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Abstract We propose a novel method which is able to generate planar anisotropic
meshes according to a given metric tensor. It is different from the classical metric-
based or high dimensional embedding mesh adaptation methods. Our method re-
solves the anisotropy of a metric tensor field by finding a corresponding Euclidean
metric in the plane. This is achieved via quasi-conformal mapping between two
Riemannian surfaces. Given a planar source domain together with a metric tensor
defined on it, and a target domain with a Euclidean metric, there exists a quasi-
conformal mapping between them, such that the mapping is conformal with respect
to the metric tensor on the source and the Euclidean metric on the target. A discrete
quasi-conformal mapping can be constructed by solving the Beltrami equation on a
Riemannian manifold. Our method first computes the Beltrami coefficient which is a
complex-valued function from the given metric tensor. It then uses discrete Yamabe
flow to construct this quasi-conformal mapping. We then construct an isotropic tri-
angulation on the target domain. The constructed mesh is mapped back to the source
domain by the inverse of the quasi-conformal mapping to obtain an anisotropic mesh
of the original domain. This method has solid theoretical foundation. It guarantees
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the correctness for all symmetric positive definite metric tensors. We show exper-
imental results on function interpolation problems to illustrate both of the features
and limitations of this method.

1 Introduction

Many physical problems exhibit anisotropic features, i.e., their solutions change
more significantly in one direction than others. Examples include in particular
convection-dominated problems whose solutions have, e.g., layers, shocks, or cor-
ner and edge singularities. Anisotropic meshes have great importance in numerical
methods to solve partial differential equations. They improve the accuracy of the
solution and decrease the computational cost.

Anisotropy denotes the way distances and angles are distorted. It is naturally
related to approximation theory and is important in function interpolation [21, 22,
4, 11]. For example, it has been shown that for a smooth function the anisotropy is
best characterized by the Hessian of that function. In practice, a central question is
how to efficiently distinguish the anisotropy of a given problem. Another important
question is how to characterize the anisotropy in a such a way that an optimal mesh
for a given problem can be defined. These are all difficult questions and are active
research subjects.

It is well-understood that anisotropic features can be represented by a metric
tenser M defined on the target space Ω ⊂Rd , where the metric tenser of each vertex
is a d×d symmetric positive definite matrix. M defines a Riemannian metric on Ω ,
both lengths and angles can be re-defined according to this metric. This allows the
use of classical isotropic mesh adaptation techniques to produce anisotropic meshes.
It is one of the major approaches for producing anisotropic meshes, see [1, 3, 23,
16, 12, 9, 17, 18, 20]. Although these methods are very successful in practice, there
is no theoretical proof that the generated anisotropic meshes are appropriate or good
according to the input metric.

Variational mesh adaptation is another useful technique to generate adapted
meshes. It is based on the optimisation of a mesh related functional to achieve
the best adapted meshes. Such methods are centroidal Voronoi tessellations (CVT-
s) [10, 15, 24], optimal Delaunay triangulations (ODTs) [5], and monitor function-
s [13]. Many of these methods are generalised to produce anisotropic meshes by
incorporating a metric tensor into the functional. Again, there is no theoretical guar-
antees on the success of these methods with arbitrary anisotropic metric tensors.

A recent anisotropic meshing technique is through higher dimensional embed-
ding, [2, 14, 26, 6]. Instead of using metric tensors, it increases the dimensions
to resolves the anisotropy such that it can be treated isotropic in this high dimen-
sional space. The co-dimensions can be flexibly chosen to emphasis the interested
quantities. By using the normal component of the surface, this approach can pro-
duce curvature-adapted anisotropic surface meshes [14, 7]. By using the gradient of
a function, this approach produces well adapted meshes to interpolate anisotropic
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functions [8]. However, it is not clear how to choose the co-dimensional coordinates
for a metric tensor.

In this paper, we propose a novel method to construct anisotropic meshes in the
plane. Assume an anisotropic metric tensor M is given on a planar domain Ω , our
goal is to construct an anisotropic mesh with respect to M on Ω . Our method is based
on the theory of quasi-conformal mapping. The construction of an anisotropic mesh
is achieved by building a quasi-conformal mapping ϕ from Ω to D, where D is a
target domain with Euclidean metric. The Beltrami coefficient of the mapping µϕ is
determined by the metric tensor M. Then an isotropic mesh is calculated on D, and
pulled back to Ω by ϕ . This results an anisotropic mesh on Ω . The quasi-conformal
mapping ϕ is achieved by solving the Beltrami equation using the discrete Yamabe
flow method. If the metric tensor is symmetric and positive definite, this method
guarantees the success of finding a quasi-conformal mapping.

