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Abstract This paper presents a new way of describing cross fields based
on fourth order tensors. We prove that the new formulation is forming a
linear space in R9. The algebraic structure of the tensors and their projec-
tions on SO(3) are presented. The relationship of the new formulation with
spherical harmonics is exposed. This paper is quite theoretical. Due to pages
limitation, few practical aspects related to the computations of cross fields
are exposed. Nevetheless, a global smoothing algorithm is briefly presented
and computation of cross fields are finally depicted.

1 Introduction

We call a cross f a set of 6 distinct unit vectors mutually orthogonal or
opposite to each other (Fig. 1). This geometric object of vectorial nature
lives in the tangent space of Euclidean spaces E3. A cross field F = {x ∈
Ω ⊂ E3 7→ f(x)}, now, is a rule that associates a cross f(x) to each point of
a subset Ω of E3. Cross fields are auxiliary in 3D mesh generation to define
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local preferred orientations for hexahedral meshes, or for the computation of
the polycube decomposition of a solid. Automatic polycube decomposition is
a necessary step for multiblock or isogeometric meshing of 3D domains.

Let the Euclidean space E3 be equipped with a Cartesian coordinate sys-
tem {x1, x2, x3}. The six vectors (±1, 0, 0), (0,±1, 0) and (0, 0,±1) form a
cross, which we call the reference cross fref . Crosses being rigid objects,
their orientation in space can be identified by a rotation respective to fref ,
that is a member of SO(3) represented by, e.g., the Euler angles α, β and γ,
(Fig. 1). This representation of f is however not unique due to the symme-
tries of the cross, which are fully characterized by regarding the cross as set
of six points at the summits of an octahedron. The symmetry group of this
point set has 24 elements, which are the 24 rotations that apply the cross
onto itself, and is called the octohedral point group O. We call attitude of
the cross f its orientation in space up to the symmetries of the cross, and we
have

f ∈ SO(3)/O.

Fig. 1: 3D crosses representation. Left image shows the reference cross fref
and right image shows a cross f that is a rotation of the reference cross.

The expansion of a discretized field F into coefficients and shape functions
in finite element analysis is by definition a linear combination, leading then
by orthogonalization in this linear space to a linear system of equations to
solve. It is hence necessary in this finite element context to have a represen-
tation of the point value of the discretized field F (x) in a linear space, i.e.,
a space containing the linear combinations (here with real coefficients) of all
its members. This is however in general not the case with fields taking their
values in non-trivial group manifolds like, e.g., SO(3)/O.

The sketch of the solution to this problem can be illustrated with a simple
2D example. Consider the unit circle S1 and two points eıθ1 and eıθ2 on this
manifold. Clearly, linear combinations

a eıθ1 + b eıθ2 , a, b ∈ R
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do not all belong to S1. In order to have a practical representation of the
elements of S1 in a linear space amenable to finite element analysis, one has
to expand S1 to the enclosing complex plane, C ⊃ S1, which is a linear
space. The finite element problem can so be formulated in terms of complex
valued unknowns that are afterwards projected back into S1 by means of a
projection operator, e.g.,

Π : C 7→ S1 , x+ ıy 7→ eıatan2(y,x).

A similar approach is followed in this paper for the 3D finite element
smoothing of cross attitudes belonging to the group manifold SO(3)/O. The
approach rely on a new way of representing 3D cross fields as a particular class
of 4th order tensors, themselves in close relations to 4th degree homogeneous
polynomials of the Cartesian coordinates. 3D cross field representations based
on tensors have been used for 3D solid texturing and hex-dominant meshing
[3, 6, 4, 5], but none of them was adressing symmetry issues or projections.
The use of 4th order tensors allows to build a 9-dimensional linear space A,
containing SO(3)/O as a subset, together with a projection operator

Π : A 7→ SO(3)/O.

The approach leads eventually to a very efficient smoother for cross fields,
one order of magnitude faster than state-of-the art implementations. The
proposed representation also allows easy computation of the distance between
a finite element computed cross f , and its projection back into SO(3)/O.
This distance indicates the presence of singular lines and singular points in
the cross field in a straightforward fashion.

