
Accurate manycore-accelerated manifold
surface remesh kernels

Hoby Rakotoarivelo and Franck Ledoux

Abstract In this work, we devise surface remesh kernels suitable for massively mul-
tithreaded machines. They fulfill the locality constraints induced by these hardware,
while preserving accuracy and effectiveness. To achieve that, our kernels rely on:

• a point projection based on geodesic computations,
• a mixed diffusion-optimization smoothing kernel,
• an optimal direction-preserving transport of metric tensors,
• a fine-grained parallelization dedicated to manycore architectures.

The validity of metric transport is proven. The impact of point projection as well as
the accuracy of smoothing kernel are assessed by comparisons with efficient existing
schemes, in terms of surface deformation and mesh quality. Kernels compliance are
shown by representative examples involving surface approximation or numerical
solution field guided adaptations. Finally, their scaling are highlighted by conclusive
profiles on recent dual-socket multicore and dual-memory manycore machines.

1 Context, issues and features overview

In this work, we focus on surface mesh adaptation kernels suitable for massively
multithreaded architectures without sacrificing effectiveness or accuracy, in context
of adaptive simulation involving both a numerical solver and a 3D remesher. Given
an initial uniform triangular mesh and a budget of points, we aim at providing a
mesh which minimizes the surface approximation error or the numerical solution
interpolation error with respect to the given budget of points (as depicted in Fig. 1),
while achieving good cell aspect ratios in both isotropic and anisotropic context.

Hoby Rakotoarivelo
CMLA, ENS Cachan, France. e-mail: hoby.rakotoarivelo@ens-cachan.fr

Franck Ledoux
CEA, DAM, DIF, France. e-mail: franck.ledoux@cea.fr

1

2 Hoby Rakotoarivelo and Franck Ledoux

RELATED WORKS. Many robust open-source libraries for surface-volume remeshing
exists such as tetgen, CGAL, MMG3D, MMGS, GMSH among others. The issue is that
the involved kernels do not expose sufficient locality required by these architectures.
Indeed, each operation on a mesh point or cell should involve a small, static and
bounded vicinity. This locality constraint is far from being trivial, and most of the
state-of-the-art kernels rely a dynamic point or cell vicinity. For instance,

• cavity-based remeshing kernels (surfacic Delaunay or hybrid cavity) enable to
significantly improve mesh quality [1, 2]. They aim at removing bad cells when
adding or removing points. However those cells are not statically known.

• atlas-based remeshing kernels provide well-sampled surface meshes, with a qual-
ity comparable to a variational scheme [3]. It consist of on-the-fly embedding the
surface into a plane, and then to remesh the embedded region using 2D kernels.
The issue is that it often require growing a non-predefined region at each time [4].

• numerical schemes are more stable on quasi-structured meshes. Relaxing mesh
point degrees is tedious though, due to numerous local minima. To address this
issue, related heuristics (such as 5-6-7 or puzzle solving) rely on a dynamic edge
flip-refine-collapse sequence [5, 4]. Therefore, impacted cells cannot be inferred.

In fact, kernel locality and effectiveness are two antagonistic constraints. To achieve
locality, one have to resort to basic kernels (no dynamic cavity, no local embedding,
no dynamic sequence of operations). To achieve effectiveness though, one have to
resort to dynamic kernels to quickly achieve mesh convergence, in terms of surface
approximation, mesh quality, or solution interpolation of a finite element simulation.

CONTRIBUTIONS. In this work, we aim to conciliate both constraints. To achieve
maximal locality, we resort to basic kernels depicted in Fig. 2, and we avoid any of
the dynamic features described above. To achieve effectiveness, we rely on advanced
geometric features instead. They include :

• POINT PROJECTION (for refinement, simplification and smoothing). In our case,
the real surface is only known on mesh points, and we do not have an atlas for
local parametrization. Thus we have to find a way to accurately put points on
the real surface after cutting an edge, merging two points or moving a point. If
the point lies on the mesh then it is not a problem since we may use a BEZIER
curve, a PN-triangle or a local quadric surface in that case. However, if it does
not lie on the mesh, then the situation is not clear. In that case, one have to
project it on the mesh before projecting it to the surface, with a potential loss of
accuracy. Here, we provide a point projection scheme which relies on geodesic
curve computations using a differential geometry operator (sec. 2). It ensures that
the loss of accuracy remains small, and contributes to speedup mesh convergence
in terms of surface approximation.

• POINT RELOCATION (for smoothing). To reduce their number of rounds, refine-
ment, simplification and swapping kernels are performed without taking care of
cell qualities. Hence, improving mesh quality is entirely entrusted to smoothing

Accurate manycore-accelerated manifold surface remesh kernels 3

A unique scheme to rule them all
metric tensor-based mesh adaptation.

1e-5 0.0001 0.001 0.01

error [log-scale]

1.7e-06 0.0767

solution interpolation error

1. initial mesh estimated numerical error adapted mesh

initial mesh estimated surface error adapted mesh2.

Fig. 1: Kinds of adaptation supported. If the mesh is intended to be adapted to the
error of a numerical solution u (defined on each point), then the metric field may be
derived from local Hessian matrices of u. If it is intended to be adapted to the error of
the surface itself, then the metric field may be derived from local curvature tensors.
Finally, both errors may be simultaneously supported using metric field intersection.

refinement
s1 ΓK s1

s0

ΓK s1

s2
s0

ΓK

add points by cutting cells.

simplification

remove points
by merging them.

swapping

equalize degrees
by flipping edge.

smoothing

improve quality
by moving point.

Fig. 2: Our static remesh kernels. Here, refinement and simplification aim at re-
sampling the surface, whereas swapping and smoothing aim at regularizing it. They
actually involve a cell, a couple of cells or the direct vicinity of a point.