We tested our method using an application of interpolation of anisotropic func-
tions. Our experiments on some published examples showed that this method is able
to effectively reduce the interpolation error (measured in L2 norm) compared with
the uniform meshes. Furthermore, the error is consistently reduced with respect to
the increase of number of points.

We conducted preliminary comparisons of our results with the results produced
by two public codes. The first one is BAMG 1, which is a metric-based anisotropic
mesh generator. Another is Detri2, developed by the third author 2. It implements
the high dimensional embedding mesh adaptation method [8]. First of all, it is noted
that both codes produced high quality anisotropic meshes. Their L2 interpolation
errors are about two orders of magnitude smaller than ours. This shows a strong
limitation of our method. Our method has a limitation on the input point set. It does
not as flexible as the classical mesh adaptation methods. On the other hand, our
method could be seen as an effective anisotropic mesh smoothing step compared
with the smoothing algorithms used in BAMG and Detri2.

The structure of this paper is as follows. Section 2 explains that given a field of
metric tensor, how to compute an quasi conformal mapping. Section 3 introduces
the theorem of discrete Yamabe flow. All the algorithms can be found in Section 4.
Section 5 shows the results of experiments.

2 Quasi conformal mapping

A quasi conformal mapping is a homeomorphism between plane domains which to
first order takes small ellipses of bounded eccentricity to small circles, see Figure 1
for an example.

Suppose (S1,g1) and (S2,g2) are Riemannian surfaces, {(Uα ,zα)},{(Vβ ,wβ )}
are their atlas which are compatible with their Riemannian metric g1,g2 respectively,

1 available in FreeFEM++ (http://www.freefem.org)
2 http://www.wias-berlin.de/people/si/detri2.html
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then on each local chart (Uα ,zα), g1 = e2λ1dzα dz̄α , on each local chart (Vβ ,wβ ),
g2 = e2λ2dwβ dw̄β . Let f : (S1,g1)→ (S2,g2) be a diffeomorphism, for each vertex
v ∈ (S1,g1), locally f maps a chart (U,z(v)) to a chart ( f (U),w( f (v))), where U is
a neighbourhood of v, then the pull back metric of f near v can be defined as

f ∗g2 = e2λ2 |wzdz+wz̄dz̄|2 = e2λ2 |wz|2|dz+µdz̄|2 (1)

where wz =
∂w
∂ z ,wz̄ =

∂w
∂ z̄ , µ = wz̄

wz
. f is in fact an isometric mapping when it defined

on the manifold (S1, f ∗g2). So for any metric g′1 = e2λ3 |dz+µdz̄|2 shares the same
conformal structure with f ∗g2, f is a conformal mapping from (S1,g′1) to (S2,g2),
where λ3 : S1→ R is a scalar function defined on S1.

Fig. 1 A quasi-conformal mapping transforms an ellipse into a circle with a bounded eccentricity.

When µ is bounded, f is called a quasi conformal mapping. Quasi conformal
mapping is a generalization of conformal mapping, it is a solution to the Beltrami
equation

∂ f
∂ z̄

= µ(z)
∂ f
∂ z

, |µ(z)| ≤ k. (2)

where µ(z) is called the complex dilatation Beltrami coefficients, describes the dis-
tortion of f .

Suppose S1 be a simply connected domain in C, ∂S1 has more than one point,
g1 = dzdz̄. If f0 : (S1,g1)→ (S1,g′1) is a quasi conformal mapping, then f ◦ f−1

0 :
(S1,g′1)→ (S2,g2) is a conformal mapping. This provides us a novel way to convert
the problem of producing anisotropic mesh to that of producing isotropic mesh via
changing the metric. Let T be a isotropic triangulation of S1 under metric g′1, then
T will become an anisotropic mesh if we change the metric to be g1, and it is
obvious that the Beltrami coefficients of f0 convey the anisotropic feature of T .