The paper is organized as follows. The 4th order tensor representation
for crosses is first inroduced, and the useful mathematical properties of this
tensor space are then derived. The projection method is then presented and
results obtained with a naive 3D crossfield smoothing on some benchmarks
problem are finally discussed.

2 Cross representation with 4th order tensors

2.1 The reference cross fref

Point groups, like Oh, are isometries leaving at least one point of space, the
center, invariant. As such, they have very convenient and useful representa-
tions on the sphere, and hence also in terms of spherical harmonics. In [1, 2],
spherical harmonics of degree 4 are proposed as a polynomial basis to rep-
resent 3D cross fields. They exhibit the required octahedral symmetry and
span a linear polynomial space H4 of dimension 9. The projection operator
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Π : H4 7→ SO(3)/O,

however, is tedious as it relies on a complex minimization process that is
not ensured to converge to the true projection. Moreover, the differential
properties of spherical harmonics (they are solution of the laplacian operator)
are of no use to the purpose of cross representation.

Fig. 2: Representation of the reference cross as a dice-shaped polynomial
isovalue surface (left), and of a general cross attitude as a rotation of the
latter (right)

The idea promoted in this paper is thus also to work with polynomials
whose isovalues exhibit the sought octahedral symmetry but, instead of ex-
panding them in a spherical harmonics basis, they are represented as explicit
rotations of a reference polynomial

fref (x1, x2, x3) = ‖x‖44 ≡ x41 + x42 + x43, (1)

whose isovalue fref = 1 is the dice-shaped surface depicted in Fig. 2 (left).
Fourth order is the lowest polynomial order exhibiting distinctive octahedral
symmetry, which is by the way rather natural in a Cartesian coordinate sys-
tem, as it simply amounts to the invariance against any argument inversion
and/or permutation :

fref (x1, x2, x3) = fref (−x1, x2, x3) = fref (x2,−x1, x3) = . . .

In tensor notations, we have

fref (x1, x2, x3) = Ãijkl xixjxkxl
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assuming Einstein’s implicit summation over repeated indices. As a polyno-
mial is characterized by its coefficients, not by the power terms which act as
a basis, the 4th order tensor

Ãijkl =

3∑
q=1

δiqδjqδkqδlq. (2)

is another full-fledged representation of the reference cross fref . It has only
three non-zero components

Ã1111 = Ã2222 = Ã3333 = 1.

2.2 Rotation of the reference cross

The reference cross (1) exhibits octahedral symmetry and rotations, which
are isometries, preserve this symmetry. It can therefore be stated that the
space of all possible cross attitudes in E3 is the set

f(x1, x2, x3) = fref (R1ixi, R2jxj , R3kxk) , Rij ∈ SO(3), (3)

whose corresponding tensor representation reads

Aijkl = RimRjnRkoRlp Ãmnop =

3∑
q=1

RimRjnRkoRlp δiqδjqδkqδlq =

3∑
q=1

RiqRjqRkqRlq.

(4)
This tensor, noted A, represents a general attitude of the cross in E3, and
the isovalue of the associated polynomial

f(x1, x2, x3) = Aijkl xixjxkxl = 1

is a rotation of the axis-aligned dice-shaped surface fref , Fig. 2.

Rotation matrices play a pivotal role in these definitions. For convenience,
let us define the following nomenclature :

• The indices 1, 2, 3 refer to the angles α, β and γ, i.e. the angles correspond-
ing to the first, second and third elemental rotations, respectively.

• The matrices X,Y, Z represent the elemental rotations about the axes
x1, x2, x3 of the Cartesian reference cross in R3 (e.g., Y1 represents a rota-
tion about x2 by an angle α).

• The shorthands s and c represent sine and cosine (e.g., s1 represents the
sine of α).

We have for example the rotation matrix in R3
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R = Z1X2Z3 =

c1c3 − c2s1s3 −c1s3 − c3c2s1 s2s1
c1c2s3 + c3s1 c1c2c3 − s1s3 −c1s2

s3s2 c3s2 c2

 , (5)

which non-linearly depends on only three degrees of freedom : the angles α,
β and γ.