4 Hoby Rakotoarivelo and Franck Ledoux

kernel, which aims at moving points to improve surrounding cells quality. How-
ever, relocating a point involves an unavoidable surface deformation. Here, we
provide a point relocation scheme for smoothing kernel, which aims at improving
mesh quality while reducing the surface degradation. It relies on both a diffusion
filter which is applied first, and a non-linear optimization routine invoked on fail-
ure cases (sec. 3). It contributes to speedup mesh quality convergence.

• METRIC TRANSPORT (for smoothing and refinement). In our case, desired edge
size are prescribed on the mesh using metric tensors. It enables us to adapt the
mesh to the error of a numerical solution as well as the error of the surface itself
in anisotropic context (see Fig. 1). For any point, its metric tensor encodes the
edge length at any direction incident to it. Hence, when a point p is created or
relocated, then its metric tensor has to be interpolated from its neighbors. How-
ever, repeated metric interpolation would involve a loss of anisotropy. To reduce
that, one may move all involved metric tensors at p before averaging them (if
necessary). However, moving a metric tensor on a surface may deviate its direc-
tions if no precautions are taken. Here, we provide a safe way to move them on
the surface without altering their principal directions (sec. 4). It is based on the
notion of parallel transport in differential geometry, and contributes to speedup
mesh convergence in terms of surface approximation and numerical solution in-
terpolation.

Hence, the locality constraint induced by the hardware is respected. Indeed, our
kernels involve a small and static vicinity for surface resampling, cells regularization
or degree equalization (Fig. 2). Besides, their effectiveness is preserved thanks to the
three geometric features introduced above. The remaining question is about how to
efficiently port them on our target hardware:

• FINE-GRAINED PARALLELIZATION (for all kernels). Manycore machines con-
sist of numerous underclocked cores with a very limited cache-memory per core.
Besides, multicore machines have less but faster cores. The latter have multi-
ple cache and memory levels, leading to unequal data access latencies (NUMA).
Hence, kernels must expose a huge amount of parallelism and a high rate of data
reuse to scale on both machines. However, remesh kernels are not trivially par-
allelizable in high performance computing context. Indeed they are data-driven
since task dependencies evolve at runtime, and cannot be statically predicted.
They are also data-intensive since most of their instructions are data accesses but
often on different data. Hence, usual optimizations (such as cache tiling, static
load balancing, prefetching) will not work well on them. Here, we devise a mul-
tithreaded scheme enabling to ease both data-driven and data-intensive issues
(sec. 5). It is based on our work in [6, 7], but extended in 3D with ridges support.

2 Accurate point projection based on the exponential map

As stated before, we need to find a way to accurately put points on the real surface
during refinement, simplification or smoothing. Hence, if the point lies on the mesh,

Accurate manycore-accelerated manifold surface remesh kernels 5

then it may be directly projected to this surface through a local parametrization
scheme. The main issue is on finding an effective way to project the point when it
does not lie on mesh. First, we show how we locally recover the real surface, and
then we will describe how to accurately project the point on this real surface.

RECONSTRUCTION. In fact, the real surface Γ is only known on mesh points and
needs to be locally recovered. It may be done by many ways, however achiev-
ing both accuracy and regularity is quite difficult. For instance, one may recover
it in the vicinity of each point using a quadric surface obtained by a least squares
method [ref]. Since Γ is approximated by a smooth surface, then it achieves regu-
larity. However, it only provides a quadratic reconstruction of Γ . Besides, remeshers
and shaders such as Inria’s MMGS or the DIRECT-X 11 tesselation engine often resort
to a cubic reconstruction through PN-triangles [8]. Despite their compacity, they do
not ensure point tangent plane unicity accross patch boundaries. Here, we aim at
conciliating both constraints. For that, we resort to a per-cell local parametrization
with complete G1-continuity. It is achieved through a GREGORY PATCH construction
with twist points BLENDING like in [9] but with special care for ridges and corners.

T
h
ès

e
d
e

d
o
ct

or
at

.
H

o
by

R
ak

o
to

ar
iv

el
o
.

c �
2
0
1
8
.

CHAPITRE 3. DESIGN DE NOYAUX SURFACIQUES LOCALITY-AWARE. 65

Figure 3.9: Reconstruction complète de la variété idéale à partir de la triangulation. Un patch spline
quartique est calculé sur chaque maille à partir des normales en ses sommets, de sorte
que l’unicité du plan tangent de chaque point soit garantie (G1-continuité). La variété
est ensuite reconstruite en connectant les patchs entre eux.

courbe frontière �i, et sont déduits de sorte que les vecteurs tangents et binormaux des points de
contrôle de �i appartiennent à ce ruban tangent [154]. Soit �i la courbe frontière entre deux patchs
paramétrés �K et �R telle que �i(v) = �K(0, v) = �R(0, v) comme illustré sur la figure 3.82. Les dérivées
transverses de � sur �i s’écrivent :

8
<
:

@u�K(0, v) = �K(v)�i(v) + 1
4µK(v)@v�K(0, v)

@w�R(0, v) = �R(v)�i(v) + 1
4µR(v)@v�K(0, v)

(3.15)

ainsi : @u�K(0, t) =
P3

j=0 B3
j (t)ti,j = �K(t)

P2
j=0 B2

j (t)mi,j +µK(t)
P2

j=0 B2
j (t)(mi,j+1�mi,j) (3.16)

avec

8
><
>:

Bn
j (t) =

n!

j!(n� j)!
(1� t)ntj , 8j, n 2 N, cf. [152]

(�K, µK)(t) = (
P1

j=0 B1
j (t)�i,j ,

P1
j=0 B1

j (t)µi,j)

, 8t 2 [0, 1] (3.17)

