A geometric mesh quality improvement
algorithm with guarantees

R. Rangarajan and A. Lew

Abstract We discuss an iterative algorithm called directional vertex relaxation that
optimally perturbs vertices in a mesh along prescribed directions without altering
element connectivities. Each vertex update in the algorithm maximizes the poor-
est quality among the elements around it. With a reasonable set of assumptions
on the mesh and on the element quality metric, the algorithm is well defined and
the mesh quality is guaranteed to improve with each vertex update. Implementing
the algorithm reduces to one-dimensional root finding, rendering it easy to incor-
porate within existing mesh smoothing codes. We include representative numerical
experiments examining the performance of the algorithm for improving triangle and
tetrahedral mesh qualities.

1 Introduction

Directional vertex relaxation (dvr) is an algorithm for geometric mesh quality im-
provement that consists in iteratively optimizing the locations of vertices in a mesh
along a prescribed set of directions. The idea behind the algorithm is illustrated in
fig. 1, where for the sake of simplicity, we consider relaxing just a single vertex v
along vertical and horizontal directions during odd and even iterations, respectively.
With the understanding that more regularly-shaped triangles are assigned higher
qualities, notice that the poorest quality among the triangles Kj, ..., Ky incident at
v is that of Ky. During the first iteration, dvr computes the coordinate A°P' such
that relocating v to v = v+ A°P'e, maximizes the minimum among the qualities
of the resulting four triangles K7, ..., K}. The perturbation v — V' visibly improves

Ramsharan Rangarajan
Department of Mechanical Engineering, Indian Institute of Science Bangalore, India. e-mail:
rram@iisc.ac.in

Adrian Lew
Department of Mechanical Engineering, Stanford University, USA. e-mail: lewa@stanford.edu

2 R. Rangarajan and A. Lew

%,
f=1 Q/—/)
K, x
K
KY
K}
eI
Ky
Input mesh dvr iteration 1

dvr iteration 2

Fig. 1: An illustration of how dvr improves triangle qualities around a vertex v. Dur-
ing the first iteration, v is relocated to v/ along the vertical direction by maximizing
the function A — Qu;in(A), which computes the poorest quality among the elements
Ki,...,K4 when v is perturbed to v+ A e,. Similarly, v/ is perturbed to v during the
second iteration, this time along the horizontal direction.

the shape of K. At the next iteration, dvr computes A°P' such that relaxing v/ to
V" =V + A°P'e, maximizes the poorest quality among the triangles K{,...,K}. In
this particular example, no further improvement is possible. The dvr algorithm es-
sentially consists in repeating the recipe illustrated in the figure— given a mesh, an
ordered subset of its vertices that can be relaxed, and the directions along which
to relax them, each vertex location is updated by maximizing the minimum quality
realized over elements in its 1-ring.

In addition to succinctly describing the dvr algorithm, our goal here is to briefly
discuss a few key questions. First, under what conditions are vertex updates in the
algorithm well defined? Second, in what sense do these updates improve the mesh
quality overall? And third, how can vertex updates be computed in practice? These
questions assume additional intrigue owing to the fact that the max-min problems
defining vertex updates in dvr are necessarily nonlinear, nonsmooth and nonconvex.
Thanks to the deliberate assumption of prescribed relaxation directions however,
these max-min problems are one-dimensional. Then we find that exploiting reason-
able assumptions on the mesh being relaxed and on properties of the element quality
metric yields useful answers to the above questions and facilitates a easy implemen-
tation of the algorithm without resorting to any heuristics. For the sake simplicity
and brevity, we restrict our discussion of dvr, the statements of related mathemati-
cal results and the numerical experiments examining its performance to triangle and
tetrahedral mesh types and adopt the mean ratio metric to define element qualities.

