3
, 4

, 6
, 2

)

(1
, 5

, 3
, 4

, 6
, 1

)

Si
n

(a
n

gl
e)

 o
r

R
el

at
iv

e
Si

ze

Division numbers

Size

min(angle)

11

8 A pair of singularities which aren’t directly connected

Fig. 14 shows a potentially more useful transition which also has 6 internal division

numbers, but without the redundant constraints between 𝑁0 − 𝑁2 and 𝑁1 − 𝑁3. By var-

ying the internal division numbers, transitions like the previous one can be imple-

mented. However, it also allows steerback transitions from 𝑁2 to 𝑁0.

+ve singularity

-ve singularity

Fig. 14. A more flexible transition

The division number constraints are

[

1 1 1 1 0 0
0 1 0 0 1 1
1 0 0 1 0 0
0 0 1 0 1 1

]

{

𝑛0
𝑛1
𝑛2
𝑛3
𝑛4
𝑛5}

= {

𝑁0
𝑁1
𝑁2
𝑁3

}

Solving this gives

𝑛2 =
𝑁𝑜 − 𝑁1 − 𝑁2 +𝑁3

2

𝑛1 =
𝑁𝑜 + 𝑁1 − 𝑁2 −𝑁3

2

𝑛4 + 𝑛5 =
−𝑁𝑜 + 𝑁1 + 𝑁2 + 𝑁3

2

 The position of the pentagon edge midpoint on the top edge can be moved by chang-

ing 𝑛0 whilst keeping the total 𝑛0 + 𝑛3 = 𝑁2.

The value of 𝑛4 + 𝑛5 determines how close the two singularities are – if this is large

the singularities are close together. Note that 𝑛4 ≥ 0 and 𝑛5 ≥1. The resulting con-

straint that

−𝑁𝑜 + 𝑁1 + 𝑁2 + 𝑁3 ≥ 1

tells us that, if for example we have a boundary layer with a dense mesh that feeds into

a far field with a much coarser mesh, once 𝑁0 gets too big we need to add another

12

singularity pair. Fig. 15 show how the internal division numbers can be adjusted to

obtain mesh transitions in different directions.

The points which need to be constrained to be the same between the pentagon and

the triangle are the two singular points and the two points which act as edge midpoints

for both the triangle and the pentagon. This gives 4 vector equations to determine the

positions of the positive and negative singularities and the two triangle edge midpoints.

As for the first transition described above, the set of internal division numbers to give

the best mesh quality can be computed cheaply for a given block shape.

Fig. 15. Three adjacent blocks with singularity pairs adjusted to obtain a mesh transition bottom-

right (left), bottom-t4op (middle) and bottom-left (right)

9 3D Transitions

3D transitions can be constructed as 2D extrusions of mesh singularity arrangements

such as are shown in Fig. 2 or Fig. 14.

A genuine 3D partitioning is shown in Fig. 16, where a single split is used to partition

the block into two of the mesh-able primitives identified in [2]. Each can be meshed by

midpoint subdivision [14], where each face midpoint is connected to a body midpoint.

The result is a positive / negative singularity pair on 3 faces of the block, with a regular

mesh on the remaining 3 faces. This can be regarded as the 3D equivalent of Fig. 2.

Fig. 16. 3D block refinement

The implementation shown in Fig. 16 was created using a simple Abaqus Python script

This employed the following steps:

1. a hard geometry partition was created from a plane defined by points on 3 edges of

the original block. The location of these points is the nodal position which gives the

13

desired edge division numbers and mesh size in each of the primitives. It can there-

fore be used to produce different mesh distributions.

2. Both the resulting primitives, the tetrahedron and the cube-with-a chip-off, are

meshed using the implementation of midpoint subdivision within Abaqus.

The Abaqus implementation enforces any necessary division number constraints on

block edges in the model after midpoint subdivision. In 2D, once the radial division

numbers from the singular points at the face centers are chosen, the total edge division

numbers are defined and the task of the integer programming is to choose the set of

radial division numbers which best fits the target external division numbers.