Most of the classical methods focus on the construction of isotropic mesh on
(S1,g′1), while we provide a new idea, that is, the computation of the quasi con-
formal mapping f0, the theorem of discrete Yamabe flow guarantees the existence
and uniqueness of f0. Since f ◦ f−1

0 is a conformal mapping, f , f0 shares the same
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(S1, g1)

f

(S2, g2)

(S1, g
′
1)

f0

f ◦ f−10

Fig. 2 Convert Quasi-conformal mapping problem to conformal mapping problem.

Beltrami coefficients, so we can compute f0 by solving the Beltrami equation with
f ’s Beltrami coefficients.

2.1 Computation of Jacobian matrix based on Metric Tensors

In our problem, S1 is a simply connected domain in C, the anisotropic feature is
represented by a field of metric tensors M := {M(v);v ∈ S1}, in which M(v)s are
2×2 symmetric positive definite matrixes for all v ∈ S1. Let g3 be the Riemannian
metric defined by M , then for an open curve c⊂ (S1,g3), the length of c is ‖c‖g3 =∫ 1

t=0

√
v(t)T M(c(t))v(t), in which v(t) = dc(t)

dt . Let z = x+ iy be a parameterization
of (S1,g1), such that g1 = dzdz̄, define f0(v) = v,∀v ∈ S1, then the pull back metric
of f0 can be described as

f ∗0 g3 = (dx,dy)M(z)
(

dx
dy

)
.

Let φ(z) = w is the homeomorphism onto (S1,g1) such that f0 ◦φ−1 is conformal,
denote w = u+ iv, then we have(

du
dv

)
= J(φ(z))

(
dx
dy

)
,

in which J(φ) is the Jacobi matrix of φ . Then the pull back metric of f0 ◦φ−1 with
respect to w is

( f0 ◦φ
−1)∗g3 = (du,dv)(J(φ(z))−1)T M(z)J(φ(z))−1

(
du
dv

)
.

When f0 ◦φ−1 is conformal, the pull back metric satisfies ( f0 ◦φ−1)∗g3 = cdwdw̄,
so M , φ satisfies

M(z) = cJ(φ(z))T J(φ(z)),
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in which c is a positive constant.
Since M(z) is a symmetric positive definite matrix for all z, there always exists a

matrix N satisfying M(z) = N(z)T N(z), N(z) can be computed through M(z)’s or-
thogonal decomposition M(z) = P(z)T Λ(z)P(z). Λ(z) is a diagonal matrix, its diag-
onal elements λ1 > λ2 > 0 are characteristic values of M(z), P is a 2×2 orthogonal
matrix, it can be denoted as (

cosθ −sinθ

sinθ cosθ

)
(3)

which is a rotation matrix with degree clockwise θ . Its row vectors of P(z) are
characteristic vectors of M(z). let N(z) = Λ 1/2(z)P(z), then M(z) = N(z)T N(z). So
we have J(φ(z)) = cN(z). φ(z)’s Beltrami coefficients can be computed based on
N(z).

2.2 Compute Beltrami Coefficients Based on Jacobian matrix

Actually, φ maps an infinitesimal circle to an infinitesimal ellipse, whose long and
short axis’ lengthes are characteristic values of J(φ(z)), and the direction of them
are J(φ(z))’s characteristic vectors. We know

J(φ(z)) = cΛ 1/2P

= c
(√

λ1 0
0

√
λ2

)(
cosθ −sinθ

sinθ cosθ

)
= c
(√

λ1 cosθ −
√

λ1 sinθ√
λ2 sinθ

√
λ2 cosθ

) (4)

so we have ∂u
∂x = c

√
λ1 cosθ , ∂u

∂y =−c
√

λ1 sinθ , ∂v
∂x = c

√
λ2 sinθ , ∂v

∂y = c
√

λ2 cosθ .

