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Abstract New machine-learning based methods for driving defeaturing of CAD
models for tetrahedral meshing are proposed. The ability to predict mesh quality at
geometric features of a CAD model prior to meshing is used to identify potential
problem areas. A prioritized list of geometric operations can be presented to a user
to improve meshing outcomes. New methods are introduced for generating training
data based on both geometric and topological features of the CAD model with labels
defined by local quality metrics. Implementation of the proposed machine learning-
driven defeaturing environment is demonstrated in Sandia’s Cubit Geometry and
Meshing Toolkit.

1 Introduction
An engineering analyst may receive a CAD model or assembly from a designer

which may have been developed based on manufacturing specifications which are
not directly useful for analysis. Following inspection of the model, the analyst will
devise a strategy for model preparation which may include many complex and
lengthy geometric modifications including defeaturing. While machine learning is
widely used in text, image, audio, and video analysis, there has been little research
on the application of machine learning to model preparation for simulation. One
notable work in this area from Danglade et. al. [1]. They propose a limited envi-
ronment for defeaturing CAD models where machine learning is driven by heuristic
rule-based outcomes. In contrast, this work proposes the predicted quality of the
FEA mesh as the training objective.

Machine learning methods have become widespread and available through ro-
bust open source tools such as scikit-learn [2]. These methods require input training
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data in the form of comma-separated value (.csv) files that include feature and label
information. For our application we identify features as geometric and topologic in-
formation of local curves and surfaces of the CAD model, while label data is based
on resulting local mesh quality at these features. Since we would like to drive im-
provement of the CAD model, we identify features based on selected geometric
operations designed to simplify or improve local topology of the CAD model. After
collecting sufficient training data, the machine learning models are able to predict
local mesh quality and provide a prioritized list of geometric operations for improv-
ing the CAD model.

2 Features
The features identified for training data are based upon a series of geometric op-

erations that have proven useful for manually modifying a CAD model. While there
are many possible operations we could have considered, our initial study focussed
on the following operations available in the Cubit toolkit [3].

(1) remove surface (6) tweak remove topology curve
(2) tweak replace surface (7) tweak remove topology surface
(3) composite surfaces (8) regularize curve
(4) collapse curve (9) blunt tangency add material
(5) virtual collapse curve (10) blunt tangency remove material

Each of these 10 operations represent a separate machine learning model that has
a unique set of associated features based on nearby geometry and topology. In ad-
dition, for comparison, models for vertices, curves and surfaces are also introduced
where no operation is performed, making a total of 13 models. This allows identi-
fication of those regions in the model that may be most problematic and to predict
potential mesh quality improvement compared with a given geometric operation.

Fig. 1 Small curve in model that requires de-
featuring before meshing

Fig. 2 Example topology-based features used
for training data at a small curve

2.1 Topology-based Features
Figure 2 illustrates topology-based features for a given small curve shown in the

model in figure 1. In this case, information such as the curve length, adjacent surface
areas, angles between neighboring surfaces as well as local vertex valence, loop
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information and other information is used. The number of features used for each
model is based upon the geometric entities involved in the operation. For instance,
a composite operation would include information about the surfaces involved in the
operation as well as those surrounding. In contrast, a collapse curve operation would
include only information about the curve and its adjacent surfaces.

2.2 Geometry-based features
Figures 3, 4 illustrate geometry-based features which are derived from the con-

cept of surflet pairs introduced by Wahl [4]. Surflet, S = (α,β ,γ,δ ) is a function of
distance and angles between two normals on the surface as illustrated in figure 5.
To maintain a constant size vector of features, a histogram is computed based upon
categorization of S values computed between points on the surface. Points to include
in the surflet calculations are defined from a local triangulation of the surfaces at the
entities involved in the local geometry operation.

Fig. 3 Example model showing points and normals
used for computing surflets

Fig. 4 Close-up of a point and normal used for
surflet calculation

Fig. 5 Surflet, S is a function of the distance, δ and angles α,β ,γ between two points and normals
on the surface

3 Labels
In order to validate the effectiveness of a geometry operation, the model is meshed

[5] following execution of the local operation. A bounding box with dimensions rel-
ative to the target mesh size is defined around the entities involved in the geometric
operation. Tet elements falling within the bounding box are used to compute a min-
imum scaled Jacobian mSJ and minimum in-radius mIR value which are used as
characteristic labels for the given geometric operation.

4 Machine Learning Models
To generate training data, topology data and feature data is first extracted, and

then features computed based on one of the geometric operations described above.
The geometry is then meshed, metric labels assigned, and the data written as a single
row to one of the 13 operation training data model files. This process is repeated for



4 Steven J. Owen, Timothy Shead and Shawn Martin

each small feature in the model, where small is a function of the target mesh size. A
variety of test models were used for the study including several proprietary models
as well as those obtained from open internet resources such as grabcad [6]. Once
sufficient training data was accumulated for each of the 13 models, scikit-learn was
used to compute training models using the effective decision tree (EDT) method.
Pickled data files, one for each model, are then written to be used in real-time within
the defeaturing tool. The process used for generating training data and utilizing the
data in a run-time environment is outlined in figure 7.

Fig. 6 The Cubit ITEM interface showing en-
hancements to incorporate machine learning
models to drive defeaturing

Fig. 7 Proposed process for generating and uti-
lizing machine learning data in a CAD-based
defeaturing environment.

5 Application
The Cubit ITEM [7] interface was used as the defeaturing environment for the

machine learning models. Figure 6 shows the user interface with a list of prioritized
features ranked by the worst quality metric with the predicted local mesh quality.
Selecting one of the entities reveals a prioritized list of operations that can be per-
formed along with the predicted mesh quality improvement for each.
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6 Results
Results were validated by running a set of computed features not included in the

initial models and using the pickled data to predict their mSJ and mIR. Figure 8
illustrates the mean error in mSJ and mIR for each of the 13 operation models. It also
compares the results of topology-based vs geometry-based features. In our study we
note that topology-based features appear to perform better than geometry-based.

Fig. 8 Results from 13 machine learning models based on Cubit geometry operations. Mean aver-
age error from prediction of scaled Jacobian and In-radius from resulting tet meshes.

7 Conclusion
A new application of modern machine learning technologies to model preparation

for simulation has been introduced. This initial work is at its beginning stages, but
has already proven successful and demonstrated for user-interactive defeaturing of
CAD models. New work is underway to expand and apply these powerful machine
learning models to everyday practice.
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