2 Directional vertex relaxation: algorithm and examples

We begin by introducing the notation required for a description of the dvr algorithm.
We identify a triangulation .7 in R¢ with the triple (V,1,C), where the multiset V

Directional vertex relaxation 3

contains the list of vertex coordinates, I is the list of vertex indices, and C is the list
of element connectivities, i.e., (d + 1)—tuples of indices in I. We shall assume .7 to
be a mesh of planar triangles in the case d = 2, and a mesh of tetrahedra in the case
d = 3. We denote the location of a vertex with index i € I by V; € V, and refer to a
simplex K in .7 by K € .7. For i € 1, the 1-ring of i is the set ¢ (i; J) containing
the list of simplices in .7 that are incident at i.

The point of departure for dvr is a mesh .7 to be improved, an ordered list Iz C
I of vertices that can be relaxed, a prescription dy; € R¢ for the direction along
which to relax vertex i € Ir at the k-th iteration of the algorithm, and a choice Q
for the metric to measure element qualities. Here we assume that Q is the mean
ratio metric, which assigns the maximum possible value 1 to equilateral triangles
and regular tetrahedra. It is convenient to introduce the shorthand .7+ to denote
the mesh resulting from relocating vertex i from V; to V; + A dy;, and set

gi(A, 7) 2 min{Q(K) : K €¢ (i, 7"*)} for A € Rand i € I, (1)

to denote the poorest quality among simplices in the 1-ring of 7 in the mesh .7 b,
Algorithm 1 now summarizes dvr.

—

Algorithm 1: Directional vertex relaxation (DVR)
Input: .7 = (V,L,C) : Input triangulation
Ir = (1,...,m) : Ordered list of vertices to relax
{d i }icrg ken : Relaxation directions
Nr : Number of relaxation iterations
for k =1 to N do
fori=1tomdo
Compute: AP £ argmaxj g gi(A,.7) > nonlinear, nonsmooth &
nonconvex max-min problem
Update: V; < V; +A°P'dy;
end
end
return (V,1,C)

NI Y

® 2 & w

Figure 2 shows representative results from a few numerical experiments using Al-
gorithm 1 to improve meshes accessed from publicly available repositories. In each
case, vertices on the boundary of the input mesh are kept fixed while the remaining
ones are relaxed along directions that are randomly generated for each vertex at each
iteration.

The curves plotted in the figure are components of a vector-valued mesh quality
Q. In contrast to conventional definitions for mesh qualities as #7-norms of the list
of element qualities, a vector-valued quality is natural in the context of dvr. Setting
qi(7) = qi(0,.7), the quality of a mesh .7 is defined as

Q(7) 2 asc(qi(T),....qu(7)), where Ig = (1,2,...,m),)

4 R. Rangarajan and A. Lew

dvr
input
Netm = 1726 in = 0.709 Nuw, = 850 Q" — 0.0651
#Ig =590 Q' =0.771 #lp =354 QP =0.776
1 10 10* 10° 10 102 10°
Index Index
(a) Input mesh: “superior” from [4] (b) Input mesh from [1]

' | Nem = 156135 QI = 0.0169
#Ig = 13789 Q9P = 0.2

Nem = 35551 Q" = 0.153
#Ir = 2800 Q™ =0.332

10 100 100 10¢
Index

Neim = 125127 Q" = 0.189
S 14IR = 13604 Q)P = 0.326

Nemn = 50391 Q" = 0.207
H#Ig = 6849 Q"' =0.418

10°
Index

(e) Input mesh: “Hand man” from [6] (f) Input mesh: “sculptlOkv” from [5]

Fig. 2: Examples demonstrating the mesh improvement possible with dvr for tri-
angle and tetrahedral meshes. In each example, we have noted the poorest element
qualities in the input and optimized meshes, the number of elements in the mesh,
the number of vertices relaxed, and the source of the input mesh. Notice the loga-
rithmic scale used for the horizontal axes in the plots of the quality vectors. This has
been done to facilitate a closer inspection of the elements with poor qualities in the
meshes. The optimized qualities correspond to meshes computed at the end of 25
and 40 iterations for the case of triangle and tetrahedral meshes, respectively.

and asc is a permutation that rearranges components of a vector in R in ascending
order, i.e.,

asc(u; <up <...<up) 2 (u,uz,...,u,), meN.