Denote ∂u
∂x , ∂u

∂y , ∂v
∂x , ∂v

∂y as ux,uy,vx,vy. Without loss of generality, assume λ1 > λ2
Then

dw = wzdz+wz̄dz̄ = (
ux + vy

2
+ i

vx−uy

2
)dz+(

ux− vy

2
+ i

vx +uy

2
)dz̄. (5)

Therefor,

wz =
ux + vy

2
+ i

vx−uy

2
,wz̄ =

ux− vy

2
+ i

vx +uy

2
. (6)

Then the Beltrami coefficient is

µ =
wz̄

wz
=

√
λ1−

√
λ2√

λ1 +
√

λ2
(cos2θ − isin2θ). (7)

We can see that the modulus of µ is decided by the characteristic values of J(φ)
everywhere, and the angle of µ is two times of the intersection angle of longer axis
with x−axis, while µ have no connection with c. On the other hand, consider φ ’s
Jacobian matrix, we have
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det(J(φ)) = c2
√

λ1λ2cos2
θ + c2

√
λ1λ2sin2

θ = c2
√

λ1λ2 > 0,

so φ is local homeomorphism, furthermore, according to Theorem 3 of [?], φ is a
global homeomorphism when it maps the boundary ∂S1 of S1 homeomorphically
onto itself, in Section4, we will discuss that the output of our algorithm satisfies this
condition. On the other hand, µ describes the feature of the infinitesimal ellipse,
while it cannot describe long and short axis’ lengthes. In fact, µ decides the torsion
of the mapping, we can control the extent of torsion by controlling the modula of
µ , which decides the extent of anisotropic feature. In the following, meshes with
different extent of anisotropic are shown.

After computing the Beltrami coefficients, discrete surface Yamabe flow can be
used to solve the Beltrami equation to compute the quasi conformal mapping corre-
sponding to Beltrami coefficients.

3 Discrete Surface Yamabe Flow

Yamabe flow is a powerful tool to design Riemannian metric according to prescribed
curvature. In this process the conformal structure of the manifold is preserved. In
our problem, we can use it to compute an Euclidean metric with the given conformal
structure. The Euclidean metric is in fact our target metric, then a new embedding
of a mesh can be computed and it forms the image of the quasi conformal mapping
we compute.

Let T be a triangular mesh embedded in C, let ei j be an edge of T , l(0)i j be
the initial length. The discrete conformal factor is a function defined on the set of
vertices u : V → R. During the process of Yamabe flow, the length of ei j is defined
as

li, j = eu(vi)+u(v j)l(0)i j . (8)

Let Ki = K(vi) be the discrete Gaussian curvature of vi, then K(vi) = 2π −
∑[vi,v j ,vk]∈F θ

jk
i if vi is an interior vertex of T , K(vi) = π −∑[vi,v j ,vk]∈F θ

jk
i if vi

is a boundary vertex, where θ
jk

i is a corner angle in the face [vi,v j,vk] at the vertex
vi.

vi

vj vk

θjki

Fig. 3 Geometric interpretation of Gaussian curvature.
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It is easy to prove the following discrete Gauss-Bonnet Theorem.

Theorem 1. Suppose T is a triangular mesh with a discrete metric, then

∑
v∈T

K(v) = 2πχ(T ), (9)

where χ(T ) is the Euler characteristic of the mesh, χ(T ) = |V | − |E|+ |F |,
|V |, |E|, |F | are the numbers of vertices, edges and faces, respectively.

Yamabe flow is the process to update the conformal factor u according to Gaussian
curvature K,

du(t)
dt

= 2(K̄−K(t)), (10)

where t is time parameter, K̄ is the prescribed curvature which must satisfy Gauss-
Bonnet theorem. For our purpose of generating mesh on planar domain, K̄(vi) = 0
for all interior vertices of T . While when vi is a boundary vertex, its target curva-
tures are decided by the shape of S1. For example, if S1 is a circle domain, the target
curvatures on all the boundary vertices are defined as 2π

m , where m is the number
of boundary vertices. While when S1 is an orthogon, there are four vertices on the
boundary whose target curvatures are π/2 and other boundary vertices’ target cur-
vatures are zero. It is easy to check that for both cases the total target curvatures are
2π , satisfying Gauss-Bonnet theorem.

The convergence of Yamabe flow has been proven in [19]. In fact, the solution
of Yamabe flow can be seen as an extremal point of a convex energy – Yamabe
energy. Let u = (u1,u2, · · · ,un) be the conformal factor, define a differential 1-form
ω = ∑

n
i=0(K̄i−Ki)dui, the differential of ω is

dω =
n

∑
i, j=0

(
∂Ki

∂u j
−

∂K j

∂ui
)dui∧du j, (11)

It is easy to verify that
∂Ki

∂u j
=

∂K j

∂ui
, (12)

so dω = 0, ω is a closed 1-form. The Yamabe energy is defined as

E(u) =
∫ u

u0

n

∑
i=1

(K̄i−Ki)dui, (13)

E(u) is well defined and convex, so it has an extremal point, we can use Newton’s
method to solve it. More details of these results can be found in [25].