2.3 Algebraic structure of Aijkl

A 4th order tensor in E3 has at most 34 = 81 independant components. The
specific algebraic structure of (4) makes it so, however, that the tensor space
of interest for cross fields is much smaller than that, and can be characterized
as a linear space A of dimension 9, convenient for finite element interpolation,
together with a non-linear projection operator

Π : A 7→ SO(3)/O (6)

from the 9-dimensional linear space onto a 3-dimensional nonlinear manifold.

The demonstration of this algebraic structure is in several steps. First, the
number of independent components of A cannot be larger than the dimension
of the space of homogeneous polynomials of order 4 with 3 variables, i.e.,(
4+3−1

4

)
= 15. This is a mere consequence of the fact that the products of

coordinates, as the product of real numbers, obviously commute, xixj = xjxi,
and that all terms associated with components of A whose indice sets are
permutations of each other eventually contribute to the same term in the
polynomial. In mathematical terms, it amounts to require the tensor A be
fully symmetric, a condition usually written

Aijkl = A(ijkl)

with

A(ijkl) =
1

24
(Aijkl + Ajikl + . . . )

where the 24 permutations of the set ijkl are enumerated at the right-hand
side.

The tensors (4) have however deeper structures, related with the unitary
property

RtR = I , RikRjk = δij

of rotations matrices. The so called “partial traces”1

1 Make sure to clearly distinguish sums over two repeated indices, which are implict
in our notation, and sums over four repeated indices, which are explicitly written.
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Aiikl =

3∑
q=1

RiqRiqRkqRlq =

3∑
q=1

δqqRkqRlq = RkqRlq = δkl (7)

leads to the 6 additional relationships

A1111 + A2211 + A3311 = 1,

A1122 + A2222 + A3322 = 1,

A1133 + A2233 + A3333 = 1,

A1112 + A2212 + A3312 = 0,

A1113 + A2213 + A3313 = 0,

A1123 + A2223 + A3323 = 0.

Other partial traces would give linearly dependent relationships, due to the
full symmetry of the tensor mentioned above.

It is important to note that partial traces are conserved under affine com-
bination of tensors. Tensors in A form thus a 15 − 6 = 9 dimensional lin-
ear space, noted A, convenient for finite element interpolation. Interestingly
enough, this dimension is also that of the the space of 4th order spherical
harmonics, used by some authors to represent crosses [2].

2.4 A is a projector

Let X be the set of symmetric 2d order tensors in E3. This is a linear space,
and any tensor d ∈ X can be expanded in terms of rank one basis tensors

d = dmn em ⊗ en , dmn = dnm

where em, m, 1, 2, 3, are the orthormal basis vectors of the Cartesian coordi-
nate system. Alternatively, basis tensors rotated by a matrix R ∈ SO(3) can
be used as well,

d = d′mn rm ⊗ rn , d′mn = d′nm (8)

with now
rm = R(em) , (rm)i = Rijδjm = Rim

the mth column vector of the rotation matrix R. The polynomials we are
using in this paper to represent cross attitudes are built from special tensors
in X for which one simply has B′mn = xmxn.

Once the space X is appropriately characterized, the tensor A defined by
(4) can be regarded as a linear application

A : X 7→ X,
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and it is readily shown that it is a projection operator :

A2 = A : A ≡ AijmnAmnkl

=

3∑
q=1

3∑
s=1

RiqRjqRmqRnqRnsRmsRksRls

=

3∑
q=1

3∑
s=1

RiqRjqRksRlsRmqRms︸ ︷︷ ︸
δqs

RnqRns︸ ︷︷ ︸
δqs

=

3∑
q=1

RiqRjqRkqRlq = Aijkl = A, (9)

To characterize this projection, the image by A of the basis tensors rm⊗rn
in (8) is evaluated. One has

(A : rm ⊗ rn)
∣∣
ij

= Aijkl RkmRln

=

3∑
q=1

RiqRjqRkqRlqRkmRln

=

3∑
q=1

RiqRjqδqmδqn,

from where follows

A : (rm ⊗ rm) = rm ⊗ rm m = 1, 2, 3 (no sum) (10)

