Reasoning on Integrated Data and Some Applications in Agronomy

Federico Ulliana BOREAL Team Inria & Montpellier University

BOREAL Team

"Knowledge-Representation and Rule-based Languages for Reasoning on Data"

Joint Team with Inria, Univ. Montpellier, and INRAe.

Topics : Symbolic AI, Database Theory, Data Integration, Logic & Graphs **Applications**: Agronomy (but not only) **Software**: InteGraal (Reasoning on Integrated data)

Exploiting Data

Data-driven society: organizations constantly looking for new insights to support their next decision

- Healthcare
 - Disease risk prediction, clinical trials
- Agronomy and Agroecology
 - Cultivation, transformation, land management
- Manufacturing, Industry
 - Accountancy, production, assets, clients
- Sciences
 - Scientific datasets, all domains
- Yet, data processing and data governance still remain challenging issues.

- Government and PA
 - Social and economic
- National Security
 - Monitor positional data
- Smart Cities
 - Sensor, open data on public services

The Workflow

In Reality

Heterogeneous & Federated Data

In Reality

Exploiting Data requires Domain Knowledge

Knowledge-Based Data Management (KBDM)

- 1. Three layer architecture: sources, mappings, KB
 - common to Data-Integration and Ontology-Based Data-Access
- 2. Domain Knowledge

- "the glue"
- Semantics: (quality) KB ← map (raw) sources
- Abstraction: KB processing \rightarrow translated to sources
- 3. Rule-based Languages "the driver"
 - Domain expert knowledge (eg. Ontologies) && data processing
 - Declarativity, Modularity, Explainability

Knowledge-Based Data Management (KBDM)

?(X):- Patient(X) \xrightarrow{ans}

(Query) S1_Alice S₁_Bob

(Facts/Data)

Patient(S₁_Alice) Patient(S₁_Bob)

ob)

(Mapping)
patients.name.\$val → Patient(f(\$val))

```
(Source JSON)
```

Knowledge-Based Data Management (KBDM)

(Query) \xrightarrow{ans} ?(X):- ObesityRisk(X) S_1 _Bob (Rules) $\forall X. Patient(X)$ $Diagnosis(X, SN:high_oxytocin) \rightarrow ObesityRisk(X)$ (Facts/Data) Patient(S₁_Alice) Patient(S₁_Bob) Diagnosis(S₁_Bob, SN:high_oxytocin) (Mapping) patients.name.\$val ~> Patient(f(\$val)) patients [name.\$n, diagn.\$d] ~> **Diagnosis**(f(\$n),g(\$d))

(Source JSON)

Boreal Project

1. Architectures of KBDM Systems

- Multi-source/level, Mapping Languages, Applications
- 2. Foundations of Reasoning and Query Answering
 - Decidability & (fine-grained) Complexity, Extended Existential Rules
- 3. Algorithms and Optimizations for Query Answering
 - Combined Approaches, Leveraging Database Technology
- 4. Evaluating and Improving the Quality of KBDM Systems
 - Explanations, Provenance, Inverse Rewriting
- 5. Software

Some Applications in Agronomy

INRAe

- 1. Data Preparation
 - Training-Set Preparation for ML and Food Package Selection
- 2. Explanations
 - Enforcing Legislation on Chemical Spraying
- 3. Domain Expert Knowledge
 - Agroecosystems Design for Vine Grassing

(disclaimer) high-level view of the KDBM model behind the concrete problem

What is the "best" package for a specific type of food ?

• Shelf-life vs. environmental impact

w/ Pierre Bisquert, Patrice Buche, David Camarazo, Julien Cufi, Michel Leclère, Florent Tornil

- Use a ML model to predict o2-solubility
- Prepare training-set data

(our task)

INRAE

"Remove harmful weeds on a field, but **don't use chemical agents close to a water body**!"

Explanations

There is a violation at (position *P*, time *T*).

The tractor is at a distance **D** from the river, on a field with a slope of **S%**, and is spraying a chemical of type **Y** using a precise spreading device **PS**.

In this case the legislation article L states that the minimal required distance must be at least M meters, whereas D < M.

The legislation article L defines a "relevant buffer constraint" which imposes the minimal distance M according to the slope of the field S% and the use of a precise spreading device PS and chemicals of type Y.

(3) Agroecosystems Design for Vine Grassing

Selecting plant species for targeted ecosystem-services

Elie Najm PhD 2019-2022 co-directed by Christian Gary (Inrae, ABSys) and Marie-Laure Mugnier Joint work with Jean-François Baget (BOREAL), Raphael Metral (ABSys) and Léo Garcia (ABSys)

(3) Agroecosystems Design : Recommendations

What are the 10 best species for nitrogen supply to the vine (with a reliability of at least 50%?)

species					value	∞ 1	reliability
lotus corniculatus				(0.77680	0105	89
trifolium repens				(0.76497	7017	78
trifolium pratense	Y A YAY	6 # 1		(0.75703	3032	78
trifolium hybridum			Mr.	(0.72317	7251	55
trifolium dubium	No start		3000	(0.72164	4679	67
lathyrus pratensis	Lotus comiculator	in the second		(0.71902	2614	55
anthyllis vulneraria		ben.		(0.71794	1294	67
trifolium campestre			Trifolium pratouse L.	(0.70497	7417	55
medicago lupulina				(0.70018	3017	67
onobrychis viciifolia				(0.69490	0763	55

(3) Agroecosystems Design : Expert-Knowledge

(3) Agroecosystems Design

(3) Agroecosystems Design

InteGraal

gitlab.inria.fr/rules/integraal

- Java Tool for Reasoning on Integrated Data developed by BOREAL
- Used for all use-cases presented

Conclusions: Reasoning over Integrated Data

- Knowledge-Based Data-Management as a methodology for exploiting heterogeneous and federated data
- Data preparation and cleaning are mandatory
- Domain knowledge is crucial for data quality and dataservice mainteinance
- Declarative rule languages for expressing both domain knowledge and data processing
- Explanations help making sense of answers and increase the quality of the integration system