It is easy to compute the Hessian matrix of E(u). Let ei j be an interior edge of
T , fi jk and f jil are two faces which are adjacent to the edge, then we can define the
weight of ei j as follows

wi j = cotθ
i j
k + cotθ

i j
l (14)

If ei j is on the boundary of T , there is only one face adjacent to it, the weight is
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wi j = cotθ
i j
k . (15)

Then the element on the i−th row and j−th column of the Hessian matrix of E(u)
is

∂ 2E(u)
∂ui∂u j

=−∂Ki

∂u j
=

{
wi j i 6= j
−∑k wik i = j. (16)

It has been proven by [19] that the Hessian matrix is positive on the linear subspace
{u|∑n

i=1 ui = 0}. [25] has proved that the admissible metric space for T with fixed
connectivity is not convex, so during the process of Newton’s method, the connec-
tivity of T should be transformed if necessary to ensure that u is in the admissible
metric space during each step. The method that is usually used is edge swap. For an
edge ei j, if θ

i j
k +θ

i j
l > π , we swap it and denote it as ekl , demonstrated in Fig 4.

vk

vi

vj

vl

vk

vi

vj

vl

Fig. 4 Edge swap.

4 Algorithm

The problem we consider here is that given a complex domain S1 and metric tensor
M defined on S1, to construct an anisotropic mesh with respect to the given met-
ric tensor. The main idea is to convert the construction of an anisotropic mesh to
the construction of isotropic mesh through computing a quasi conformal mapping
φ : (S1,g1)→ (S1,g3). The image of the isotropic mesh for the quasi conformal
mapping is an anisotropic mesh with respect to the given metric tensor.

Step one Compute the Beltrami coefficients based on the given metric ten-
sor.(Algorithm 1)
Step two Solve Beltrami equation by Yamabe flow method to compute the quasi
conformal mapping based on its Beltrami coefficients.(Algorithm 2)
Step three Construct an isotropic mesh, compute its image for the quasi confor-
mal mapping. (Algorithm 3).
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4.1 Compute Beltrami coefficients based on metric tensor

Given a background triangulation T on the complex domain (S1,g1), discrete met-
ric tensor M = {M(v);v∈V} is a matrix-valued function defined on the vertices set
of T . According to the description of Section 2, since M(v) is a positive symmetric
matrix, there is a matrix N(v) such that M(v) = N(v)T N(v) which can be computed
based on M(v)’s orthogonal decomposition. Let φ be the quasi conformal mapping

which maps infinitesimal ellipse (x,y)M(v)
(

x
y

)
= ε to infinitesimal circle, as the

description of Section 2, N(v) is the Jacobian matrix of the quasi conformal map-
ping φ on v, so the Beltrami coefficients of φ on v can be computed according to
N(v). More details have been provided in Section 2.

Algorithm 1 Computation of Beltrami Coefficients

Require: A triangular mesh T , metric tensor M .
Ensure: Beltrami coefficients of a quasi conformal mapping with respect to M .
1: function BELTRAMI COEFFICIENTS(T , M )
2: for Each vertex v ∈V do
3: compute the orthogonal decomposition of M(v).
4: Compute the Jacobian matrix of the quasi conformal mapping J(φ(v)).
5: Compute Beltrami coefficients µ(v) of φ .
6: end for
7: return µ .
8: end function

4.2 The Algorithm of Computing Quasi Conformal Mapping
According to Its Beltrami Coefficients

Suppose φ0 : T →C be an embedding of T . Let ei j = [vi,v j] be an edge of T , de-
note zi = φ0(vi),z j = φ0(v j), then define the initial length of ei j in the very beginning
of Yamabe Flow as follows

l(0)i j := |ei j|g3 = |(z j− zi)+ s ·
µ(vi)+µ(v j)

2
· (z̄ j− z̄i)|. (17)