A : (rm ⊗ rn) = 0 if m 6= n. (11)

As expected for a projector, eigen values are either 0 or 1. The eigenspace
corresponding to the eigenvalues λ1 = λ2 = λ3 = 1 is

rangeA = span (r1 ⊗ r1, r2 ⊗ r2, r3 ⊗ r3) ⊂ X

whereas that corresponding to λ4 = λ5 = λ6 = 0 is the kernel space

kerA = span (r1 ⊗ r2 + r2 ⊗ r1, r2 ⊗ r3 + r3 ⊗ r2, r3 ⊗ r1 + r1 ⊗ r3) .

Obviously, the eigentensors dj are both symmetric (djmn = djnm), and
orthonormal to each other (di : dj = δij) under the Frobenius norm
‖ d ‖2F = d : d = dmndnm.
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3 Three main results

The three main results of the paper are now presented in this section. We
first prove that any tensor A ∈ A (a fully symmetric tensor obeying (7))
corresponds to a cross attitude (i.e., a rotation of the reference cross) if it is
a projector A2 = A onto a three-dimensional subspace of X. Then, we show
how to project a tensor A ∈ A that is not a projector onto another tensor
in A verifying A2 = A with three non-zero eigenvalues. Finally, we show the
direct relashionship between spherical harmonics and our representation on
terms of 4th order tensors.

3.1 Sufficiency

Theorem 1. A tensor A ∈ A, (fully symmetric 4th order tensor obeying the
partial trace condition(7)) that is also a projector on a 3-dimensional subspace
of X corresponds to a cross attitude (i.e., to a rotation of the reference cross)

Proof. If A is a projector onto a 3-dimensional subspace of X, there exist
three orthonormal symmetric second order tensors da,db,dc ∈ X such that

da ⊗ da + db ⊗ db + dc ⊗ dc = A
dl : dm = δlm l,m = a, b, c

dlij = dlji l = a, b, c, i, j = 1, 2, 3.
(12)

Note that there is no implicit summation on upper indices in this proof. The
key point of the proof is to show that the eigentensors da, db and dc commute
with each other. If this is the case, they are joint diagonalizable and share
therefore the same set of eigenvectors. It is then easy to see that A is the 4th

order tensor representation of a cross.

Let
[dl,dm] = dl · dm − dm · dl

be the the commutator of dl and dm, of which we have to prove the Frobenius
norm is zero,

‖ [dl,dm] ‖2F = [dl,dm] : [dl,dm] = 0.

One first notes that

(da · db) : (de · df ) = daikd
b
kjd

e
ild

f
lj = tr (dadbdfde)

= (db · da) : (df · de)
= (da · de) : (db · df )

= (de · da) : (df · db) (13)
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exploiting the symmetry of the individual dl tensors, and all possible re-
organizations of the matrix products. As the contraction operator : is also
symmmetric, there are thus 8 equivalent argument permutations (out of 24)
for such scalar quantities. With this, one shows that

‖ [da,db] ‖2F = (da · db − db · da) : (da · db − db · da)

= (da · db) : (da · db)− (da · db) : (db · da)−
(db · da) : (da · db) + (db · da) : (db · da)

= 2(da · da) : (db · db)− 2(da · db) : (db · da) (14)

the last two terms being not reducible to each other by the permutation rules
given above. As

(da · db) : (de · df ) = tr (dadbdfde),

the identity (14) can also be interpreted as

‖ [da,db] ‖2F = tr (dadadbdb − dadbdadb) = tr
(
(da)2(db)2 − (dadb)2

)
.