Au final les {ti,j}3
j=0 s’obtiennent en exprimant les dérivées transverses (et donc chaque terme

du membre de droite de l’équation 3.15) dans la base de Béziers pour chaque courbe �i comme
développé à l’équation 3.16, mais sur les milieux {mi,j}3

j=0 des segments de contrôle quartiques de
�i cette fois. Notons qu’ils peuvent être calculés individuellement sur K et R puisque @v�K(0, v) =
�0i(t) ne dépend que des points de contrôle de �i. Enfin les �K(t) et µK(t) décrits à l’équation 3.17
sont des polynômes linéaires qui décrivent l’ajustement des vecteurs tangents et binormaux de �i

de sorte qu’ils appartiennent au ruban tangent défini précédemment. Leurs coe�cients peuvent être
déterminés en évaluant les dérivées transverses aux sommets de �i, c’est-à-dire en v = 0 et v = 1.
En e↵et ti,0 et ti,3 sont connus en ces points puisqu’ils appartiennent aux plans tangents à ni et ni+1

définis à l’équation 3.11. Notons qu’en injectant chaque terme de l’équation 3.17 dans 3.16, on a bien
une interpolation cubique des dérivées transverses.

projection. Grâce à ces points twists, nous disposons d’une reconstruction complète de la variété
sur la triangulation (voir figure 3.9), et qui respecte la contrainte de continuité des plans tangents
sur chaque jonction des triangles quartiques associés à chaque maille. Plus précisément, nous avons
construit un opérateur permettant de projeter tout point de la triangulation sur la variété. Pour cela,
le point p inclus dans la maille K est d’abord paramétré en calculant ses coordonnées barycentriques
(u, v) dans K. Ensuite, selon les valeurs de u , v et w = 1� u� v on identifie deux cas de figure :

- si u = 0 ou v = 0 ou w = 0 alors le projeté de p est déterminé par l’équation 3.4.
- sinon on calcule les trois points twists selon l’équation 3.13, et le projeté de p s’obtient ensuite

par l’équation 3.3.

Fig. 3: Surface reconstruction using quartic patches with G1-continuity.

POINT PROJECTION. In fine, the projection of a point p on the ideal surface may
be directly obtained as long as its tangent plane TpΓ is supported by a mesh cell.
However, there are situations where p does not lie on the mesh, and cannot be di-
rectly parametrized. During smoothing for instance, the projected point q has to be
computed such that the length of underlying geodesic curve of [pq] directed by a dis-
placement vector αt must be equal to ‖αt‖. Such an operator exists in continuous
context, it is the exponential map described in Def. 1.
Intuitively, expp(t) may be seen as an operator giving the optimal projection of q
for a specified tangent vector t =−→pq as shown in Fig. 4. It may be obtained through
a reparametrization of γ by arc length. For that, we have to compute curve length
s(t) =

∫ t
0‖

dγ

dt (x)‖dx with dγ

dt (0) = t, then express t and thus γ in terms of s. However,
we do not have a parametrization of dγ

dt in terms of t, and thus no explicit expression
of expp. Therefore, we use the following heuristic to approximate expp : TpΓ → Γ .

6 Hoby Rakotoarivelo and Franck Ledoux

pTpΓ

Γ

p

n[p]

q
t

expp(t)

(a) view in the vicinity of p

n[p]
q

expp(t)

t

t′

K

ΓK

(b) view on cell pointed by t.

Fig. 4: Discrete approximation of exponential map in the vicinity of a point.

Definition 1 (EXPONENTIAL MAP). Let p be a point of a manifold Γ , and R a
region of its tangent plane. Its exponential map expp : R→ Γ maps any tangent
vector t of R to the geodesic curve segment γ starting from p with initial speed
dγ

ds (0) = t and length `(γ) = ‖t‖.

ALGORITHM. The first step is to find which cell K incident to p is pointed by t.
Indeed, expp(t) will lie in the quartic patch ΓK related to K. Then the difficulty lies
in the choice of a point q̃ ∈K such that the length of underlying curve equals to ‖t‖.
In other words, we have to find a vector t′ = [pq̃] from t such that expp(t) = ΓK[q̃].
Here, this issue is resolved by a single step linear search. To find an initial value
of q̃, the idea is to perform a rotation of t on the tangent plane TKΓ of K as shown
in Fig. 4b. Then we compute the projection ΓK[q̃] of q̃ on ΓK, as well as its normal
vector. Afterward, the idea is to approximate the geodesic segment γ by a B-spline
curve spanned by [p,ΓK[q̃]] and to compute its length. It enables us to adjust the
norm of t′ by a factor s such that ‖t′‖= ‖t‖2`[γ]−1. By recomputing ΓK[q̃] and γ , we
actually have `(γ)≈ ‖t‖.

3 Accurate mixed diffusion-descent smoothing kernel

So far, we have an accurate way to project any point q lying either on the mesh or
on the tangent plane of another point p, onto the real surface. Hence, we are able to
project the resulting point on the real surface after an cutting an edge, merging two
points or relocating a point. Here, we aim to specifically show how it may be used
to devise an effective smoothing kernel. In our case, it is the only kernel entrusted
to improve mesh quality, and thus is really important. For each point, it aims at
improving surrounding cells qualities with respect to the metric tensor field.

ISSUES. Existing kernels may be classified in two categories: laplacian-based and
non-linear optimization ones. The former is simple and enables both geometry de-
noising [10] as well as cell shape regularization. However, it tends to shrink the
surface since it is not a low-pass filter [11], and does not strictly improve cell
quality since it is a heuristic. The latter enables advanced features such as volume-
preserving denoising [12, 13] or cell quality improvement on problematic cases [14].
However, it is clearly more expensive. Based on these facts, we devised a mixed ker-

Accurate manycore-accelerated manifold surface remesh kernels 7

nel like [15, 16]: a diffusion filter is primarily used for point relocation, followed by
a cell quality maximization in failure cases. However, we use a different scheme for
diffusion as well as for optimal step computation.