In the formula, |z| is the modulus of a complex number z. This kind of edge length
might not correspond to an embedding to the complex space. It changes the con-
formal structure in the discretion view, we call them the anisotropic lengthes. We
add a parameter s to describe the extent of the anisotropic property. Then we use
Yamabe Flow to computer a proper value of eλ3 to calculate a new metric, denoted
as |ei j|g4 = eλ (vi)+λ (v j)|ei j|g3 ,∀i, j, which satisfies the condition that for all interior
vertices v of T , K(v) = 0, curvatures of vertices on the boundary conform the shape
of S1.
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We know that if the lengths of T ’s edges are given, all the vertices’ discrete
gaussian curvature can be calculated according to the cosine formula and discrete
Gaussian curvature formula. We denote the Gaussian curvature calculated by |e|g3 as
K0, put K0 as the initial Gaussian curvature. Put K̄ as the target Gaussian curvature,
which corresponds to an embedding of T , then K̄(v) = 0 for all interior vertices v
of T . The shape of S1 decides K̄(v) for boundary vertices of T .

There is an important essential that should be paid attention to. During the
process of Yamabe flow, the connectivity of T should be transformed if neces-
sary at each step. During the judgement at edge swap, define the length of ei j as
eλt (vi)+λt (v j)|e|g3 , in which λt is the conformal factor at time t. While when we
transform the connectivity of T , all new edges’ length in g3 should be real-time
computed. Suppose that there is an new edge ekl connecting vk,vl , then

|ekl |g3 = |(zl− zk)+ s · µ(vk)+µ(vl)

2
· (z̄l− z̄k)|. (18)

so its length at time t is lkl = eλt (vk)+λt (vl)|ekl |g3 .
Our last step is to compute an embedding φ1 : T → C of T according to the

metric |ei j|g4 = eλ (vi)+λ (v j)|ei j|g3 . In the following we simplify |ei j|g4 to di j. There
are a lot of methods to compute T ’s embedding . For example, the problem can be
translated to the process of minimizing an energy, or, it can be solved by a branch of
computation of intersection points of two circles, see Fig 5. In our case, we choose
the second algorithm. Since our algorithm guarantees that all the triangles of T
are non-degenerate, the lengths of edges satisfy di j < dik + d jk, so at each step of
computation, those two circles must have two intersections.

vi vjdij

dildik

dik dil

Fig. 5 The intersection points of two circles.

The choice of solutions decides the direction of fi jk’s normal vector. If we regard
fi jk to be a face in R3, its normal vector is either (0,0,1) or (0,0,−1). During the
process of this algorithm, the directions of all the faces’ normal vector must be the
same.
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Algorithm 2 Yamabe Flow Algorithm

Require: A mesh T with embedding φ0, Beltrami Coefficients µ , parameter s.
Ensure: T ’s new embedding φ1.
1: function YAMABE FLOW(T , µ , s)
2: for ei j ∈ E do
3: Compute the initial length of ei j

l(0)i j := |(z j− zi)+ s ·
µ(vi)+µ(v j)

2
· (z̄ j− z̄i)|.

4: end for
5: for vi ∈V do
6: Initialize conformal factor γi := 1.0. Compute the target curvature K̄i, initial curvatureKi.
7: end for
8: while max|Ki− K̄i|> ε do
9: for Edge ei j = [vi,v j ] ∈ E do
10: Compute edge length li j := l(0)i j · γi · γ j .
11: end for
12: Edge swap.
13: for vi ∈V do
14: Compute the Gaussian curvature of vi.
15: end for
16: for Edge ei, j ∈ E do
17: Compute the edge weight wi j to form the Hessian matrix ∆ .
18: end for
19: dγ = e∆−1(K̄−K). Normalize dγ such that Πdγi = 1.0. γ := γ ·dγ .
20: end while
21: Compute a new embedding φ1 : V → C according to {li j ; i, j <= |V |}.
22: return φ1.
23: end function

4.3 Construct Anisotropic Mesh Based On Quasi Conformal
Mapping

The discretion of the quasi conformal mapping φ we compute is a piecewise linear
mapping, it can be represented as two coordinates of T , locally on each cell f of T ,
φ is a linear mapping which can be decided by the image of f’s vertices. So given
a triangulation T , the image of T can be decided by the image of all the vertices of
T . Then the problem is converted to the problem of computing the image of a given
vertex. Firstly, one should find out which cell f ∈T includes the given vertex, then
compute the image according to the images of vertices of f.