(15)

The identity tensor I being in the range of A, it is an eigen tensor of A,
one has thus

δij = Aijklδkl = Aikljδkl

where the full symmetry of A has been used. This reads, without components,

I = dada + dbdb + dcdc = (da)2 + (db)2 + (dc)2,

wherefrom directly follows

(da)2 = (da)4 + (da)2(db)2 + (da)2(dc)2. (16)

On the other hand, using now the fact that da is an eigen tensor of A, one
has

daij = Aijkld
a
kl = daijd

a
kld

a
kl + dbijd

b
kld

a
kl + dcijd

c
kld

a
kl

and, using again the full symmetry of A

daij = daikd
a
ljd

a
kl + dbikd

b
ljd

a
kl + dcikd

c
ljd

a
kl

so that
da = (da)3 + dbdadb + dcdadc

and premultiplying with da

(da)2 = (da)4 + (dadb)
2 + (dadc)

2. (17)

Substraction of (17) and (16) yields
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0 = (dadb)
2 + (dadc)

2 − (da)2(db)2 + (da)2(dc)2,

the trace of which gives, using (15),

0 = ‖ [da,db] ‖2F + ‖ [da,dc] ‖2F .

As this is a sum of positive terms, both terms are zero, and we have proven
that da commutes with db and dc.

As (da,db,dc) are symmetric and commute, there exist an othonormal
basis (r1, r2, r3) ∈ (R3)3 such as:

da = α1r
1 ⊗ r1 + α2r

2 ⊗ r2 + α3r
3 ⊗ r3 α1, α2, α3 ∈ R

db = β1r
1 ⊗ r1 + β2r

2 ⊗ r2 + β3r
3 ⊗ r3 β1, β2, β3 ∈ R

dc = γ1r
1 ⊗ r1 + γ2r

2 ⊗ r2 + γ3r
3 ⊗ r3 γ1, γ2, γ3 ∈ R

(18)

We will now show that ri⊗ ri, i ∈ {1, 2, 3} are eigentensors of A. First, we
know that dl are orthogonal and of norm 1. So, ((α1, α2, α3), (β1, β2, β3), (γ1, γ2, γ3))
forms an orthonormal basis of R3.

Therefore, it exists a unique vector v ∈ R3 such as :α1 β1 γ1
α2 β2 γ2
α3 β3 γ3

 v =

1
0
0

 (19)

and we have
v1d

a + v2d
b + v3d

c = r1 ⊗ r1 (20)

As, dl are eigentensors of A assiociated to eigenvalue 1,

A : (r1 ⊗ r1) = A : (v1d
a + v2d

b + v3d
c)

= v1d
a + v2d

b + v3d
c

= (r1 ⊗ r1)
(21)

Consequently, r1 ⊗ r1 is an eigentensor of A assiociated to eigenvalue 1. We
can show in the same way that (r2 ⊗ r2) and (r3 ⊗ r3) are also eigentensors
of A assiociated to eigenvalue 1.

Thus, as A is a projector with only three non zero eigenvalues, we finally
have :

A = r1 ⊗ r1 ⊗ r1 ⊗ r1 + r2 ⊗ r2 ⊗ r2 ⊗ r2 + r3 ⊗ r3 ⊗ r3 ⊗ r3 (22)

Therefore, A is the representation of the cross with orthogonal directions
(r1, r2, r3).
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3.2 Recovery

The representation that is advocated here relies heavily on the computation
of eigentensors of fourth order tensors. Disappointingly, numerical tools for
linear algebra are designed to manipulate vectors and matrices. Hopefully, it
is possible to represent symmetric fourth order tensors as matrices.

A fourth order tensor A endowed with minor symmetry conditions Aijkl = Ajikl = Aijlk
has 36 independant components. It is useful to write it in the so called Mandel
notation as the following matrix 6× 6 matrix:

A =



A1111 A1122 A1133

√
2A1123

√
2A1113

√
2A1112

A2211 A2222 A2233

√
2A2223

√
2A2213

√
2A2212

A3311 A3322 A3333

√
2A3323

√
2A3313

√
2A3312√

2A2311

√
2A2322

√
2A2333 2A2323 2A2313 2A2312√

2A1311

√
2A1322

√
2A1333 2A1323 2A1313 2A1312√

2A1211

√
2A1222

√
2A1233 2A1223 2A1213 2A1212

. (23)

Major symmetry conditions Aijkl = Aklij ensure that A is symmetric. Factors
2 and

√
2 in (23) allow to write the cross representation as the following usual

quadratic form:
(x⊗ x)t A (x⊗ x) = 1. (24)

with
x⊗ x =

(
x21 x22 x23

√
2x2x3

√
2x1x3

√
2x1x2

)t
.

