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Abstract A new method for directly generating high-order curved prismatic bound-
ary layer meshes is developed. The algorithm utilizes the iso-surface of minimum
distance field for both point-placement and smoothing purposes. Minimum distance
fields are computed such that they are consistent with the high-order boundary repre-
sentation. High-order curved prismatic mesh results are demonstrated for the NASA
common research model.

1 Introduction

Unstructured meshes near wall boundaries typically utilize anisotropic prismatic
meshes to capture the viscous boundary layer. High-order flow solution processes,
especially when using finite-element type discretization with internal degrees of
freedom within each element, require these anisotropic meshes to be curved and
consistent with the boundary representation. Currently, the method for generating
body conforming curved meshes involve two steps (1) Generation of a coarse lin-
ear mesh using well-established unstructured meshing practices based on advancing
fronts [1, 2, 3, 4] and (2) propagation of the surface curvature through elastic de-
formations [5, 6, 7], attenuation of the surface deformation through algebraic tech-
niques [8] or splitting macro-elements using iso-parametric approach [9]. A com-
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mon challenge mentioned in all of these works involves curving of the anisotropic
boundary layer cells, that will intersect the wall boundary in the absence of sig-
nificant deformation consistent with the wall-curvature. Most of these works also
involved creation of mixed element unstructured meshes that include tetrahedra. In
contrast to these efforts, herein we propose a different approach that involves di-
rect creation of the curved boundary layer cells rather than an a posteriori process
that involves generation of a linear mesh. Further, we propose to use a dual-mesh
approach where the prismatic boundary layer mesh transitions to a Cartesian AMR
system a short distance from the wall as shown in Figure 1. Therefore, the chal-
lenge here is to create a curved semi-structured prismatic mesh often referred to as
a “strand mesh” a short distance from the wall. To achieve this goal, we extend the
methodology presented in our previous work [10] for linear prismatic mesh genera-
tion to high-order curved meshes. Our method involves using the iso-surface of the
minimum distance field as a guide for point placement and the subsequent smooth-
ing process.

(a) Strand-Cartesian grid system

Fig. 1 Strand/Cartesian simulation framework. Body conforming strand (prismatic with no topol-
ogy change in layers) grid in red and Cartesian grid in blue. This work aims at creating a high-order
curved body conforming strand grid.

2 Methodology

Meshing methodology involves three major steps (1) Placing strands (line connect-
ing a wall surface node and corresponding outer surface node) such that the result-
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ing mesh is nearly valid and (2) Constrained smoothing of the outer surface nodes
to improve the quality of the mesh and (3) Sub-division of the macro strand cell
formed by the high-order surface triangle and its counterpart on the outer boundary
according to a prescribed anisotropic distribution normal to the surface.

2.1 Initial strand placement

Initial strand placement involves finding the initial location of the end points of each
strand. Two concepts are used for this purpose, the best visibility direction and the
iso-surface of the distance field.
Best visibility direction:
In most prismatic mesh generation approaches (advancing front or direct place-
ment), the local normal direction is used for the extrusion of the nodes. The simplest
way to compute a local normal direction at each node is by averaging the normals of
all the facets that are associated with this node. The simple averaged normal, both
unweighted and area weighted, often leads to issues because of the bias in averag-
ing caused by the difference in the number of geometric regions and topological
regions that enclose the given node. Aubry et al. [11] proposed a much more robust
approach, using the concept of the most normal normal (MNN), i.e. the direction
that maximizes the minimum angle between the surrounding faces as the optimal
direction of choice. For high-order surfaces, the vertex normals are computed by
applying the MNN algorithm to set of normals composed of the exact cell normals
of the curved triangles that bound the vertex.
Closest Vertex on the Iso-Surface (CLOVIS) algorithm:
The iso-surface of minimum distance at IL, is defined as the locus of points that
are at a given fixed distance L from the discrete surface tessellation S . Examples of
minimum distance iso-surfaces are shown in Figure 2(a). The goal of the initial point
placement algorithm is to compute point positions on IL corresponding to each sur-
face node on S , such that the number of invalid elements is minimized. As shown
in Figure 2(b), the closest vertex to each surface node on IL is a good candidate for
point placement, because it automatically creates a desirable bending of strands in
regions of concavity. The number of strands near the concave ridges/corners that
bend is directly correlated to the iso-surface distance L, i.e. larger iso-surface dis-
tances would cause more strands in a larger region to bend away from the original
best visibility direction. However, the point distribution on the outer envelope sur-
face is not ideal for generating the next mesh level, and a smoothing process needs to
be applied to improve the quality of the envelope mesh. Given a tessellated surface,
S , the isosurface of the distance field at L is defined as:

IL = {P ∈ R3 | MinDist(P,S ) = L}, where MinDist(P,S ) = min
A∈S
‖−→AP‖ (1)

For any surface vertex A, the closest point P on the isosurface at a distance L is any
point that satisfies:
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Fig. 2 Choosing a strand vector towards the closest point on iso-surface of distance automatically
results in desirable strand distribution in concave regions.