• DIFFUSION. For each point, we aim at equalizing its incident cell patches, while
reducing the unavoidable surface deformation. Here the idea is to move the point
p toward the projected weighted center of mass of its vicinity, as shown in (1).
First, we compute the displacement direction t toward the center of mass of the
region C =

⋃n
j=1 Γ j. Then, we compute the geodesic segment curve γ starting

from p with initial speed t. Finally, the new point position is given by γ(1).

p = expp

ñ
α

∫
c logp[t] [x]ρ[x]dx∫

c ρ[x]dx

ô
, with

C : continuous vicinity of p,
ρ : density function,
α : scaling factor.

(1)

Here, ρ[x] =
√

det[JTx gxJx] aims to weight the displacement of p with respect to
the metric tensor gx of each surrounding point x, and Jx is the Jacobian matrix of
the surface parametrization at point x. To avoid useless computations, we exclude
the case in which the center of mass is too far from p. Here, the displacement
is accepted if the quality of the worst cell is enhanced and if the deviation of
incident cells from TpΓ does not exceed an angular threshold θmax. Otherwise,
we reduce the scaling factor α , which is initially set to 1, in a dichotomic way.

• OPTIMIZATION. Here, the goal is to enforce worst cell quality improvement in
the vicinity of p. Let fi[p] be the distorsion1 of an incident cell Ki according to the
current position of p. The goal is to solve minmaxi fi[p] with the constraint that
p must lie in C. For that, the idea is to move p gradually on the surface according
to a displacement step α toward a direction −∇ fk[p] until convergence or if a
round threshold is achieved. The position of p is then updated as follow:

p[t+1] = expp[t] [−α∇ fk(p[t])], α ∈ [0,1], with

f j : distorsion of cell K j

fk = max j f j[p[t]]
α : displacement step

(2)

Here, minimizing fk[p] may increase the distorsion of other cells. Hence, we
must take them into account in the choice of initial step α . Let j = argmini6=k fi[p].
By solving f j[p−α∇ fk(p)] = fk[p−α∇ fk(p)], and by considering the first or-
der Taylor-Young expansion of fk, we have:

α =
f j[p]− fk[p]

‖∇ fk[p]‖−〈∇ fk[p],∇ f j[p]〉
. (3)

The next step is determined by a linear search verifying WOLFE conditions [17].
They guarantee that fk decreases significantly and that α is large enough to con-
verge rapidly. Note that the convergence rate is closely related to the initial point

1 The distorsion of a cell is just the inverse of its quality.

8 Hoby Rakotoarivelo and Franck Ledoux

position (or seed). Since this routine is called after moving the point toward its
center of mass, then p is relatively close to its optimal position. Thus, a few num-
ber of rounds is expected in practice (3 to 5). Finally, if the point lies on a ridge,
then we relocate it on the midpoint of the curve segment related to its neighboring
ridges.

4 Accurate direction-preserving transport of metrics

Up to now, we have an effective kernel designed to improve mesh quality by mov-
ing points. Note that when a point is relocated, its geometric data (normal and met-
ric tensor) need to be recomputed or interpolated from its neighbors, since they
have changed. However, repeated metric tensor interpolation would involve a loss of
anisotropy due to diffusion effects. It is at least the case when a simple linear scheme
is used. Besides, moving a metric tensor along a curve may deviate its directions. To
ease this deviation, we resort to a parallel transport scheme, as described in Def. 2,
but extended to metric tensors. Intuitively, it generalizes the notion of translation on
manifold surfaces. Note that it is already used in MMGS in a heuristically way. Here,
our goal is to formally prove that a direction-preserving transport of metric tensors
may be simply achieved through tangent vectors parallel transport.

Definition 2 (PARALLEL TRANSPORT). Let ∇ be an affine connectiona related to
a manifold Γ . A vector field v[t] on the tangent bundle of Γ along a curve γ : I→ Γ
is said parallel with respect to this connection, if ∇•

γ[t]
v[t] vanishes for all t ∈ I.

Hence, a tangent vector v is parallel transported from p to q on γ if the vector
field v[t] induced by its displacement is parallel.

a An affine connection generalizes the notion of derivative for vector fields on a manifold.

Definition 3 (LEVI-CIVITA CONNECTION). There exists a unique affine connec-
tion ∇ on a Riemannian manifold (Γ ,g) such that:

� it is torsion-free: there is no tangent planes rotation along a geodesic γ when
they are parallel transported along γ through ∇.

� it is compatible with g: the induced dot product at any point p of Γ is preserved
by parallel transport of p along γ: this displacement is actually an isometry.

For each curve γ : I→ Γ , a metric gγ[t] is compatible with the Levi-Civita connec-
tion ∇ of the surface (see Def. 3), if for any t ∈ I and for each vector fields u,v of
the tangent bundle of Γ , we have:

(∇•
γ[t]

gγ[t])(u,v) = ∂•
γ[t]

(gγ[t](u,v))−gγ[t](∇•
γ[t]

u,v)−gγ[t](u,∇•
γ[t]

v) = 0. (4)

In fact, the metric tensor gp related to a point p is a symmetric bilinear form cor-
responding to a symmetric matrix M in a local basis of its tangent plane TpΓ . In
particular, there exists a local basis P of TpΓ such that M is congruent to a diago-

Accurate manycore-accelerated manifold surface remesh kernels 9

Algorithm 1: Parallel transport of a metric tensor

let p̃ = p.
for each timestep t ∈ I do

set q̃ = γ[t], and extract Jacobians and normals at p̃ and q̃.
extract a local basis P= (v1,v2) of Tp̃Γ such that gp̃ = Jp̃P

TDPJTp̃ .
determine the point s as follow: . SCHILD’S LADDER.
� let r be the endpoint of v1,
� compute a segment [rq̃] and let m be its midpoint,
� compute a segment [ps] such that ‖ps‖= 2‖pm‖,

compute v[t]1 =
−→̃
qs, v[t]2 = v[t]1 ×n(q̃), and P[t] = (v[t]1 ,v[t]2).