Let us now compute Mandel’s representation of the reference cross Ã (see
(1)):

Ã =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (25)

In a previous section, we have shown that only 9 scalar parameters (a1, . . . , a9)
are required to represent A. Taking into account symmetries and partial
traces, we can write

A =


a1

1
2
(1 + a3 − a2 − a1) a2 SYM

1
2
(1 + a2 − a3 − a1) 1

2
(1 + a1 − a2 − a3) a3

−
√

2(a4 + a5)
√

2a4
√

2a5 1 + a1 − a3 − a2√
2a6 −

√
2(a6 + a7)

√
2a7 −2(a8 + a9) 1 + a2 − a3 − a1√

2a8
√

2a9 −
√

2(a8 + a9) −2(a6 + a7) −2(a4 + a5) 1 + a3 − a2 − a1


(26)

with the following correspondances between the Aijkl’s and the ai’s:

a1 = A1111 , a2 = A2222, a3 = A3333,
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a4 = A2322 , a5 = A2333, a6 = A1311,

a7 = A1333 , a8 = A1211, a9 = A1222.

Mandel’s notation allows to write tensor contractions as matrix products.
For example, A : A = A (see (9)) is written using Mandel’s notation as
A ·A = A.

Eigenvectors of A are the eigentensors of A. Their 6 components are the 6
independent entries of eigentensors dk that are symmetric second order ten-
sors. The two following MATLAB functions allow to transform fourth order
tensors A into Mandel’s form and transform eigenvectors of A into second
order tensors. We also see factors of

√
2 that accounts for the symmetry of

A.

function D = Vec6ToTens2 (v)
s = 2^(1./2.);
D = [

v(1) , v(6)/s , v(5)/s ;
v(6)/s , v(2) , v(4)/s ;
v(5)/s , v(4)/s , v(3) ;
];

end

function a = Tens4ToMat6 (A)
s = 2^(1./2.);
a = [

A(1,1,1,1) , A(1,1,2,2) , A(1,1,3,3) , s*A(1,1,2,3), s*A(1,1,1,3), s*A(1,1,1,2) ;
A(2,2,1,1) , A(2,2,2,2) , A(2,2,3,3) , s*A(2,2,2,3), s*A(2,2,1,3), s*A(2,2,1,2) ;
A(3,3,1,1) , A(3,3,2,2) , A(3,3,3,3) , s*A(3,3,2,3), s*A(3,3,1,3), s*A(3,3,1,2) ;
s*A(2,3,1,1) , s*A(2,3,2,2) , s*A(2,3,3,3) , 2*A(2,3,2,3), 2*A(2,3,1,3), 2*A(2,3,1,2) ;
s*A(1,3,1,1) , s*A(1,3,2,2) , s*A(1,3,3,3) , 2*A(1,3,2,3), 2*A(1,3,1,3), 2*A(1,3,1,2) ;
s*A(1,2,1,1) , s*A(1,2,2,2) , s*A(1,2,3,3) , 2*A(1,2,2,3), 2*A(1,2,1,3), 2*A(1,2,1,2) ;
];

end

Note that those MATLAB routines are made for testing and that 3D large
codes will only manipulate the 9 nodal unknowns ai.

Computing 3D cross fields implies to propagate tensors that have known
values on the boundary of a 3D domain inside the domain. Assume a tensor
A that has the right structure and that is such that A : A = A. With such
properties, we know that A is a rotation of Ã. The first important issue is
about backtracking R from A i.e. find the three orthonormal column vectors
rq of R that form A through Equation (4).

An eigentensor dn of A that is associated with eigenvalue 1 is the linear
combination

dnij =

3∑
q=1

cnqr
q
i r
q
j .