Algorithm 3 Quasi conformal mapping

Require: A background mesh T with two embeddings φ0,φ1, a triangular mesh T with an embedding ψ0.
Ensure: The image of the quasi conformal mapping ψ1.
1: function QUASI CONFORMAL MAPPING(T , φ0, φ1, T )
2: for Each vertex v ∈V do
3: Find out which domain φ0(f), f ∈T includes ψ0(v).
4: Compute ψ1(v) in the domain φ0(f).
5: end for
6: return ψ1.
7: end function
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5 Experiments and Comparisons

In this section, we will show experimental results of our method on interpolation
of anisotropic functions as well as comparison of our method with other methods
implemented in publicly available mesh adaptation codes.

5.1 A Metric Tensor from the Gradient

Most of the methods consider to choose the Hessian matrix or recovery Hessian
matrix of the input function to be metric tensor. [8] provides a novel anisotropic
mesh adaptation technique based on higher dimensional embedding which contains
the information of the function f itself, its gradient and Hessian information. In this
section, we describe an anisotropic mesh creation method based on the information
with respect to the gradient of the interpolated function.

Let S1 be a domain in C, define Riemannian metric g1 = dzdz̄ on S1. Let f : S1→
R be a real-valued C1 continuous function, then the set {(x,y, f (x,y))|(x,y) ∈ S1}
forms a surface embedded in R3, denoted as S2, actually S2 is a Riemannian surface
with Euclidean metric of R3, denoted as g2. Define a mapping φ : (S1,g1)→ (S2,g2)
as

φ(x,y) = (x,y, f (x,y)),

obviously φ is a diffeomorphism. Let p := (x0,y0, f (x0,y0)) ∈ (S2,g2), we put an
infinitesimal ε−circle on (x0,y0), denoted as γ = {(x0 + ε cosθ ,y0 + ε sinθ)|0 ≤
θ < 2π}, then its image is

φ(γ) := {(x0+ε cosθ ,y0+ε sinθ , f (x0+ε cosθ ,y0+ε sinθ))|0≤ θ < 2π}. (19)

Since f is C1, we have

f (x0 + ε cosθ ,y0 + ε sinθ) = f (x0,y0)+ fxε cosθ + fyε sinθ +O(ε2) (20)

Where fx := ∂ f
∂x (x0,y0), fy := ∂ f

∂y (x0,y0).
Assume that q is a point in φ(γ), q=(x0+ε cosθ0,y0+ε sinθ0, f (x0+ε cosθ0,y0+

ε sinθ0)), then

‖q− p‖2 = ε2 cos2 θ0 + ε2 sin2
θ0 +( fxε cosθ + fyε sinθ)2 +O(ε2)

= ( f 2
x +1)ε2 cos2 θ0 +2 fx fyε2cosθ0 sinθ0 +( f 2

y +1)ε2 sin2
θ0 +O(ε2)

= (ε cosθ0,ε sinθ0)

(
f 2
x +1 fx fy
fx fy f 2

y +1

)(
ε cosθ0
ε sinθ0

)
+O(ε2),

(21)

thus φ(γ) is approximately contained by a tiny ellipsoid, its projection to the tangent
plane of (S2,g2) at p is an infinitesimal ellipse with centre p. It is obvious that, the
image of this tiny ellipse
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{(x,y)|(x− x0,y− y0)

(
f 2
x +1 fx fy
fx fy f 2

y +1

)−1( x− x0
y− y0

)
= ε

2}

is a circle. So as it described above, if there is a quasi conformal mapping φ0 defined
on S1 which maps the tiny ellipse above to a tiny circle, φ ◦ φ

−1
0 is a conformal

mapping. So we choose the metric tensor M = {M(z)|z ∈ S1} in S1 to construct the
quasi conformal mapping, in which

M(z) =
(

f 2
x +1 fx fy
fx fy f 2

y +1

)−1

. (22)

M (z) induces an new metric on S1, denoted as g3. In fact, the direction of long
axis of γ on the surface is the direction in which the function changes fastest and
the direction of short axis is the direction in which f changes slowest, it means that
they are the principal direction of (S2,g2).