A couple of aspects of the definition of Q(.7) are worth highlighting. Its first com-
ponent Q;(.7) equals the minimum among the qualities of all simplices that can
be perturbed, and is therefore particularly significant in finite element calculations.
In the examples in fig. 2 where all interior vertices are relaxed and no element has
all its vertices on the boundary, Q; equals the poorest element quality in the mesh.

Directional vertex relaxation 5

Hence Qiln and Q(fp[mentioned in the figures equal the poorest element quality in the
input and optimized meshes, respectively. To emphasize the fact that Q(7) is not
simply a lexicographical ordering of element qualities, we mention that the quality
of the same element generally appears multiple times in Q(.7). In this sense, Q(.7)
naturally accentuates the influence of elements with poor qualities.

In addition to Q, we also need an ordering over the set of mesh qualities to
compare the mesh iterates computed by dvr. To this end, we introduce a binary
relation on R™ that is defined as

wLweR” u>w <— ui>wiwherei:arg1r<n_i2 {uj #wj}. 3)
<j<m

With equality of vectors defined in the usual component-wise sense, we can now say
that the mesh iterate 7} has better quality than 7 if Q(%;) > Q(Z). In each of the
examples in fig. 2, the quality of the mesh computed by dvr is better than the input
mesh. This can be deduced by simply observing that the blue curves (qualities of dvr
output meshes) start above the red ones (qualities of input meshes). It is however not
the case that each component of the quality of the optimized mesh is larger than that
of the input mesh, as evident from the fact that the quality curves intersect in some
of the examples. Indeed, this observation reveals that dvr autonomously improves
the qualities of poor elements by sacrificing qualities of some of the better shaped
ones.

Inspecting Step 4 raises an important question of whether Algorithm 1 is well
defined. Specifically, when can we expect A — ¢;(4,) to have a unique maxi-
mizer? Next, how is the mesh quality Q affected by vertex updates in dvr? The issue
here is a subtle one— it may seem that since optimizing the location of a vertex
improves the quality of the poorest element in its 1-ring, the overall mesh quality
ought to improve as well (roughly speaking). However, improvement in the quali-
ties of some elements comes at the expense of reducing the qualities of a few others.
There is hence a balancing act at play, where some element qualities are improved
and others worsened during each dvr iteration. What can we say about the qualities
of mesh iterates then? These questions are addressed by theorem 1.

3 Mathematical guarantees for DVR

Even though the conclusions of theorem 1 hold for a general class of quality metrics,
we intentionally state it specifically for the case of the mean ratio metric. We do this
to avoid distracting details concerning properties required of the quality metric, and
instead focus on the guarantees offered by dvr. Besides, the mean ratio metric is
widely used and is directly relevant to the examples in fig. 2.

Theorem 1 (Theorem 2 in [3]). Given .7, let J;; denote the triangulation com-
puted upon updating the position of vertex i € Ir during the k-th iteration of Algo-
rithm 1, and set Fy1 0 = Jim- Let Q be the mean ratio element quality metric and
assume that Q1(.7) > 0. Then:

6 R. Rangarajan and A. Lew

[()]
1. G is well defined for each k € N and i € Ir.
2. Q%) > QUL for each k €N and A € R.

3. The sequence of mesh qualities is nondecreasing, i.e.,
QU <QTN) < <QTim) < <QT) <+ <Q(Tgm) <+
4. The sequence (Q1(7),Q1(Z1.1),--,Q(T1m),--,QuU(Tk1)s- -, Q1 (Thm)s-)

is nondecreasing and therefore convergent.