We have
dnimr

k
m = cnkr

k
i

which means that the eigenvectors of dn are indeed the rk’s. One issue here
could be that dn is not of full rank. Yet, the sum
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d =

3∑
k=1

dk

is of full rank. Eigenvectors of d are the wanted 3 directions. Assume a rep-
resentation A in of the form (26) and let us recover rotation matrix R. The
following MATLAB code recovers the rotation matrix R starting from a ten-
sor A that is a rotation.

function R = Tens4ToRotation (A)
a = Tens4ToMat6 (A); % transform A into its matrix form
[V,D] = eig (a) ; % compute eigenspace
[X,I] = sort(diag(D)); % sort eigenvalues
% compute the sum of eigentensors of A associated
% to eigenvalues equal to 1
V2 = Vec6ToTens2 (V(:,I(4))+V(:,I(5))+V(:,I(6)));
[R,d2] = eig(V2); % get rotation matrix R

end

This code has been tested to thousands of random rotations, giving the
right answer in a 100% robust fashion.

The aim of our work is to build smooth cross fields in general 3D domains.
For that, we will solve a boundary value problem for the 9 linearly inde-
pendant components (a1, . . . , a9) of the tensor representation. Consider two
representations X and Y with their representation vectors (x1, . . . , x9) and
(y1, . . . , y9) Any smoothing procedure computes (weighted) averages of such
representations. For example, representation vector

1

2
(x1 + y1, . . . , x9 + y9)

allows to build Mandel’s representation Z = 1
2 (X + Y ) that as the same

structure as matrix (26).

Assume a cross attitude A(α, β, γ) that depends on Euler angles α, β and
γ. The projection of Z into the space of rotations of the reference cross is
defined as the cross attitude A that verifies

A = min
α,β,γ

‖A(α, β, γ)− Z‖.

The following function

function P = projection (A)
b_guess = [0 0 0];
[b_guess(1) b_guess(2) b_guess(3)] = EulerAngles(Tens42Rotation (A));
vA = Tensor4ToMat6 (A);
fun = @(x) norm(Tensor4ToMat6(makeTensor (makeEulerRotation (x(1),x(2),x(3))))-vA) ;
b_min = fminsearch(fun, b_guess);
P = makeTensor (makeEulerRotation (b_min(1), b_min(2),b_min(3)));

end

allows to compute such a projection. In that function, we choose as an
initial guess for Euler angles the value computed by Tens4ToRotation which
uses the eigenspace of A relative to its three largest eigenvalues. Figure 3
shows that this initial guess is indeed a very good approximation of the
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projection. In reality, it is such a good approximation that it can be used as
is without doing the exact minimization.

||Z-P1||
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

||Z
-P

2||

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Fig. 3: Projection of 4000 random tensors Z. P1 is the true projection while
P2 is the approximation computed using function Tens42Rotation.

On Figure 3, P1 is the exact projection while P2 is the approximation.
We see that the approximation P2 is always very good with respect to the
projection, while being extremely simple and fast to compute.

3.3 Relation with spherical harmonics

Harmonic polynomials h(x) are polynomials that are such ∇2h = 0. Consider
the rotated diced cube polynomial representation

α(x) =

3∑
q=1

(rq · x)4

We have

∇2α =

3∑
j=1

∂2α

∂x2j
= 12

2∑
q=1

(rq·x)2(rqj )
2 = 12

3∑
q=1

[
(rq · x)2

(
(rq1)2 + (rq2)2 + (rq2)2

)]
= 12

3∑
q=1

(rq·x)2.

The equation
∑3
q=1(rq · x)2 is the one of the unit sphere that is invariant by

rotation. Thus,
∇2α = 12 |x|2 .

Representation polynomial α(x) is thus not harmonic. Yet, acknowledging
that
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∇2|x|4 = 20|x|2,

we can define the following projection operator of diced cubes onto harmonic
polynomials

PH4
(α(x)) = α(x)− 3

5
|x|4.

Operator PH4 essentially remove three fifth of a sphere to the diced cube so
that the representation retains its symmetry properties while becoming itself
harmonic. Let us show that PH4

is an orthogonal projector with respect to a
norm that is related to spherical harmonics. Consider the unit sphere S2 and
compute∫

S2

h(x) [PH4
(α(x))− α(x)] dx = −3

5

∫
S2

h(x)|x|4dx = −3

5

∫
S2

h(x)dx.

