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Abstract A snapping overlay octree grid approach to tetrahedral meshing is de-
scribed. The method meets the requirements of massively parallel (distributed mem-
ory), a minimum resulting edge length, CAD models (potentially dirty) as input, and
capture CAD features that are large compared to the element size but automatically
ignore smaller CAD features. The goal is to simplify the meshing process by not re-
quiring the user to make any cleanup changes to the CAD model to repair or remove
small features. The status of the capability is described including examples.

1 Introduction
Unlike other other disciplines, explicit solid mechanics has traditionally relied on
hexahedral elements for accuracy in bending and plasticity. Unfortunately, hex mesh
construction on complex CAD assembly models can take months of manual te-
dium [1]. However, the recent development of the composite tetrahedral element [2]
shows promise that a tet element may finally yield solution accuracy comparable to
hex elements for solid mechanics.

Mesh developers now focus on adapting tet generators to solid mechanics re-
quirements, including parallel scaling to thousands of processors, automatically cap-
turing CAD features large compared to the element size, while ignoring features
small compared to the element size, and honoring a minimum edge length to bound
the time step for explicit analyses.

Tet meshing has been researched for decades. Bottoms up tetrahedral meshing
puts nodes on CAD vertices, then edges along CAD curves, then triangles on CAD
surfaces, then finally adding interior tet elements. However, this approach requires
a perfect CAD model to avoid tiny edges and angles caused by tiny CAD features.
Shepherd [3] introduced an overlay grid cutting algorithm, which requires complex
cleaning after cutting to avoid sliver elements violating minimum element sizes.
Nagarajan and Soghrati [4] presents a 3D overlay grid snapping approach for level
set geometry, which could be applied to CAD. However, CISAMR applies snapping
constraints that result in quality guarantees, but limit the ability to capture some sim-
ple CAD features. Labelle and Shewchuk [5] present Isosurface Stuffing, a snapping
and cutting hybrid approach with guaranteed quality, but only for single isosurface
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Fig. 1 The three types of intersection points. LEFT: vertex-cell intersection point where a vertex is
located inside an overlay grid cell; CENTER: curve-face intersection points where curves intersect
overlay grid faces. Right, surface-edge intersections where surfaces intersect overlay grid edges.

geometries. Doran [6] added CAD feature capture to Isosurface Stuffing, but as a
post processing step that would be difficult to parallelize and requires smoothing
and swapping to improve quality after CAD feature capture.

For this work, we have chosen a full-snap approach. We operate directly on CAD,
rather than converting the CAD to a level set or volume fraction representation. Our
goal is to eliminate any and all constraints which require user modification of the
CAD before meshing, such as removing small features or making it water-tight.

First, we construct a constant-size cartesian overlay grid from the CAD bounding
box, with one layer of ghosted cells. Future extensions will support refined octree
grids. Second, we compute a grid to CAD intersection resulting in a set of xyz
intersection points. Third, selected overlay grid nodes are snapped to prioritized
intersection points, morphing the grid to the CAD boundary and features. Finally,
the morphed overlay grid is converted into tet elements using a variation of the
Body-Centered Cubic (BCC) lattice [5].

2 Intersecting CAD with Overlay Grid
Computing the intersection of an overlay grid and CAD results in a set of 3-tuples
each containing an xyz intersection point, along with both the grid and CAD entity
causing the intersection. Three types of intersections are computed, as illustrated in
Figure 1. Efficient calculation of intersection points leverages the axis alignment of
the overlay grid.

3 Snapping overlay grid nodes to intersection points
Overlay grid nodes are snapped to prioritized intersection points, morphing the grid
to the CAD. Cells intersecting the CAD boundary usually contain many intersection
points, so not all intersection points will be chosen for snapping. We prioritize which
overlay grid nodes get snapped, and to which intersection points.

Snapping is done using a graph in order of increasing dimension of the geom-
etry entity in the intesection point 3-tuple. Snapping to vertex intersection points
is performed first, followed by snapping to curve intersection points, followed by
snapping to surface intersection points.

Figure 2 illustrates a green geometry with just one of the many cells in the overlay
grid, along with 2 vertex-cell, 2 curve-face, and 4 surface-edge intersection points.
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Fig. 2 Snapping example model. FAR LEFT: green geometry and a single overlay grid cell. CEN-
TER LEFT: transparent model to see two vertices inside the cell. CENTER RIGHT: the eight
resulting intersection points. FAR RIGHT: the cell morphed to the CAD.