In 3D [15], once the radial division numbers from the singular point at the center of

a primitive volume to the face centers are chosen, the radial division numbers from the

singular points on the faces to the face edges and the external edge division numbers

are defined. The cube-with-a chip-off has 7 faces so it contributes 7 radial division

numbers. The tetrahedron has 4 faces, but with this refinement template all 3 division

numbers on the common face in Fig. 16 must be the same. It is also expected, as was

shown in Section 6, that it is the total division number between the singularities which

will be significant rather than the two division numbers to the partitioning face. There-

fore, there are 7 radial division numbers available to satisfy the 12 edge division num-

bers of the original cube. Note that if a structured mesh was imposed, only 3 unique

edge division numbers are available.

The Abaqus implementation partitions the block volume using a plane, so the ad-

justment of nodal positions using transfinite mapping as described in Sections 3 - 5 is

not available, but this should be a straightforward item of future work.

To prevent propagation of the mesh singularity pairs, the same recipe can be applied

to adjacent blocks. A symmetric replica on one adjacent block limits the influence of

the mesh singularities to two faces, with the other 4 faces of the double-sized block

having a regular mesh. Patterns of 4 blocks can be constructed to limit the mesh refine-

ment to one face, whilst 8 would limit the effect to the interior of a volume, with all

external faces having a regular mesh.

Discussion

The illustrations above are for a mesh on a unit cube or block, but the transfinite

mapping can be applied to any 2D geometry defined by a sequence of 4 edge meshes,

e.g. Fig. 17. Rotation and reflection transforms can be used to convert the meshes

shown to different geometries where the external division numbers have different con-

straints e.g. that 𝑁0 < 𝑁2 or 𝑁3 < 𝑁1 in Fig. 2. Graded edge meshes are handled auto-

matically since only the nodal positions are required, and measures of mesh quality can

be computed before the mesh is generated.

14

Fig. 17. Mesh in distorted block. Same division numbers as in Fig. 8.

Adaptive refinement of block topology and mesh, based on solution error estimates, is

an obvious item of future work. There is no fundamental reason why the technique

should not be applied to arbitrary block networks – in 2D all that is required is the

number of block vertices connected to a given vertex. The same equations as are uti-

lized to compute the face midpoint positions are then applicable.

Multiblock meshes are good at estimating sensitivities to a design change, since a

fixed mesh topology is used. The templates here represent the minimal change in mesh

topology if a better mesh distribution and solution accuracy is required. The approach

could be codified into existing multiblock mesh generators.

The flexible adaptation approach described in this paper enables a wide range of

external and internal mesh distributions to be accommodated for given block edge di-

vision numbers. This is highlighted in Fig. 18, where it is shown that assigning zero

divisions to specific block edges enables the 2 and 3 refinement templates from Schnei-

ders to be created. For example, the top left blocking is created by setting n4 as zero.

15

Fig. 18. Reducing block edge to zero division number

The 3-refinement template, top middle blocking, can then be created by assigning n5

as zero, and can be used to limit the transition of mesh refinement. In a next step, if n2

is assigned to be zero then the 2-refinement template is created as shown in the top right

blocking. This demonstrates the flexibility of the approach described in this paper, e.g.

setting both n2 and n3 to have zero division numbers generates the structured quadtree

decomposition shown in the blocking of Fig. 19, whose quality can be controlled by

altering the division constraints.

10 Conclusions

Structured multiblock decompositions are very expensive to create in terms of engi-

neering time. Adapting the mesh density to improve solution quality in a multiblock

decomposition usually requires a change in block division numbers, which has a global

effect on the mesh and the solution problem size.

Local templates for block refinement can be constructed which can be implemented

cheaply and have only a local effect on mesh density and block structure. For a given

set of external division numbers on a block, there is a parametric family of solutions

for the internal division numbers in the refinement template.

16

Using an extended transfinite mapping scheme, a mesh can be generated is equiva-

lent to that which would be generated by iterative iso-parametric smoothing. Whilst the

quality may be inferior to that generated using more sophisticated smoothing algo-

rithms, the optimum set of internal division numbers and the validity and quality of the

final mesh can be guaranteed before the mesh is generated. It could therefore serve as

an initialization step before other smoothing algorithms are applied.