Harmonic functions are endowed with the mean value property which states
that the average of h(x) over any sphere centered at c is equal to h(c). So,∫

S2

h(x) [PH4(α(x))− α(x)] dx = −3

5

∫
S2

h(0)dx.

Harmonic polynomials are homogeneous so h(0) = 0 and operator PH4 is an
orthogonal projector onto fourth order spherical harmonics.

As an example, consider our reference diced cube that is represented by
α(x) = x41 + x42 + x43. Its projection onto H4 is

PH4(x41 + x42 + x43) =
2

5
(x41 + x42 + x43 − 3(x21x

2
2 + x21x

2
3 + x22x

2
3))

This is indeed interesting to see that, for x ∈ S2, we have

PH4(x41 + x42 + x43) =

√
12π

7

16

3

(√
7

12
Y4,0 +

√
5

12
Y4,4

)

where Y4,j , j = −4, . . . , 4 are the orthonormalized real spherical harmonics.
In [2], authors define their reference frame as

F̃ =

√
7

12
Y4,0 +

√
5

12
Y4,4

which is to a constant the orthogonal projection of our reference frame onto
spherical harmonics.
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4 Practical computations

Assume a domain Ω with its non smooth boundary Γ that may contain sharp
edges and corners. Our aim is to find a crossfield F that is smooth, and such
as for all xßΓ , F (x) has one direction aligned to the boundary normal n(x).
Here, a simple smoothing procedure that consist in locally averaging cross
attitudes at every vertex of a mesh that covers Ω is proposed. The issue of
boundary conditions is not treated here.

Let ai ∈ R9 the representation vector at vertex i. The energy function
that is considered is pretty standard

E =
1

2

∑
ij

‖Ai −Aj‖2F (27)

where
∑
ij is the sum over all edges of the mesh and ‖ · ‖F is the Frobenius

norm. The energy is minimized in an explicit fashion. Tensor representations
ai ∈ R9 are averaged at every vertex of the mesh and subsequently projected
back to SO(3) in the approximate fashion developped above. The algorith is
stopped when the global energy E has decreased by a factor of 104.

We have generated three uniform meshes of a unit sphere with different
resolutions. Results are presented in Figure 4. The iterations were started
with every node assigned to the reference frame aligned with the axis. Crosses
with values of η in the range η ∈ [0.3, 0.5] are drawn on the Figures. Figures
show the usual polycube decomposition of the sphere with 12 singular lines
made of“cylinders”that form an internal topological cube plus 8 singular lines
connecting the corners of the topological cube to the surface. Refining the
mesh allows to produce more detailed representation of the decomposition.
Our method is significantly faster than the ones using spherical hamrmonics
thanks to the efficient projection operator that only requires to compute
eigenvectors and eigenvalues of 3× 3 and 6× 6 symmetric matrices.

5 Conclusion

The method to represent and compute crossfields on 3D domains offer a lot
of advantages.At first, the new formulation is, to our opinion, way easier
to understand geometrically: rotations of tensors, recovery procedures and
projections have a clear geometrical representation. Then, we have shown
that there exist a one-to-one relationship between our representation and 4th
order spherical harmonics. It should be possible to build a 9× 9 matrix that
allow to change of base. The 4th order tensor representation used allows to
approximate in a very efficient way projections on the crosses space F . The
direct consequence is a fast resolution of the smoothing problem.
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Fig. 4: Computation of cross field on a sphere meshed with tetrahedra. The
three meshes used contain respectively 447,405, 2,124,801 and 6,128,555 tetra-
hedra. Resolution time for reducing the residual from 1 to 10−5 was respec-
tively 3 seconds, 34 seconds and 81 seconds.

We are aware that this paper is quite theoretical: way more practical results
about this new representation are in our hands: detection of singularities,
boundary conditions, norms... Due to page limitations, we have deliberatlely
made the choice to present basic results. More practical aspects of that new
representationas as well as computations of cross fields on complex geometries
will appear in furthcoming papers.
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