Using deep learning and remote sensing to map and
track land use following deforestation across Africa
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Motivation

Knowing what causes this tree cover loss can help tackle
deforestation

The underlying causes may be very complex, but we can at
least see what happens with the land once it is deforested:

The Follow-up land use (FLU)



Land activities that follow deforestation
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Need for automated large scale land use monitoring

Sample-based interpretation Forest loss Large area prediction

Legend
Example land use patch
Land use types




Freely available data sources

e Landsat e Planet
o 30 m resolution o 5 m resolution
o Multispectral (12 bands) RGB+NIR (4 bands)
o Revisit time of 16 days Revisit time of 1 day
e Sentinel 2 Norway pays for the
o 10 m resolution tropical data! (NICFI)
o Multispectral (10 bands)
o Revisit time of 5 days
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What deep learning architecture to use for assessing land-use following
deforestation using remote sensing data?”
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And what data source?

¥ Planet ® Planet-temporal ' sentinel ® Sentinel-temparal © Landsat ™ Landsat-temporal B Ensemble
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Model: Attention U-Net
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Labeled data sources

o s e o oo [ o Jlome [0 o [ o loc lles

FAO 2010 global Remote Sensing Survey X

Crowdsourced deforestation drivers X X X X X X X X
(IIASA) (Bayasa et al., 2022)
http://pure.iiasa.ac.at/id/eprint/17539/)

Masolele et al,. 2022 (Ethiopia) X X X X X X X X X X X

ICRAF, Econometric X X X X X X X X X
NAFORMA (Tanzania) X X X X X

Large-scale farms and small holder (Jann X X

et al,. 2018) (Zambia)

Global Map of Oil Palm Plantations X
(Descale et al., 2021)

Kenya GIS data (World Resources Institute X X X X X

https://www.wri.org/data/kenya-gis-data)

Namibia X X

Ghana X X X X X X X
Google research open-buildings dataset X

(https://sites.research.google/open-buildi

ngs/)

https://ipisresearch.be/home/maps-data/ X

open-data/ (Mining)

Landuse data Nigeria X X X X X X

(https://grid3.gov.ng/datasets)


https://ipisresearch.be/home/maps-data/open-data/
https://ipisresearch.be/home/maps-data/open-data/
https://grid3.gov.ng/datasets

Results

Well, not good
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The obtained labels were quite biased

B 1st round training data

1,000 Km 2nd round training data o 1,000 Km
B Hansen forest loss B 3rd round training data |




Active learning
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Improvement of accuracies with active learning

43% — 50% — 84%
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Hyperparameter optimization

Partial Dependence plot,
showing a matrix-plot of all
combinations of searched
hyperparameters via Bayesian
optimization.




Results

Now yes!
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Results: Monitoring direct drivers of deforestation

Annual follow-up land use 2001 - 2020 mapped at Hansen forest loss data (wall-to-wall for entire Africa)
Planet NICFI data and deep learning approach used for mapping
15 land use classes

High accuracies (82% average macro-F1, see next slides for more detail)

Direct Drivers of Deforestation =5 o §
(masolele et al. 2023) N 3 sl He o Masolele et al.,

under review in NSR



https://robertnag82.users.earthengine.app/view/africalu
https://robertnag82.users.earthengine.app/view/africalu
https://robertnag82.users.earthengine.app/view/africalu

Results: Hotspot of land use following deforestation (Africa)

Pixel density per 0.1 degrees
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