
High-performance mesh morphing with
adaptive B-splines

Dmitry Pinaev and Sean Mauch

Abstract A novel mesh morphing method based on adaptive hierarchical B-splines
is proposed. We discuss the mathematical background of the method and demon-
strate the parallelization approach in an MPI environment. The performance and
scalability data of the method is provided. The mesh deformation quality is com-
pared with the industry-acknowledged RBF-based morpher.

1 Introduction

Mesh morphing plays an important role in computational fluid dynamics. A number
of morphing methods have been developed to address this problem [9]:

• Finite-element-based elasticity morphing [8, 10]
• Spring-analogy morphing [11, 3, 12]
• Interpolation-based methods [4]

The finite-element-based methods can be numerically expensive, especially on poly-
hedral meshes. The spring-analogy method requires controlling many degrees of
freedom by introducing spring elements inside the discretization cells [3]. There-
fore, the family of various interpolation methods looks like a good trade-off between
numerical complexity and final mesh quality.

In this paper we demonstrate an alternative to radial basis functions (RBFs) [5,
1, 2]. an interpolation-based morphing method based on hierarchical B-splines. We
discuss the mathematical foundation of the method in the next section. Detailed
information on the algorithm is presented in [6].

Dmitry Pinaev
Siemens PLM, Nordostpark 3, 90411 Nuremberg, e-mail: dmitry.pinaev@siemens.com

Sean Mauch
Siemens PLM, e-mail: sean.mauch@siemens.com

1

2 Dmitry Pinaev and Sean Mauch

2 B-Spline Approximation

0-1 m m+1
-1

0

n

n+1

φ00 φm0

φmnφ0n

1 m-1...

Ω

Fig. 1: Domain Ω with overlaid lattice Φ .

Consider a rectangular domain Ω = {(x,y) | 0≤ x < m,0≤ x < n} (Fig. 1).
There is a set of points P = {(xc,yc,zc)} in 3D space, where {xc,yc} is a point
in Ω . To approximate the data P, we introduce a lattice Φ , overlaid on Ω with di-
mensions (0,m+ 1)× (0,n+ 1). Let φi j to be a B-spline coefficient located at the
i j-th position in the lattice Φ . The approximation function in Ω is defined then as
follows:

f (x,y) =
3

∑
k=0

3

∑
l=0

Bk(s)Bl(t)φ(i+k)(j+l) (1)

where (i, j) are the indices at the lower corner of the voxel that contains the point
(x,y), and (s, t) is the parametrization of the point within voxel, i.e. i = bxc−1 and
s = x− i. Equation (1) can be easily extended to 3D.

We use the following B-spline basis functions:

B0(s) = (1− s)3/6,
B1(s) = (3s3−6s2 +4)/6,
B2(s) = (−3s3 +3s2 +3s+1)/6, (2)
B3(s) = s3/6.

The 2D case considered below requires a lattice of 16 coefficients to define a
spline approximation on the square. Imagine an arbitrary point zc where the inter-
polation is defined as

zc =
3

∑
k=0

3

∑
l=0

wklφkl , (3)

High-performance mesh morphing with adaptive B-splines 3

where wkl = Bk(s)Bl(t) and s ∈ (0.0,1.0), t ∈ (0.0,1.0). We call the stencil of φ ’s
that surround a given point zc its relevant coefficients (Fig. 2 a). There are many
possible φkl that satisfy the equation. To uniquely define the coefficients we impose
∑

3
k=0 ∑

3
l=0 φ 2

kl →min.
Computing the coefficients φkl in the least square sense yields the equation:

φkl =
wklzc

∑
3
a=0 ∑

3
b=0(Ba(s)Bb(t))2

=
wklzc

∑
3
a=0 ∑

3
b=0 w2

ab
. (4)

This minimizes the deviation of the function f from zero across the domain.
Now, we consider a region of scattered data points zc (empty points). The data

points in square influence the B-spline coefficient φi j (solid point). We call such a
square the proximity data set P of control point φi j (Fig. 2 b).