Figure 6 shows the ellipses in the domain [−1,1]× [−1,1] with respect to M (z)
of the Gaussian function f (x,y) = 4e−(x

2+y2)/2.

Fig. 6 Ellipse of function f (x,y) = 4e−(x
2+y2)/2.

5.2 Experiments on function interpolation

In this section, we show experiments on function interpolation using our method.
We experimented two functions, the first function is found in the paper [8], which
are:

f1(x,y) = tanh(60x)− tanh(60(x− y)−30),
f2(x,y) = tanh(−100(y−0.4sin(2πx))2).

Fig7 shows the functions we are going to interpolate.
Figure8 shows two embeddings of a triangulation with 1404 vertices, which is

the background mesh to describe the quasi conformal mappings with respect to f1.
Figure9 shows the anisotropic mesh of f1 with different number of vertices and

their pre-image of the quasi conformal mapping.
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f1 f2

Fig. 7 Two functions

isotropic embedding anisotropic embedding

Fig. 8 Two embeddings of background mesh of f1

meshes with 300 vertices meshes with 500 vertices meshes with 1000 vertices

Fig. 9 Anisotropic mesh of f1

Table1 reports the L2-errors of the interpolation functions corresponding to these
anisotropic meshes.

We know that during the process of construction of quasi conformal mapping,
we add a parameter s to control the extent of ”anisotropic”, the next figure shows
the background mesh of quasi conformal mappings with different parameters with
respect to f2. Figure10 shows the anisotropic mesh of f2 with different parameters.

Table2 reports the L2-errors of the interpolation functions corresponding to these
anisotropic meshes.
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|V | Isotropy Anisotropy
300 0.434039 0.169213
500 0.3414 0.152131
1000 0.26307 0.0925087

Table 1 The L2-errors of f1(x,y) = tanh(60x)− tanh(60(x− y)−30) on different meshes.

s = 0.0 s = 0.6 s = 0.8 s = 1.0

Fig. 10 Anisotropic mesh of f2 with different parameters.

s 0.0 0.2 0.4 0.6 0.8 1.0
Error 0.250927 0.205359 0.179804 0.160007 0.130494 0.142274

Table 2 The L2-errors of f2(x,y) = tanh(−100(y−0.4sin(2πx))2) on different meshes.

From these experiments, we observe that our method is able to capture the
anisotropic features of the interpolated functions. The resulting meshes improved
the accuracy of the interpolation compared with uniform meshes (those meshes
with s = 0). Moreover, the interpolation error consistently decreases according to
the increase of the number of points.

5.3 Comparisons with other methods

In this section, we conducted preliminary comparisons of our results with the re-
sults produced by two public codes, one is BAMG which implements the classical
metric-based methods. Another is Detri2 which implements the high dimension-
al embedding method [8]. First of all, it is noted that both codes produced high
quality anisotropic meshes, with a much smaller interpolation error which is about
two orders of magnitude smaller than those errors of our results, see Figure 11. This
shows the limitation of our method compared to mesh adaptation methods. It is nec-
essary to add/remove vertices, while our method does not change the number of
vertices.

On the other hand, our method could be seen as an effective anisotropic mesh
smoothing step compared with the heuristic smoothing algorithms used in BAMG
and Detri2. Figure 12 reports the L2-error when only using BAMG’s smoothing
option. We did this experiment by using the adaptmesh() function provided in
FreeFEM++, and we only call this function once, with different iterations of s-
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BAMG (884 points, L2-error: 0.0040) Detri2 (2346 points, L2-error: 0.0044)

Fig. 11 Anisotropic mesh of f1 generated by BAMG (left) and Detri2 (right).

moothing, nbsmooth=xxx, where xxx is the given number of smoothing iterations.
We used the parameter nbvx=1500 to set a limit of number of points.

BAMG (341 points)

nbsmooth L2 error
5 0.510075
10 0.51022
20 0.510206
50 0.509879
100 0.509742

Fig. 12 Left: The adapted mesh generated by BAMG with only one iteration. Right: The report of
L2 error on meshes produced by different iterations of smoothing.

From this experiment, we could observe that the mesh smoothing algorithm
(which is a heuristic relaxation method) used in BAMG has no obvious effect on the
resulting meshes. In this case, our method could be used to improve there anisotrop-
ic smoothing algorithm in the mesh adaptation process. This could be an interesting
future work.
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