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Abstract In this note, we review the interpolation theory for curvilinear finite el-
ements originally derived by Ciarlet and Raviart [1]. Specifically, we highlight the
sufficient conditions for guaranteeing a sequence of (possibly non-nested) meshes
will preserve optimal convergence rates, and we argue that existing curvilinear qual-
ity metrics are not sufficient for guaranteeing that these conditions hold. We then
present a set of curvilinear element quality metrics which are inspired by these con-
ditions. These quality metrics, along with existing element quality metrics, are suf-
ficient for showing that a series of refined Bernstein–Bézier meshes will preserve
optimal convergence rates.

1 Notation

Let us denote a unit reference element in parametric space Ω̂ . Then we denote the
element in physical space Ωe, and denote a mapping xe that maps points on the
parametric element to points on the physical element. We also consider the element
Ω e which is the purely linear physical element. That is, Ω e is defined by an affine
mapping xe. These mappings are illustrated in Fig. 1. We note that for simplicial el-
ements, the linear physical element is simply defined as the linear interpolant of the
corners of the curvilinear physical element. However, for tensor product elements
(i.e. quadrilaterals or hexahedra), the affine element will not necessarily interpo-
late every corner of the curvilinear element, as seen in Fig. 1. This is due to the
fact that the tensor product admits bilinear mappings for quadrilaterals and trilinear
mappings for hexahedra.
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Fig. 1 Isoparametric mappings from a reference element
Ω̂ in parametric space to physical space. The element Ωe
(bold line) is defined by the mapping xe. The linear element
Ω e (dashed line) is defined by a purely affine mapping xe.
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Fig. 2 Element size metrics
he (element diameter) and ρe
(incircle diameter) for the lin-
ear element Ω e.

In the finite element method, we approximate a domain Ω using a set of finite
elements, {Ωe}E

e=1, where each element Ωe ∈ Rd is an open simply connected set,
with simply connected boundary. Together, this collection of elements forms a finite
element discretization or mesh, which we denote as:

M =
E⋃

e=1

Ωe

Furthermore, we denote the diameter of an element as he and the diameter of the
incircle (in R2) or insphere (in R3) of the element as ρe. These two metrics are
visualized for a quadrilateral element in Fig. 2. Given these element-wise measures,
we can then define the corresponding global mesh measures as:

h = max
1≤e≤E

he

ρ = min
1≤e≤E

ρe

These mesh measures allow us to introduce the notion of shape regularity. For a
mesh of linear elements, the mesh shape regularity is given by:

σ =
h
ρ

Now, let us consider a set of M increasingly refined linear meshes {M}M
i=1, with

corresponding metrics {hi}M
i=1 and {ρi}M

i=1 where h1 > h2 > .. . > hM . We say that
the refinements lead to a regular family of elements if we can bound the mesh shape
regularity σi by some constant σ0, viz.:

σi =≤ σ0 i = 1,2, ...,M
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2 Literature Review

The interpolation theory for curvilinear finite elements was originally derived by
Ciarlet and Raviart [1], and we briefly review the central result of the theory here.
Let us denote a sequence of refined curvilinear meshes {Mi}M

i=1, and let the follow-
ing conditions hold for every element in each mesh.

Cond. (2.1) The underlying linear elements Ω e belong to a regular family.
Cond. (2.2) The mapping xe is invertible. That is:

xe(ξξξ ) = xxx⇔ xe
−1(xxx) = ξξξ ∀ ξξξ ∈ Ω̂

Cond. (2.3) The derivatives of the mapping, Dααα

ξξξ
xe, are bounded as follows:

sup
ξξξ∈Ω̂

max
|ααα|=k

∣∣∣Dααα

ξξξ
xe

∣∣∣≤ ckhk 1≤ k ≤ p+1

sup
xxx∈Ωe

max
|ααα|=1

∣∣Dααα
xxx
(
xe
−1)∣∣≤ c0h−1

Then, for a series of meshes belonging to a regular family, we have the error bound:

||u−uh||Hm(Ω) ≤C

sup
ξξξ∈Ω̂

|detxe|

inf
ξξξ∈Ω̂

|detxe|
hp+1−m||u||H p+1(Ω) (1)

wherein C is a constant independent of the mesh size h, and || · ||Hm(Ω) denotes the
norm:

|| f ||Hm(Ω) =

(
m

∑
j=0
| f |2H j(Ω)