store g[t]p̃ = Jq̃P
[t],TDP[t] JTq̃ .

update p̃ = q̃ and n(p̃) = n(q̃) and return g[1]p .
end

nal matrix D in P. In other words, gp(vi,v j) = 0 for any vi,v j ∈ P. Here, we aim
to show that the eigenvalues λi of D are invariant by parallel transport of column
vectors vi of P along a curve γ spanned by [pq]. For a given t ∈ I, let w[t] be the
transported tangent vector w at γ(t), D the eigenvalue diagonal matrix at p = γ(0),
and P[t] = (v[t]1 ,v[t]2). Thus, we have:

∀u[0] ∈ Tγ[0]Γ : gγ[t](u[t],v[t]2) = 〈u[t],Mγ[t]v
[t]
2 〉= 〈u[t],

∑2
i=1 λ

[t]
i v[t]i v[t],Ti v[t]2 〉,

= 〈u[t], λ
[t]
1 v[t]1 (v[t],Ti v[t]2)+λ2 (v

[t]
2 v[t],Ti)v[t]2 〉,

= 〈u[t], λ
[t]
2 ‖v

[t]
2 ‖v[t]2 〉= λ

[t]
2 〈u[t],v[t]2 〉,

At the same time ∇•
γ[t]

u = ∇•
γ[t]

vi = 0, ∀t ∈ I,

thus gγ[t](∇•
γ[t]

u,vi)+gγ[t](u,∇•
γ[t]

vi) = 0,

hence ∇•
γ[t]

gγ[t](u,vi) = ∂•
γ[t]

gγ[t](u[t],v[t]i),

therefore ∇•
γ[t]

gγ[t](u,vi) = 0⇔
gγ[t](u[t],v[t]i)−gγ[0](u[0],v[0]i)

∫ t
0‖
•
γ(s)‖ds

= 0.

by the way 〈u,vi〉 constant on γ ⇔ 〈u[0],v[0]i 〉∫ t
0‖
•
γ(s)‖ds

(λ
[t]
i −λ

[0]
i) = 0,

⇔ λ
[t]
i −λ

[0]
i = 0,

⇔Mγ[t] =
∑2

i=1 λ
[0]
i v[t]i v[t],Ti ,

⇔Mγ[t] = P[t],TDP[t],

therefore ∇•
γ[t]

gγ[t](u,v) = 0⇔
®

∇•
γ[t]

u = ∇•
γ[t]

v = 0

gγ[t](u,v) = 〈u, P[t],TDP[t]v〉
. (5)

According to (5), a parallel transport of a metric tensor gp along a curve γ is equiva-
lent to a parallel transport of its eigenvectors vi through the Levi-Civita connection ∇

10 Hoby Rakotoarivelo and Franck Ledoux

related to the intrinsic metric of the surface (also called the first fondamental form).
In fact, since the directions of the metric tensor must be orthogonal at each point
of γ[t], then it is enough to transport a unique direction v1 and to find v2 such that
〈v[t]1 ,v[t]2 〉= 0 for any t ∈ I. Here, it is achieved through the routine depicted in Alg. 1.

5 Fine-grained lock-free parallelization

At this point, we have four effective kernels for surface resampling, mesh regular-
ization or degree equalization. They respect the locality constraint induced by our
target hardware, since they only involve a small static vicinity at each time, (Fig. 2).
Besides, they do not rely on a dynamic sequence of operations to achieve effective-
ness. Instead, they rely on the three geometric features described in sec. 2, 3, and 4.
Hence, the remaining concern is about how to parallelize them efficiently, despite
the fact that they are data-driven and data-intensive as explained in sec. 1.

mesh primal graph indep. pointsdual graph matched cells

kernel subgraph heuristic
gradation primal coloring

refinement none none
contraction primal indep.

swapping dual matching
smoothing primal coloring

Fig. 5: Task graphs and related heuristics.

As stated in sec.1, a huge amount of parallelism is required for kernels scaling on
these either low frequency and limited memory per core, or deep memory hardware
(multicore, manycore). For that, we clearly advocate the use of massively multi-
threaded schemes instead of usual MPI-based ones. Here, we devise a fine-grained
lock-free scheme based on our work in [6, 7], but with additional ridges adjacency
graph support. For each kernel, data dependencies are formulated into a graph, and
tasks are extracted through multithreaded maximal stable set, graph coloring and
matching heuristics as shown in Fig. 5, except for refinement. Incidence graphs up-
dates are done through a dual-step scheme: related incidence lists are grown asyn-

Accurate manycore-accelerated manifold surface remesh kernels 11

chronously using cheap atomic primitives (15-30 CPU cycles), then obsolete refer-
ences are removed in a single sweep.

To ease their irregularity, we structure kernels into bulk-synchronous tasks [18].
Hence, each kernel is organized into sweeps, and each sweep consists of local com-
putation, shared-data writes and a thread barrier.To ease data indirections penali-
ties, we use a locality-aware reduction2 scheme. It enables coalescent data writes in
shared memory, and is further explained in [7].

6 Numerical evaluation

In short, we have proposed four remesh kernels for surface resampling, mesh regu-
larization and degree equalization, which conciliates both locality and effectiveness
constraints. Indeed, they do not involve neither a dynamic cell or point vicinity
growing, nor a dynamic sequence of operations. Instead, they rely on three geomet-
ric features described in sec. 2, 3 and sec. 4. For sake of completeness, we also have
proposed a fine-grained parallelization scheme to port these kernels on multicore
and manycore architectures. At this point, we aim to numerically assess the effec-
tiveness of each devised feature. For that purpose, the devised kernels are written
in C++14 and OPENMP4 as a library called trigen. It is being integrated into a new
version of GMDS [19], and will be open-source.

extract ridges and normals,
compute curvature tensors,
normalize field,
apply gradation,
repeat

refinement, . add points
simplification, . remove points
swapping, . equalize degrees
smoothing. . improve quality

until number of rounds reached.

