
Accelerated Load Balancing of Unstructured
Meshes

Gerrett Diamond, Lucas Davis, and Cameron W. Smith

Abstract Unstructured mesh applications running on large, parallel, distributed
memory systems require the computational work related to mesh entities to be
evenly distributed across processes in order to achieve maximal performance. To
efficiently balance meshes on systems with accelerators the balancing procedure
must utilize the accelerator. This work presents algorithms and speedup results us-
ing OpenCL and Kokkos to accelerate critical portions of the EnGPar diffusive load
balancer.

1 Introduction

While common partitioning techniques such as multilevel or geometric methods are
good for creating an initial distribution of load, those techniques are not as appli-
cable to simulations where the mesh and load changes. These evolving simulations
require dynamic load balancing techniques that are quick to improve the partition.
Diffusive load balancing methods allow quick partition refinement for the relatively
small changes to imbalance that are seen in adaptive mesh simulations. EnGPar’s
diffusive balancer has been shown to quickly produce high quality partitions at up
to 512Ki processes [2].

2 EnGPar Dynamic Load Balancing

EnGPar is a partition improvement tool that utilizes a multi-hypergraph, called the
N-graph, to describe the portions of the mesh that require load balancing. The N-

Gerrett Diamond e-mail: diamog@rpi.edu · Lucas Davis e-mail: davisl3@rpi.edu ·
Cameron W. Smith e-mail: smithc11@rpi.edu
Rensselaer Polytechnic Institute, Troy, NY

1

2 G.Diamond et al.

graph consists of vertices which represent the primary dimension entities of the
mesh. The vertices are connected by hyperedges created from the secondary dimen-
sions of the mesh that require load balancing.

EnGPar’s diffusive algorithm is an iterative local refinement strategy. In each it-
eration the target criteria is improved until the imbalance is under a given tolerance
or the imbalance cannot be improved further. Each iteration consists of three steps:
targeting, selection, and migration. The targeting step gathers metrics on the part
and its neighbors in order to determine which neighboring parts to send weight to
and how much weight to send. The selection step is where graph vertices on the
boundary are chosen to be sent to neighboring parts in order to satisfy the weights
determined by the targeting phase. Finally, the migration step sends the graph enti-
ties that were selected to the destination parts and the graph is reconstructed.

In this work, we target accelerating distance computation and cavity selection.
These two procedures consume up to 50% of the total execution time and are well
suited to acceleration as they do not require inter-process communications [2].

Distance computation is performed during selection by ordering hyperedges on
the boundary based on their distance from the center of the part from furthest to
closest. EnGPar computes this distance with two breadth first traversals of the graph.
The first traversal starts at the part boundary and works its way in while marking the
depth of visited hyperedges. The second traversal starts from a hyperedge with the
largest depth and works its way out to the boundary while marking the distance from
the starting point.

Cavity selection determines if a cavity, defined as a hyperedge and the vertices
that are connected by it, on the part boundary should be sent to one of the neigh-
boring parts. A cavity is selected for migration if (1) the part that the hyperedge is
shared with is a target part, (2) the target part has not been sent more weight than
the limit, and (3) the size of the cavity is small.

3 Accelerating Distance Computation

Distance computation’s breadth first traversal is accelerated with an OpenCL data-
parallel ND-Range kernel for execution on GPUs and many-core processors. The
host process calls the kernel once for each frontier in the traversal. The kernel im-
plements a ‘pull’ based approach by iterating over the graph vertices pinned to each
hyperedge twice. The first iteration determines if in the previous kernel call which
vertices were updated. If a vertex is found, then the second iteration updates the
distance of the other vertices.

The baseline OpenCL implementation uses a compressed sparse row (CSR) hy-
pergraph representation and a pull based traversal. In Figure 3 the performance of
optimized implementations relative to the baseline ‘csr’ implementation are shown.
‘scg’ in the name of the implementation indicates that use of the Sell-C-σ data struc-
ture [3], ‘int’ indicates use of four byte ints instead of eight byte ints, and ‘unroll’
indicates manual vertex loop unrolling. Runs were executed on graphs created from

Accelerated Load Balancing of Unstructured Meshes 3

meshes of the 2014 RPI Formula Hybrid suspension upright with up to 28M (mil-
lion) tetrahedron (DOI: 10.5281/zenodo.1194576). All tests were executed
on an NVIDIA 1080ti using CUDA 9.2. The chunk size of the ‘scg’ tests was fixed
at 64; given the uniform degree of the element to vertex adjacencies, there was lit-
tle performance difference between different chunk size settings. The given results
are the average of three runs and include data transfers to and from the GPU. The
OpenCL JIT compilation is not included in the timing as this one-time cost would
be amortized across an entire run.

Fig. 1 Performance of breadth first traversal implementations.

On the 28M mesh, the ‘scg int unroll’ is 11 times faster than the serial, C++,
push implementation, and 4.78 times faster than the ‘csr’ implementation. The per-
formance boost given by loop unrolling and use of Sell-C-σ are the result of im-
proved memory coalescing. Reducing the integer size by half improves performance
by 24% for the 28 million element mesh.