)1/2

and | · |H j(Ω) denotes the seminorm:

| f |H j(Ω) =

∫
Ω

∑
|ααα|= j

∣∣Dααα f
∣∣2 dΩ

1/2

From this, we see that for a curvilinear mesh to exhibit similar convergence rates
to a linear mesh, several criteria must hold. First, as before, the underlying linear
elements must be shape-regular (Cond. 2.1). However, we must also ensure that the
higher-order mapping is invertible (Cond. 2.2), and that its derivatives are bounded
(Cond. 2.3). If the mapping xe becomes singular, then inf

ξξξ∈Ω̂

|detxe|= 0, and the error

bounds in Eq. (1) will tend towards infinity.
It is perhaps due to this observation that the overwhelming majority of curvilinear

quality metrics are based on some measure of the Jacobian matrix. Of these Jacobian
based quality metrics, perhaps the most commonly used curvilinear quality metric
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is the scaled Jacobian [2], defined as:

JS =

inf
ξξξ∈Ω̂

|detxe|

sup
ξξξ∈Ω̂

|detxe|
(2)

From Eq. (2), it is readily apparent that 0≤ JS ≤ 1, with element quality increasing
as JS → 1. For an affine element, the Jacobian is constant across the element, and
the metric is identically unity. For a singular or inverted element, inf

ξξξ∈Ω̂

|detxe| = 0,

and the metric is zero.
Besides the scaled Jacobian, there have been other proposed higher order quality

metrics all based on some measure of the Jacobian matrix [6, 7]. Despite the wide
array of metrics currently in use, we are not aware of any work relating bounds on
these metrics to bounds on higher order derivatives. We are not aware of any ele-
ment metrics that quantify the magnitude of higher–order partial derivatives of the
parametric mapping xe : Ω̂ → Ωe. Furthermore, we are not aware of any attempts
to show that bounding any existing metrics implies bounds on higher–order deriva-
tives.

To illustrate why this is a concern, consider the highly skewed element shown in
Fig. 3, which has a scaled Jacobian of JS = 1. While not all Jacobian based quality
metrics will indicate that this element is of good quality, it is troubling that the most
commonly used quality metric for curvilinear elements cannot distinguish between
this highly skewed element and a purely linear triangle. Because of this, we argue
that existing curvilinear element metrics are insufficient for guaranteeing that Cond.
2.3 holds, and as a result, are insufficient for guaranteeing that curvilinear elements
will preserve optimal convergent rates under refinement.

Fig. 3 Highly distorted tri-
angular Bernstein–Bézier
element with a scaled Jaco-
bian of JS = 1.

3 Higher Order Quality Metrics for Bernstein–Bézier Elements

For simplicial Bernstein–Bézier elements, let {Bp
i (ξξξ )}i∈Ip denote the set of sim-

plicial Bernstein basis polynomials of degree p defined over a reference domain
Ω̂ ∈ Rd , where Ip is an index set over the degrees of freedom in the element. Now,
let us define a set of control points {Pi}i∈Ip in Rd . Then, a simplicial Bézier element
is simply defined through the mapping:
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xe (ξξξ ) = ∑
i∈Ip

Bp
i (ξξξ )Pi

Theorem I For a simplicial Bernstein–Bézier element of degree p with control
points {Pi}i∈Ip , the ααα th partial derivative of the mapping xe is bounded by:

∣∣∣∣Dααα xe
∣∣∣∣

L∞(Ω̂) ≤
p!

(p−|ααα|)!
max

i∈Ip−|ααα|

∣∣∣∣∣∑j∈Iααα

(−1)ααα+j
(

ααα

j

)
Pi+j

∣∣∣∣∣
Proof. We recognize that the derivatives of Bernstein polynomials are themselves
Bernstein polynomials of a lower degree [8]. Recursively taking the derivative of
the mapping xe yields the following equation for the ααα th partial derivative:

Dααα xe =
p!