φijzc

Fig. 2: (a) Relevant coefficients φ for some data point; (b) Proximity data set for a
single B-spline coefficient.

When proximity data set contains just one data point the coefficient φi j is com-
puted exactly according to Equation (4). In case of multiple points in the proximity
data set, the control point gets several possible values:

φc =
wczc

∑
3
a=0 ∑

3
b=0 wab

, where c ∈ P. (5)

In order to get a unique φi j value we minimize ∑c(wcφi j−wcφc)
2 and obtain:

φi j =
∑c w2

cφc

∑c w2
c

=
δi j

ωi j
. (6)

Two important properties follow from Equation (6):

• The relevant data points for a given coefficient φi j are local and bound within a
proximity data set.

• The numerator and denominator in Equation (6) are additive, hence, could be
computed locally and reduced across MPI-paritions.

4 Dmitry Pinaev and Sean Mauch

3 Adaptive interpolation

The adaptive B-spline interpolation consists in applying a sequence of refined con-
trol lattices. In a 2D case, the first lattice has dimensions 4×4, i.e. with parameters
m = 1, n = 1. The next lattice is build with parameters m = 2, n = 2 which results in
dimensions 5×5. The size of the lattice is defined as (l ∗2+3)× (l ∗2+3), where
l = 1,2,3 . . .N is a refinement level.

Instead of finding the final correction right away, we apply a sequence of correc-
tions at different scales. Further we consider current coordinates x, target coordi-
nates t, and residual r = t−x. Residual is nothing else but the displacement known
at control points and unknown elsewhere. We can represent the target coordinates in
terms of corrections Ii and residual ri:

t = x0 + r0,

t = x0 + I1 + r1,

t = x0 +
N

∑
i=1

Ii + rN ,

As the residual rN goes to zero we obtain some data points in the domain Ω ,
where ||rN ||< ε . There are no further corrections required near to these data points.
We store just non-zero B-spline coefficients φ to reduce the memory footprint.

In the evaulation phase the central part of the object will be fit with appropri-
ate coefficients almost immediately (Fig. 3 a). With further refinement we would
obtain non-zero B-spline coefficients just along the boundary (Fig. 3 b). The final
refinement level yelds non-zero coefficients just at some rare locations (Fig. 3 c).

Ω Ω Ω

Fig. 3: (a) First coefficient lattice; (b) Control lattice at some higher refinement level
with only non-zero knots; (c) Final refinement level

High-performance mesh morphing with adaptive B-splines 5

4 MPI Parallelization

For a simulation with morphing, the control points (a subset of the vertices) and
the evaluation points (the rest of the vertices) are distributed according to domain
decomposition.

Having each process calculate its contribution to the interpolation coefficients
in terms of the δ and ω values (Equation (6)) is a good start. We use clustering
to group the grid indices for the nonzero coefficient values into a relatively small
number of buckets. Then we build bounding boxes in index space for each of the
buckets. For the obtained lists of bucket bounding boxes, we perform a gather-to-all
operation so that each process has an approximate description of the coefficient data
held by all other processes. Each process performs intersection queries to determine
which of the distributed buckets are relevant for interpolating displacements at the
local evaluation points. Given the lists of relevant buckets, we use a point-to-point
communication pattern to deliver the coefficient data.

Upon receiving several control point sets relevant for the same evaluation point,
we add up the corresponding δ and ω values and find the final coefficients.

5 Morphing Quality Analysis

In the section we compare the discussed B-spline morpher to the RBF morpher with
inverse multiquadric basis functions [7].

A hollow sphere is placed inside a meshed block (Fig. 4). The sphere is moved
towards left upper corner of the block. The vertices that belong to the outer bound-
aries of the box are sliding within their boundary rectagles.

Fig. 4: A hollow sphere inside a box.

6 Dmitry Pinaev and Sean Mauch

The displacement interpolated by the RBF morpher has the largest magnitude in
the boundary layers of the sphere (Fig. 5) and quickly decays in the areas near the
box boundaries. The prismatic boundary layers around the sphere are significantly
stretched towards sphere’s original position. The cells on the outer boundaries are
skewed due to mesh motion.