{
MinDist(P,S ) = L
‖−→AP‖= min

MinDist(M,S )=L
‖−→AM‖ (2)

The optimization process entails sliding the end point of the vector (P) on the iso-
surface of minimum distance and locating it such that the segment AP has the short-
est length. The fact that the isosurface of distance field is only known implicitly
by its mathematical description makes the solution of Eq 2 challenging. A discrete
solution to the continuous optimization problem can be obtained by constructing
an approximate tessellated isosurface using a marching-cube method. However, this
approach was found to lack robustness and computational efficiency. Instead, an
algorithm was designed to efficiently compute, for each surface vertex, the closest
point on the actual analytical description of IL shown in Eq 1. This method is referred
to as the CLOVIS algorithm (Details in Ref [10]). The method makes intensive use
of an efficient routine to compute MinDist(P,S ), which returns the shortest dis-
tance to surface S from a point P. We use a divide and conquer approach that uses
an Alternating Digital Tree (ADT) for the culling process. The primary extension
required in this context is the ability to compute minimum distance and point of
minimum distance to a high-order curved triangle. We accomplish this by utilizing
a bound constrained minimization process that utilizes the natural coordinates (s, t)
within a curved triangle as design variables. To accelerate the process, the curved tri-
angle is first split into a set of linear sub-elements and the closest linear sub-element
is located through the analytical distance formula available for linear triangles. The
natural coordinates of the linear triangle is then used as the initial guess for the con-
strained minimization process. Note that the CLOVIS algorithm is highly parallel
and threadable and can be independently applied to any point on the surface and
hence naturally extends to usage in a high-order context where multiple points as-
sociated with an element will need to find their counterpart on the outer boundary
of the prismatic mesh.
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2.2 Mesh smoothing, constrained to the iso-surface, using spring
analogy

To improve the mesh quality, a smoothing algorithm is applied, which is loosely
based on a linear spring analogy with constraints enforced so that strand end points
remain on the iso-surface of distance. For high-order elements, a tessellation com-
posed of the linear sub-elements that connect all the control points is utilized such
that the smoothing is applied uniformly to all of them. In this method, each edge on
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Fig. 3 Envelope mesh smoothing using elastic spring analogy.

the envelope surface is treated similar to a linear spring, as illustrated in Figure 3(a).
The component of elastic force normal to the iso-surface of distance is removed
to restrict the movement of the nodes towards the surface (mesh collapse) during
the smoothing process. After the elastic force vectors are computed, the new posi-
tion of the strand end nodes are computed using a carefully designed time-marching
scheme, with constraints applied to ensure all points remain on or above the iso-
surface of distance and within their respective region of visibility. The constraint is
enforced as follows: For points in a convex region, point are moved along the local
normal to the isosurface (vector joining the point to its closest point on the surface)
until it is located on the isosurface. For points in a concave region, this operation
is performed only if the point is located below the isosurface and the distance to
the surface is decreasing. Otherwise, the point is allowed to move above the iso-
surface, but the strand length is limited so that the distance to the surface does not
exceed a heuristic limit. The smoothing iterations are terminated when a valid mesh
of sufficient quality is achieved.
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3 Results

High-order boundary layer meshing strategy is applied to NASA common research
model surface mesh available as part of the 5th high-order workshop [12]. A coarse
quadratic surface mesh composed of 8304 6-node triangles is used as the wall
boundary. Figure 4 shows the overall mesh system, with the envelope of the curved
prismatic mesh super-imposed over the curved wall boundary. Sufficient smooth-
ness is obtained on all parts of the domain with the outer envelope following the
minimum distance iso-surface of the curved wall boundary. Figure 5 shows details
of the curved prismatic layers near the moderately convex wing leading edge and
highly concave wing fuselage intersection. Again, sufficient smoothness of both the
anisotropic layers as well as the prismatic outer layer can be observed.

(a) CRM-WB overall (b) Fuselage-nose (c) Wing-fuselage junction

Fig. 4 Wall boundary and prismatic envelope of the high-order strand mesh.

4 Conclusions

The methodology for generating linear prismatic meshes using minimum distance
fields is extended to generation of high-order curved prismatic meshes. The primary
extension is the inclusion of a distance function calculator for high-order curved
surfaces. Results are favorable, indicating ability for generation of smooth curved
meshes for a widely available and moderately complex wing-body geometry. Next
step involves flow computation on these mesh systems using an overset framework
that uses a high-order near-body solver and high-order Cartesian AMR solver.

Acknowledgements Material presented in this paper is a product of the CREATE-AV Element of
the Computational Research and Engineering for Acquisition Tools and Environments (CREATE)
Program sponsored by the U.S. Department of Defense HPC Modernization Program Office.
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(a) Wing leading edge (b) Wing fuselage intersection

Fig. 5 Curved boundary layer mesh details at wing leading edge (convex curvature) and wing-
fuselage intersection (concave curvature). Meshes are shown by masking cells that have coordi-
nates above planes X > 184.1mm and Y > 1380mm respectively. Plots have staggered boundaries
because mesh is not coordinate-aligned. Red points represent degrees of freedom within an ele-
ment.
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