(p−|ααα|)! ∑
i∈Ip−|ααα|

[
Bp−|ααα|

i (ξξξ ) ∑
j∈Iααα

(−1)ααα+j
(

ααα

j

)
Pi+j

]

Note, we take care to emphasize that the sum ∑
j∈Iααα

is a sum over a tensor product

index set. This is a consequence of the fact that the partial derivative ∇ααα has an
inherently tensor product nature. Then, because the Bernstein polynomials satisfy
positivity and partition of unity, the bounds of Theorem I are obtained. ut

For tensor product Bernstein–Bézier elements, let {Bp
i (ξξξ )}i∈Ip denote the set of

tensor product Bernstein basis polynomials of degree p defined over a reference
domain Ω̂ ∈Rdr ,where Ip is an index set over the degrees of freedom in the element.
Now, let us define a set of control points {Pi}i∈Ip in Rd . Then, a tensor product
Bézier element is simply defined through the mapping:

xe (ξξξ ) = ∑
i∈Ip

Bp
i (ξξξ )Pi

Theorem II For a tensor product Bernstein–Bézier element of degree p with
control points {Pi}i∈Ip , the ααα th partial derivative of the mapping xe is bounded
by: ∣∣∣∣Dααα xe

∣∣∣∣
L∞(Ω̂) ≤

p!
(p−ααα)!

max
i∈Ip−ααα

∣∣∣∣∣∑j∈Iααα

(−1)ααα+j
(

ααα

j

)
Pi+j

∣∣∣∣∣
Proof. As before, we can write the derivatives of the Bernstein polynomials as Bern-
stein polynomials of lower degree:

Dααα xe =
p!

(p−ααα)! ∑
i∈Ip−ααα

[
Bp−ααα

i (ξξξ ) ∑
j∈Iααα

(−1)ααα+j
(

ααα

j

)
Pi+j

]

and by positivity and partition of unity of the Bernstein polynomials, the desired
bounds are obtained. ut
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With the relevant theory established, we now demonstrate a particularly conve-
nient property of the bounds presented in Theorem I and Theorem II. Consider the
case of finding the higher order derivatives of a cubic Bernstein–Bézier triangle.
Table 1 shows the bounding expressions for several derivatives of the mapping xe.

Table 1 Bounds on the derivatives of a cubic Bernstein–Bézier triangle.

Derivative Bound

∂xe

∂ξ1
≤ max

i∈Ip−1

∣∣3Pi+{1,0}−3Pi
∣∣

∂ 2xe

∂ξ 2
1

≤ max
i∈Ip−2

∣∣6Pi+{2,0}−12Pi+{1,0}+6Pi+{0,0}
∣∣

∂ 3xe

∂ξ 3
1

=
∣∣6P{3,0}−18P{2,0}+18P{1,0}−6P{0,0}

∣∣

From this, it is apparent that bounds on the derivatives of Bernstein–Bézier el-
ements can be calculated using what is effectively a weighted finite difference
method. To illustrate this notion, Table 2 shows finite difference stencils for the
each of the derivatives shown in Table 1. While we have only shown a few explic-
itly calculated metrics here, the results of Theorem I and Theorem II can be used to
calculate stencils for any simplicial or tensor product Bernstein–Bézier element.

4 Conclusions

We have presented a set of easily computable element quality metrics that are suf-
ficient for guaranteeing that a mesh composed of curvilinear Bernstein–Bézier ele-
ments will preserve optimal convergence rates under refinement. While these met-
rics hold only for Bernstein–Bézier elements, they are extensible to other polyno-
mial based elements through a simple change of basis. This note is a precursor to a
larger text that will expand upon the basic ideas presented here [5]. Specifically, we
extend the error bounds presented here to rational Bernstein–Bézier elements, and
derive an analogous set of quality metrics for rational Bernstein–Bézier discretiza-
tions [3, 4]. We also present present preliminary numerical results on how these
metrics may be used for mesh optimization.
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Table 2 Example of finding the Bézier coefficients for several different derivatives using a stencil.

Derivative Stencil Stencils Applied to the Physical
Triangle

Bézier Coefficients of
the Derivative

∂xe

∂ξ1

−3 3

∂ 2xe

∂ξ 2
1

6 −12 6

∂ 3xe

∂ξ 3
1

−6 18 −18 6

References

1. P. G. CIARLET AND P. A. RAVIART, Interpolation theory over curved elements, with applica-
tions to finite element methods, Computer Methods in Applied Mechanics and Engineering, 1
(1972), pp. 217–249.

2. S. DEY, R. M. O’BARA, AND M. S. SHEPHARD, Curvilinear mesh generation in 3D, in
In Proceedings of the Eighth International Meshing Roundtable, John Wiley & Sons, 1999,
pp. 407–417.

3. L. ENGVALL AND J. A. EVANS, Isogeometric triangular Bernstein–Bézier discretizations:
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