TARGET HARDWARE

multicore, manycore.

Fig. 6: Algorithm and kind of hardware involved in our numerical evaluations.

PROJECTION. To assess the effectiveness of our point projection scheme, we evalu-
ate it on both mesh simplification and smoothing cases in terms of surface approx-
imation error as depicted in Fig. 7. Indeed, a major issue on both kernels relies on
reducing the unavoidable surface degradation while perfoming point relocation or
removal. Here, we aim at assessing that our exponential-map based kernels are as
accurate as those of the state-of-the-art.

2 A reduction is an agregation of local data.

12 Hoby Rakotoarivelo and Franck Ledoux

POINT PROJECTION IMPACT EVALUATION

� error of a point : ε[p] = dH[p],
� dH: local Hausdorff distance, computed with METRO,
� what is plotted? surface error distribution (blue is better).

model
33700 points

trigen
10400 points

Q.E.M.
10400 points

SIMPLIFICATION:

error trigen Q.E.M.

max 0.2387 0.1562
mean 0.0024 0.0048
median 0.0000 0.0009
deviat 0.0061 0.0094

� samples: 400 000 points.
� lower is better

SMOOTHING:

error trigen taubin HC-lapl.
max 6.9595 7.0837 5.9218
mean 0.3520 0.4508 0.4073
median 0.2105 0.3280 0.3309
deviat 0.4363 0.4562 0.3656

� samples: 115 470 points.
� 20 rounds, lower is better.

1

1.0e-03 7.1e+000.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2

distance

1.0e-03 7.1e+000.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2

distance

model
38150 points

trigen taubin HC-lapl.
trigen

0.01 0.1 1

distance

0.001 7.08

trigen

0.01 0.1 1

distance

0.001 7.08

trigen

0.01 0.1 1

distance

0.001 7.08

1.0e-03 7.1e+000.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2

distance

1.0e-03 7.1e+000.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2

distance

model
38150 points

trigen taubin HC-lapl.
trigen

0.01 0.1 1

distance

0.001 7.08

trigen

0.01 0.1 1

distance

0.001 7.08

trigen

0.01 0.1 1

distance

0.001 7.08
1.0e-03 7.1e+000.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2

distance

1.0e-03 7.1e+000.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2

distance

model
38150 points

trigen taubin HC-lapl.
trigen

0.01 0.1 1

distance

0.001 7.08

trigen

0.01 0.1 1

distance

0.001 7.08

trigen

0.01 0.1 1

distance

0.001 7.08
1.0e-03 7.1e+000.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2

distance

1.0e-03 7.1e+000.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2

distance

model
38150 points

trigen taubin HC-lapl.
trigen

0.01 0.1 1

distance

0.001 7.08

trigen

0.01 0.1 1

distance

0.001 7.08

trigen

0.01 0.1 1

distance

0.001 7.08

Fig. 7: Impact of the point projection scheme on kernels. Surface degradation is a
major issue in mesh simplification and smoothing. Here, the goal is to assess the
accuracy of our exponential-map based kernels compared to the state-of-the-art.

Accurate manycore-accelerated manifold surface remesh kernels 13

• First, the surface error induced by our simplification kernel compared to the
quadric error metric [20] is given. Note that both algorithms are quite identical,
the difference mainly rely on how do we put the remaining point after merging
two points. Here, normals deviation threshold is set to θmax = 10◦ and no edge
swap is allowed. The pointwise Hausdorff distance is computed through METRO
plugin [21] with roughly 400 000 sampled points. The given error distribution
shows that it is better reduced and equidistributed on strong curvature areas and
features curves with our scheme unlike quadric error metric.

• The surface error induced by our smoothing kernel compared to Taubin [22] and
HC-laplacian [23] (using Meshlab) is given in case of a non trivial smooth man-
ifold. Note that the two other schemes are optimized to reduce shrinkage effects
induced by an usual laplacian, and contributes to reduce the surface deformation.
The diameter is set to hmax = 10% of bounding-box diagonal and normals de-
viation threshold is set to θmax = 7◦. Here, we can see that the surface is well
preserved with our kernel.

model
76300 cells

trigen
76300 cells

taubin
76300 cells

hc-laplacian
76300 cells

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0.2 0.4 0.6 0.8 1

c
e
lls

quality

cells quality distribution

orig
trigen
taubin

hc-laplacian

CELL QUALITY: q[K] =
R
2r

radii ratio : intuitive, already
normalized.

quality trigen taubin HC-lapl.
min 0 0 0
mean 0.7255 0.7011 0.6861
median 0.7867 0.7543 0.7379
deviat 0.2294 0.2307 0.2389
ideal: high median and low deviat.

Fig. 8: Evaluation of our smoothing kernel. Here, we aim to assess if a good mesh
quality may actually be achieved while minimizing the surface deformation.

14 Hoby Rakotoarivelo and Franck Ledoux

SMOOTHING. Recall that in our case, smoothing aims primarily at improving cell
quality. A comparison with Taubin and HC-laplacian in terms of mesh quality is
given in Fig. 8. It is exactly the same testcase as in Fig. 7 with the same parame-
ters. We have already assessed that the surface error is reduced with our smoothing
kernel. Here, the distribution of cell aspect ratios shows that a good mesh quality is
also achieved.

Error and quality of overall mesh:

� L2-norm error ||ε||=
[∫

S=Γ
dH[p]2

]1/2
B takes into account cell areas.