A key assumption on the input mesh .77, namely Q; (.7°) > 0, implies that none of
the elements in .7 can be inverted. This requirement is a sufficient condition and not
a necessary one, and is intimately related to the convexity of certain positive level
sets of the mean ratio metric. The same property, together with continuity, bound-
edness, degeneracy and decay conditions discussed in [3] and which are all satisfied
by the mean ratio metric, helps to ensure that the optimizer A°P' in the algorithm
exists and is unique, and hence that each vertex update in dvr is well defined as
claimed in (i). Point (ii) shows that the mesh 7 ; has better quality than any mesh
that can be obtained by perturbing vertex i along dy ; in J; ;_;. In particular, setting
A =0 in (ii) reveals that .7 ; has better quality than . ;_;, which is precisely claim
(iii). Hence each vertex update in dvr can only improve the mesh quality. Inspecting
just the first component of the qualities of mesh iterates shows that the component
Q) is nondecreasing. Notably, the poorest element quality (among elements that can
be perturbed) in the mesh iterates is a monotonic sequence and therefore converges,
which is claim (iv). This observation suggests a simple termination criterion for Al-
gorithm 1— stop when the poorest element quality appears to have converged. In
practice however, we use a fixed number of iterations because the remaining com-
ponents of the mesh quality continue to improve even after the poorest quality has
converged.

Finally we mention that resolving the max-min problem in Step 4 to compute
optimal perturbations is a delicate matter because even if the quality metric Q is a
smooth function of the element coordinates, the map A — g;(1,.7) being a min-
imum among smooth functions is continuous but not differentiable. Consequently,
A°Pt cannot be computed by simple derivative-based methods. Yet, an efficient and
robust strategy for computing A°P! is crucial because one such max-min problem has
to be resolved for each vertex update in dvr. For the case of the mean ratio metric
however, computing A°P' turns out to be surprisingly simple and reduces to com-
puting roots of scalar polynomials, see [3]. The execution times reported in fig. 3
correspond to using an efficient strategy for computing A°P' that is discussed and
analyzed in [2].

Directional vertex relaxation 7

10

Exec. time per dvr iteration (sec)

0 4x10° 8x10* 12x10* 16x10*
Ir

Fig. 3: Execution time per dvr iteration for optimizing tetrahedral meshes while us-
ing the algorithm described in [2] to compute A°P'. The times reported are computed
as an average over 40 iterations. Our serialized implementation of Algorithm 1 was
run on a Mac Pro with a 3.5GHz Intel Xeon E5 processor and using the gcc compiler
(version 5.4.0, -O2 optimization flag). Notice the linear scaling of the execution time
with the number of vertices being relaxed.

4 Concluding remarks

We conclude this article mentioning that the dvr algorithm can serve as a useful
tool in algorithms for simulating moving boundary problems. These simulations
require mesh improvement at every iteration/time step, and offer no prospect of user
intervention. In such a context, the lack of any heuristics in the dvr together with the
guarantees it offers makes it stand out compared to alternatives in the literature.

References

1. P.Persson and G. Strang. A simple mesh generator in matlab. SIAM Rev., 46(2):329-345, 2004.

2. R. Rangarajan. On the resolution of certain discrete univariate max—min problems. Comput.
Optim. Appl., pages 1-30, 2017.

3. R. Rangarajan and A. Lew. Provably robust directional vertex relaxation for geometric mesh
optimization. SIAM J. Sci. Comput., 39(6):A2438-A2471, 2017.

4. J. Shewchuk. Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In
Appl. Comput. Geom. towards Geometric Engng., pages 203-222. Springer, 1996.

5. J Shewchuk. Stellar: A tetrahedral ~mesh improvement program.
https://people.eecs.berkeley.edu/ jrs/stellar/input_meshes.zip, Accessed on 03-23-2017.

6. VisionAir Project. Aim@shape: Digital shape workbench v5.0. http://visionair.ge.imati.cnr.it/,
Accessed on 03-23-2017.