Fig. 5: Mesh deformation by RBF morpher.

In contrast to RBF, the B-spline morpher distributes the displacements more
evenly and keeps the balance between very large and very small mesh cells (Fig. 6).
The boundary layers next to the sphere are deformed less that in the RBF case. The
prismatic cells at outer box boundaries remain tangential to the surface.

Fig. 6: Mesh deformation by B-spline morpher.

High-performance mesh morphing with adaptive B-splines 7

5.1 Scalability Analysis

To assess the parallel scalability, we use a mesh with 8 million cells. The deforming
geometry is a cube (Fig. 7). The control points are defined on the top and bottom
faces. The bottom boundary is fixed. The top boundary is rotated by 0.5 radians and
is indented by pressing a hemisphere into it. Interpolation defines the displacement
for all other points.

Fig. 7: (a) The prescribed cube deformation; (b) The result of morphing.

0.0625

0.125

0.25

0.5

1

2

4

8

16

32

64

1 2 4 8 16 32 64 128 256 512

T
im

e,
 s

ec
on

ds

Number of cores

(a) label1

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 32 64 128 256 512

S
tr

on
g

 p
ar

al
le

l e
ffi

ci
en

cy
, %

Number of cores

(b) label2

Fig. 8: Strong scalability (left), strong scalability efficiency (right), 8 million cells.

6 Summary

We demonstrated the application of a method of scattered data interpolation in the
context of three-dimensional mesh morphing. The B-Spline interpolation appeared

8 Dmitry Pinaev and Sean Mauch

to be easily parallelizable in an MPI environment and exhibited mesh deformation
patterns similar to RBF. B-Splines tend to preserve the properties of boundary-layers
better that RBF.

High-performance mesh morphing with adaptive B-splines 9

References

1. S. Aubert, F. Mastrippolito, Q. Rendu, M. Buisson, and F. Ducros. Planar slip condition for
mesh morphing using radial basis functions. Procedia Engineering, 203:349 – 361, 2017.
26th International Meshing Roundtable, IMR26, 18-21 September 2017, Barcelona, Spain.

2. M. E. Biancolini. Mesh morphing accelerates design optimization, ansys advantage. ANSYS
Advantage, 4, 2010.

3. C. Farhat, C. Degand, B. Koobus, and M. Lesoinne. Torsional springs for two-dimensional dy-
namic unstructured fluid meshes. Computer Methods in Applied Mechanics and Engineering,
163(1):231 – 245, 1998.

4. N. A. Gumerov and R. Duraiswami. Fast radial basis function interpolation via preconditioned
krylov iteration. SIAM Journal on Scientific Computing, 29(5):1876–1899, 2007.

5. S. Jakobsson and O. Amoignon. Mesh deformation using radial basis functions for gradient-
based aerodynamic shape optimization. Computers & Fluids, 36(6):1119 – 1136, 2007.

6. S. Lee, G. Wolberg, and S. Y. Shin. Scattered data interpolation with multilevel b-splines.
IEEE Transactions on Visualization and Computer Graphics, 3(3):228–244, Jul 1997.

7. M. Mongillo. Choosing basis functions and shape parameters for radial basis function meth-
ods. 2011.

8. S. M. Shontz and S. A. Vavasis. A robust solution procedure for hyperelastic solids with large
boundary deformation. Engineering with Computers, 28(2):135–147, Apr 2012.

9. M. L. Staten, S. J. Owen, S. M. Shontz, A. G. Salinger, and T. S. Coffey. A comparison of
mesh morphing methods for 3d shape optimization. In IMR, 2011.

10. K. Stein, T. E. Tezduyar, and R. Benney. Automatic mesh update with the solid-extension
mesh moving technique. Computer Methods in Applied Mechanics and Engineering,
193(21):2019 – 2032, 2004. Flow Simulation and Modeling.

11. J. T. Batina. Unsteady euler airfoil solutions using unstructured dynamic meshes. 28, 09 1990.
12. Y. Yang. Application of spring analogy mesh deformation technique in airfoil design opti-

mization. Master’s thesis, 07 2015.