� median quality. B not sensitive to outliers

propeller adap
30000 points

engine adap
12500 points

propeller init

rounds error quality
0 0.00714 0.953
1 0.00623 0.879
2 0.00557 0.886
4 0.00440 0.892
7 0.00426 0.907

• 14500 points to 30000 points.
• decreasing error,
• quality roughly stabilized (0.8-0.9).

engine init

rounds error quality
0 0.00660 0.954
1 0.00724 0.892
2 0.00694 0.899
4 0.00679 0.907
7 0.00660 0.802

• 37450 points to 12500 points.
• error roughly stabilized (w 0.67),
• low decrease of quality.

Fig. 9: Convergence in error and quality when all kernels are being combined.

Accurate manycore-accelerated manifold surface remesh kernels 15

CONVERGENCE. This time, we aim at assessing mesh error and quality convergence
when all kernels are combined. Precisely, we aim to evaluate how both surface er-
ror and mesh quality evolve when the number of points is increased or decreased.
For that, local curvature guided adaptations are first considered in Fig. 9 through
isotropic model enrichment (PROPELLER, nmax = 2n) and anisotropic coarsening
(ENGINE, nmax =

n
3). Here, curvature tensors are computed using MEYER’s sche-

me [24], and a simple L∞-norm error estimate is used for metric field extraction.
A gradation process based on [25] is used with a H-shock threshold set to 1.5. For
PROPELLER, we can clearly see that points are mostly located on feature curves and
high curvature areas, and that edge sizes are well-graded. For ENGINE, a surface
degradation is necessarily introduced. However, feature curves are well-preserved,
and cells are correctly stretched along minimal curvature direction. The surface ap-
proximation error as well as mesh quality evolutions are also depicted throughout
remeshing rounds. For PROPELLER, mesh quality is relatively preserved whereas
error decreases along rounds. For ENGINE, the surface approximation is relatively
well-preserved despite a number of points reduced by a factor three.

−5

 5

 10

 15

 20

shock front

shock 1D profile

intensity UNSTEADY SHOCKWAVE

metric tensor at point p : gp =

(
λp 0 0
0 κp 0
0 0 κp

)
.

� λp =

{
(1+ cos(µzp)exp[(−α|zp|)] if xp > ct .
κp otherwise B point density at p.

� κp = 2maxi=1,2(|κi,p|)/(9ε) B curvature magnitude.
� ct = 25t−50 B shock front at timestep t.
� zp = (xp− ct) B gap between p and ct .
� α = 0.1, µ = 2. B shock, oscillations decay rates.

t = 0 t = 1 t = 2 t = 3

Fig. 10: Anisotropic adaptation to a user-defined size field using all kernels.

16 Hoby Rakotoarivelo and Franck Ledoux

Finally, user-defined density field guided adaptation is shown in Fig. 10. Here,
we can see that scales are finely captured (shock front and small flows), and a correct
cell stretching is achieved.

PROFILING. For our benchmarks, we used three Intel-based machines: two NUMA
dual-socket 32/48-core and a dual-memory 68-core processors (table 1). The latter
involves 4 VPU per core as well as on-chip MCDRAM at 300 GB/S and usual DDR4 at
68 GB/S. Here, trigen’s code has been compiled through Intel compiler (version 17)
with O3 and qopt-prefetch=5 optimization flags, including auto-vectorization and
software prefetching capabilities. To enable specific features, we set march=native
flag while compiling on HSW-SKL, and xmic-avx512 on KNL. Thread-core binding
is done in a round-robin way by setting KMP AFFINITY to scatter on normal mode
(1 per core on HSW-SKL), and to compact on hyperthreading enabled (our default
mode on KNL with 4 HT per core as recommanded by Intel). Finally, two testcases
were considered: (1) a curvature-based piecewise manifold isotropic adaptation of
the engine model in [3] (engine) with 1 826 000 points and 3 652 058 cells, (2) the
anisotropic hessian-based shock adaptation (shock) in Fig. 1 with 1 014 890 points,
2 029 772 cells and a target resolution n = 250000 for the latter.

Table 1: Benchmark machines features.

code sockets NUMA cores GHz threads GB/core full reference
HSW 2 4 32 2.5 64 4.0 Xeon Haswell E5-2698 v3
SKL 2 2 48 2.7 96 7.9 Xeon Skylake Platinum 8168
KNL 1 4 72 1.4 288 1.5 Xeon-Phi Knights Landing 7250

SCALING. Strong scaling profile for four adaptive rounds on all architectures are
given in Fig. 11, as well as kernel processing rate on KNL. A good scaling is achieved
and a similar profile is observed on all architectures. However kernels are 3-4 times
slower on KNL compared to HSW-SKL which is normal considering its per-core fre-
quency and cache size limitations. The engine case is more CPU-expensive due to
ridge-specific processing. A quasi-linear kernel processing rate scaling is achieved
on KNL, except for refinement which requires no graph but involves more thread
synchronization. Restitution time distribution per step on KNL is given in Fig. 12.
Recall that in our context, each kernel is structured into bulk-synchronous sweeps.
The time spent on each sweep is then represented here, and overheads related to
parallelization are depicted in red (task extraction and synchronization involved in
mesh topology updates). These overheads are negligible and scale roughly at the
same rate as other steps. However, an exceptional overhead is observed on relax-
ation kernel at 64 cores (256 threads). Indeed, memory indirections involved by
this low arithmetic-intensity kernel induces high cache contentions and RAM access
penalties. This behavior is not observed on larger per-core cache/RAM machines
(SKL,HSW). Note that in HPC, we clearly advocate comparison of algorithms in-
stead of software tools. Indeed, involved schemes are not comparable if they are not
implemented exactly in the same way (with the same level of code optimization).
Thus no performance comparison is included here.

Accurate manycore-accelerated manifold surface remesh kernels 17

� KNL: low frequency, low per thread memory B 1.5 GHz, 375 MB per thread
� KNL: high memory-access latencies B 30 ns for MCDRAM, 28 ns for DDR4.
� KNL: enable hyperthreading to hide latency. B 4 threads per core.
� HSW and SKL: no hyperthreading to save GB per thread. B 4 to 7.9 GB per thread.