Fig. 3 Graph for snapping example.

Figure 3 illustrates the evolution of the snapping graph, considering just the inter-
section points from Figure 2. Figure 3a shows the graph after the vertex intersection
points are inserted. Graph edges are created between each intersection point and the
closest overlay grid node, or grid nodes in the case of ties. Graph edges are also
added between intersection points which are within h/2 of each other, where h is the
side length of the local overlay grid cell.

Figure 3b shows the graph after vertex intersection point snapping illustrat-
ing that priority is given to the shortest intersection point snaps. Because N1 was
snapped to v2, and because v2 is connected to v1 in the graph (i.e. within h/2), v1
is disconnected from all grid nodes as it is no longer a candidate for snapping. This
guarantees that no two grid nodes will be snapped within h/2 of each other. This also
provides automatic washing out of small geometric features. When a grid node has
more than one snapping option, the closest intersection point of the lowest geometry
dimension is chosen, and the rest are ignored.

The process repeats for curve intersection points (Figure 3c) and then surface
intersection points (Figure 3d). Figure 2 illustrates the final morphed grid cell. All
grid nodes and intersection points across the overlay grid are included in the graph,
resulting in all cells intersecting the CAD boundary being morphed to the CAD.
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Fig. 4 An octahedron between two adjacent overlay grid cells, and the 3 diagonal choices..

Fig. 5 Two CAD features on knuckle model meshed at 3 mesh sizes.

4 Converting Morphed Overlay Grid To Tets
Finally, the morphed overlay grid is converted into tet elements using a variation of
the BCC lattice [5]. For cells completely inside the CAD, with some nodes poten-
tially snapped to the CAD boundary, the BCC center node is placed at the centroid
of the morphed cell’s nodes. Cells completely outside the CAD do not need a BCC
node. Snapping results in some grid cells straddling CAD curves or surfaces. In this
case, the BCC node is located at the closet point projection to the straddled CAD
surface or curve of the centroid of the morphed cell’s nodes.

For an almost embarrassingly parallel tet creation we build tets for each face in
the overlay grid. Consider an octahedron built using the 4 nodes from the face and
the 2 adjacent BCC nodes (Figure 4a). The standard BCC lattice connects BCC
nodes in adjacent cells with an edge and forms four tets surrounding the edge (Fig-
ure 4b). However, there are two other diagonals that could be used instead (Fig-
ures 4c and d). We choose which diagonal to use based on several criteria. First,
some of the octahedron nodes may not be available, for example, if a BCC node
was not created. Second, one of the face diagonals may be required if the face strad-
dles the CAD boundary. Third, the diagonal choice is based on the best quality tets
when considering the morphed octahedron’s node locations.

5 Results and Conclusion
Figure 5 shows two CAD features meshed at three grid sizes. When the overlay grid
size is large, CAD features are washed away, being only partially captured because
there are not enough overlay grid nodes to snap to all the geometry in the feature. As
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Table 1 Quality for knuckle example model.

#elements Scaled Jacobian Aspect Ratio
Coarse Size 7,051 0.152 5.88
Medium Size 63,576 0.174 6.70
Fine Mesh 277,538 -0.128 n/a

the grid size is refined, vertices and curves in CAD features are captured precisely.
However, even at small mesh sizes, tangencies between CAD curves are washed out
to avoid tiny element angles, as illustrated in the finest mesh on CAD Feature 2.

Table 1 shows element counts and quality on the knuckle model. On two of the
meshes, the quality is good. However, on the 3rd mesh, there are 12 poorly shaped
elements where a curve was captured in a concavity. This corraborates the state-
ment from Labelle [5], who states that quality guarantees are lost if sharp geometry
features are to be captured. We believe that in practice, the proposed morphing al-
gorithm will provide reasonable quality in most cases, and localized smoothing or
a few topological swaps can repair remaining bad elements. Doran [6] successfully
performs swapping and smoothing after their feature capture.

The presented algorithm automatically captures CAD vertices, curves and sur-
faces larger than h*root(3), (i.e. the diagonal length of an overlay grid cell) and
automatically defeatures CAD features smaller than h/2. CAD features in-between
are sometimes captured, and sometimes defeatured depending on their orientation
with the overlay grid.

All operations in the presented algorithm are local, making this easy to par-
allelize. We plan to extend the proposed algorithm to add localized post-process
cleanup operations to improve quality, handle multi-volume CAD assemblies and
provide adaptively sized meshes by using refined octree overlay grids.
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