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Challenge — complex decision with simplistic agronomic rules

How much fertiliser to apply?
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Fertiliser management in Precision Agriculture
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Precision/Digital Agriculture and decision systems
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Intelligent Agriculture (?)
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ABSTRACT

The development of cost-effective, digitally based decision support systems is a key challenge in the optimization
of farm management. Yet, the majority of sensor-based decision tools which support fertiliser management have
relied on simplistic mechanistic frameworks normally informed by a single sensor. This study used a 20-year
nitrogen (N) experiment on winter wheat (Triticum aestivum L.) to test a range of approaches for N decision
support systems, including commercial sensor-based options and a novel, multivariate, data-driven approach.
The latter was based on a non-mechanistic framework in which various digital variables were trained directly
against optimum N application rates using machine learning. It was hypothesized that such a method would
enhance our ability to handle system complexity, resulting in higher accuracy for the decision, as compared to
current farm management or to available sensor-based options, both of which are normally underpinned by
mechanistic methods. Results showed that the proposed approach was able to predict the optimal N rate with an
RMSE of 16.5 kg N ha™! (R? = 0.79). This method was also the only one that was statistically superior (p < 0.05)
to the control scenario (the application of the historical average optimal N rate; RMSE =38.0 kg N ha1). This
proposed approach used a multivariate digital input including a spectral vegetation index (normalized difference
vegetation index, NDVI), weather and soil moisture data and information from on-farm experimentation (the in-
situ N response using a ‘N-rich’ strip) to guide the decision. When similar data input and modelling techniques
were used to predict yield potential to then derive an N recommendation through a mechanistic decision
framework — a nutrient mass balance - the recommendation error (RMSE) increased to 26.0 kg N ha™!
(R? = 0.51). In summary, by forcing the input data through the mechanistic framework, the decision error
increased. This study challenges the ideas that farm decisions should follow pre-established agronomic mecha-
nistic frameworks and that digital technologies must necessarily be used to estimate specific crop and soil at-
tributes so as to enable deployment of current decision systems at scale and site-specifically.
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Demand =

Yield potential

N recommendation error for sensor-based N decision methods
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boxplot represents the error variation across years.
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Should we focus on yield prediction?

Yield prediction results
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NDVI as the predictor variable and
simple regression

Multiple variables and
Random Forest
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Data-Driven Decision Support
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On-Farm Experimentation (OFE)
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On-Farm Experimentation (OFE
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Rethinking the paradigm of decision support systems in Precision Ag
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Rethinking the paradigm of decision support systems in Precision Ag
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Precision Agriculture
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