 1

 4

 16

 64

 256

 1024

 4096

 1 2 4 8 16 32 64

HT

HT

HT

HT

(s
)

cores

Makespan

engine-haswell
engine-KNL
engine-skylake
shock-haswell
shock-KNL
shock-skylake

10
2

10
3

10
4

10
5

10
6

 1 2 4 8 16 32 64
ta

s
k
s
 /

 s
e

c

cores

Task processing rate

KNL-engine-refine
KNL-engine-coarse
KNL-engine-swap
KNL-engine-smooth

Fig. 11: Restitution time on all architectures and kernels processing rate on KNL.
Note that a KNL core is more like a GPU core rather than a XEON one. It does not
really make sense to compare single core performance of KNL with HSW or SKL.

 0

 20

 40

 60

 80

 100

2 8 16 32 64

(%
)

cores

Refinement (engine, KNL)

filter
steiner

apply
fix

 0

 20

 40

 60

 80

 100

2 8 16 32 64

(%
)

cores

Contraction (engine, KNL)

graph
simul

indep
apply

fix

 0

 20

 40

 60

 80

 100

2 8 16 32 64

(%
)

cores

Swapping (engine, KNL)

qualit
graph

match
apply

fix

 0

 20

 40

 60

 80

 100

2 8 16 32 64

(%
)

cores

Smoothing (engine, KNL)

graph
color

qualit
move

Fig. 12: Kernels time distribution per step on KNL; overheads are depicted in red.

18 Hoby Rakotoarivelo and Franck Ledoux

References

1. Jean-Daniel Boissonnat, Kan-Le Shi, Jane Tournois, and Mariette Yvinec. Anisotropic delau-
nay meshes of surfaces. ACM ToG, 34(2):10, 2015.

2. Adrien Loseille and Victorien Menier. Serial and parallel mesh modification through a unique
cavity-based primitive. In IMR-22, pages 541–558, 2014.

3. Bruno Lévy and Nicolas Bonneel. Variational anisotropic surface meshing with voronoi par-
allel linear enumeration. In IMR-21, pages 349–366, 2013.

4. Vitaly Surazhsky and Craig Gotsman. Explicit surface remeshing. In Eurographics, SGP’03,
pages 20–30, 2003.

5. Vincent Vidal, Guillaume Lavoué, and Florent Dupont. Low budget and high fidelity relaxed
567-remeshing. Computer Graphics, 47:16–23, 2015.

6. Hoby Rakotoarivelo, Franck Ledoux, and Franck Pommereau. Fine-grained parallel scheme
for anisotropic mesh adaptation. In IMR-25, pages 123–135, 2016.

7. Hoby Rakotoarivelo, Franck Ledoux, Franck Pommereau, and Nicolas Le-Goff. Scalable fine-
grained metric-based remeshing algorithm for manycore-NUMA architectures. In EuroPar’23,
pages 594–606, 2017.

8. Alex Vlachos, Jörg Peters, Chas Boyd, and Jason Mitchell. Curved PN triangles. In ACM
I3D, pages 159–166, 2001.

9. Walton and Meek. A triangular G1 patch from boundary curves. CAD, 28(2):113–123, 1996.
10. Gabriel Taubin. A signal processing approach to fair surface design. SIGGRAPH ’95, pages

351–358, 1995.
11. Yutaka Ohtake, Alexander Belyaev, and Ilia Bogaevski. Polyhedral surface smoothing with

simultaneous mesh regularization. In GMP, pages 229–237, 2000.
12. Andrew Kuprat, Ahmed Khamayseh, Denise George, and Levi Larkey. Volume conserving

smoothing for piecewise linear curves, surfaces, and triple lines. JCP, 172(1):99–118, 2001.
13. Xiangmin Jiao. Volume and feature preservation in surface mesh optimization. In IMR-15,

pages 359–373, 2006.
14. Daniel Aubram. Optimization-based smoothing algorithm for triangle meshes over arbitrarily

shaped domains. Technical report, 2014.
15. Scott Canann, Joseph Tristano, and Matthew Staten. An approach to combined laplacian and

optimization-based smoothing for triangular, quadrilateral, and quad-dominant meshes. In
IMR-7, pages 479–494, 1998.

16. Lori Freitag. On combining laplacian and optimization-based mesh smoothing techniques.
MeshTrends, 220:37–43, 1999.

17. Philip Wolfe. Convergence conditions for ascent methods. II: Some corrections. SIAM
Review, 13(2):185–188, 1971.

18. Leslie Valiant. A bridging-model for multicore computing. JCSS, 77:154–166, 2011.
19. Franck Ledoux, Jean-Christophe Weill, and Yves Bertrand. Gmds: A generic mesh data struc-

ture. Technical report, IMR-17, 2008.
20. Michael Garland and Paul Heckbert. Surface simplification using quadric error metrics. In

SIGGRAPH’97, pages 209–216, 1997.
21. Paolo Cignoni, Claudio Rocchini, and Roberto Scopigno. Metro: Measuring error on simpli-

fied surfaces. Technical report, CNRS, 1996.
22. Gabriel Taubin. Curve and surface smoothing without shrinkage. In ICCV ’95, pages 852–

857, 1995.
23. Joerg Vollmer, Robert Mencl, and Heinrich Mller. Improved laplacian smoothing of noisy

surface meshes. Eurographics, pages 131–138, 1999.
24. Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan Barr. Discrete differential-geometry

operators for triangulated 2-manifolds. In Visu. and Maths III, pages 35–57. Springer, 2003.
25. Frédéric Alauzet. Size gradation control of anisotropic meshes. JFEAD, 46(1):181–202, 2010.