4 Accelerating Cavity Selection

Accelerating the selection of cavities requires simultaneously evaluating many cav-
ities. The current single threaded selection procedure evaluates cavities in order
of their descending distance from the topological center. Since the ordered selec-
tion exposes no concurrency an alternative application of the topological distance is
needed. The proposed approach applies a parallel topological distance sorting after
a coloring based parallel cavity evaluation has executed.

Critical to concurrent cavity evaluation is avoiding race conditions when deciding
which part to migrate a given graph vertex. Hyperedge coloring ensures that any two

4 G.Diamond et al.

hyperedges that share a common vertex will be assigned a different color, and thus
entire sets of like-colored hyperedges can be evaluated concurrently.

The Kokkos-kernels graph coloring procedure [1] is used to color the hyper-
edges of the EnGPar hypergraph. This procedure is driven by a symmetric adjacency
matrix. To color hyperedges we must create the hyperedge-to-vertex-to-hyperedge
graph; the dual of the hypergraph. The dual graph has one vertex for each hyperedge,
and an edge between two hyperedges if they share at least one common vertex.

The construction of the dual is listed in Algorithm 4. It starts by making a set,
using a Kokkos unordered map, that stores hyperedge-to-hyperedge adjacencies
(l.2-l.12). A parallel reduction and prefix sum then compute the degree list deg
(l.14-l.18). The hyperedge list, edgeList, is then filled with a parallel loop over
the hyperedges. This loop utilizes a Kokkos atomic read-then-increment operation
(l.23) to determine the position of the hyperedge in the list of adjacent hyperedges.
The resulting CSR, deg and edgeList, are passed directly to the Kokkos coloring
procedure.

Algorithm 1 Dual Graph Converter

1: procedure DUAL(G = (V,E))
2: n = 0
3: parallel for v ∈V do
4: for all (i,v) ∈ E do
5: for all (j,v) ∈ E \{(i,v)} do
6: n++
7: //n is an upper bound on the set’s size
8: set of int pair m (n)
9: parallel for v ∈V do

10: for all (i,v) ∈ E do
11: for all (j,v) ∈ E \{(i,v)} do
12: m. insert ((i, j))

13: N = |E|
14: deg = [N +1]
15: parallel for k ∈ m do
16: deg(k.first+1)++
17: parallel for i = 0,1, . . . ,N do
18: deg[i] = sum(deg[0 : i])
19: edgeList = [deg[N]]
20: degreeCount = [N]
21: parallel for k ∈ m do
22: e = deg[k.first]
23: i = degreeCount[k.first]++
24: edgeList[e+i] = k.second
25:

The speedup of the dual and coloring procedures relative to serial implementa-
tions is shown in Figure 2. Tests were executed on the same system and series of
graphs used in Section 3. Construction of the dual has a nearly flat speedup rela-
tive to the graphs. Conversely, the speedup of Kokkos coloring improves with graph
size. Profiling of these tests is required to determine how effectively GPU resources
are utilized and identify bottlenecks.

5 Closing Remarks

Speedup results of two critical procedures used by EnGPar were demonstrated. Par-
allel distance computation performance is over an order of magnitude greater and

Accelerated Load Balancing of Unstructured Meshes 5

Fig. 2 The ratio of serial execution time to parallel for dual graph construction and graph coloring.

is a direct replacement for the existing procedure. Parallel coloring for the selec-
tion process demonstrates high performance across a range of mesh sizes. Ongoing
work is focused on fully integrating these advances into the production version for
evaluation of overall performance and partition quality.

Acknowledgements This research was supported by the U.S. Department of Energy, Office
of Science, Office of Advanced Scientific Computing Research, under award DE-SC00066117
(FASTMath SciDAC Institute) and by the National Science Foundation under Grant No. ACI
1533581, (SI2-SSE: Fast Dynamic Load Balancing Tools for Extreme Scale Systems). Any opin-
ions, findings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation.

References

1. DEVECI, M., BOMAN, E. G., DEVINE, K. D., AND RAJAMANICKAM, S. Parallel graph
coloring for manycore architectures. In 2016 IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS) (May 2016), pp. 892–901.

2. DIAMOND, G., SMITH, C. W., AND SHEPHARD, M. S. Dynamic load balancing of massively
parallel unstructured meshes. In Proceedings of the 8th Workshop on Latest Advances in Scal-
able Algorithms for Large-Scale Systems (New York, NY, USA, Nov. 2017), ScalA ’17, ACM,
pp. 9:1–9:7.

3. KREUTZER, M., HAGER, G., WELLEIN, G., FEHSKE, H., AND BISHOP, A. A unified sparse
matrix data format for efficient general sparse matrix-vector multiplication on modern proces-
sors with wide simd units. SIAM Journal on Scientific Computing 36, 5 (2014), C401–C423.