The template refinement procedure adds the minimum number of mesh singularities

e.g. a positive and negative singularity pair in 2D. Despite this, a wide range of mesh

distributions can be accommodated.

Fig. 19. 3-refinement adaptation

References

[1] A. Loseille, “Recent Improvements on Cavity-Based Operators for RANS Mesh
Adaptation,” in 2018 AIAA Aerospace Sciences Meeting, American Institute of
Aeronautics and Astronautics, 2018.

[2] M. A. Price, C. G. Armstrong, and M. A. Sabin, “He ahedral mesh generation
by medial surface subdivision: Part I. Solids with conve edges,” Int. J. Numer.
Methods Eng., vol. 38, no. 19, pp. 3335–3359, 1995.

[3] Z. Ali, P. C. Dhanasekaran, P. G. Tucker, R. Watson, and S. Shahpar, “Optimal
multi-block mesh generation for CFD,” Int. J. Comput. Fluid Dyn., vol. 31, no 4-
5, pp 195-213, 2017.

[4] W. R. Quadros, “LayTracks3D: A new approach for meshing general solids
using medial a is transform,” CAD Comput. Aided Des., vol. 72, pp. 102–117,
2016.

[5] N. Kowalski, F. Ledou , and P. Frey, “Smoothness driven frame field generation
for hexahedral meshing,”CAD Comput. Aided Des., vol. 7772, pp 65-77, Mar.
2016.

[6] Gridpro, “Multi-Scale Tools,” GridPro website. [Online]. Available:
https://www.gridpro.com/gridpro-advantages. [Accessed: 27-May-2018].

[7] A. Keskin et al., “On the quantification of errors of a pre-processing effort
reducing contact meshing approach,” in 53rd AIAA Aerospace Sciences

17

Meeting, American Institute of Aeronautics and Astronautics, 2015.
[8] J. S. Sandhu, F. C. M. Menandro, H. Liebowitz, and E. T. Moyer, “Hierarchical

mesh adaptation of 2D quadrilateral elements,” Eng. Fract. Mech.,vol. 50, no.
5/6, pp. 727-736, Mar.-Apr. 1995.

[9] R. Schneiders, “Refining Quadrilateral and He ahedral Element Meshes,” in
5th International Conference on Grid Generation in Computational Field
Simulations, 1996, pp. 679–688.

[10] M. S. Ebeida, A. Patney, J. D. Owens, and E. Mestreau, “Isotropic conforming
refinement of quadrilateral and hexahedral meshes using two-refinement
templates,” Int. J. Numer. Methods Eng., vol. 88, no. 10, pp 974-985, Dec.
2011.

[11] J. Qian and Y. Zhang, “Automatic unstructured all-hexahedral mesh generation
from B-Reps for non-manifold CAD assemblies,” Eng. Comput., vol. 28, no. 4,
pp. 345–359, Oct. 2012.

[12] B. D. Anderson, S. E. Benzley, and S. J. Owen, “Automatic all quadrilateral mesh
adaption through refinement and coarsening,” in Proceedings of the 18th
International Meshing Roundtable, IMR 2009, 2009.

[13] H. J. Fogg, L. Sun, J. E. Makem, C. G. Armstrong, and T. T. Robinson,
“Singularities in structured meshes and cross-fields,” CAD Comp. Aided Des.,
vol.105, pp 11-25, Dec. 2018.

[14] T. S. Li, R. M. McKeag, and C. G. Armstrong, “He ahedral meshing using
midpoint subdivision and integer programming,” Comput. Methods Appl.
Mech. Eng., vol. 124, no. 1–2, pp. 171–193, Jun. 1995.

[15] T. S. Li, C. G. Armstrong, and R. M. McKeag, “Quad mesh generation for k-sided
faces and he mesh generation for trivalent polyhedra,” Finite Elem. Anal.
Des., vol. 26, no. 4, pp. 279–301, Aug. 1997.

