

Reinforcement learning challenges for agroecology

Odalric-Ambrym Maillard Inria Lille, "SCOOL" team

Montpellier, SEPTEMBER 11, 2024

REINFORCEMENT LEARNING TRENDS AND PROMISES

Odalric-Ambrym Maillard Reinforcement learning challenges for agroecology

Sequential COntinual and Online Learning

REINFORCEMENT LEARNING Theory, SEQUENTIAL LEARNING, "Al" Application in Medicine / Clinical trials, Agriculture / Agroecology.

90 years ago

Foundation of Hypothesis testing :

J. Neyman, E. S. Pearson **On the problem of the most efficient tests of statistical hypotheses**. In *Philosophical Transactions of the Royal Society of London, vol 231, pp. 289–337*, 1933.

Foundation of Multi-armed bandit :

W. R. Thompson **On the likelihood that one unknown probability exceeds another in view of the evidence of two samples**. In *Biometrika, vol. 25, pp. 285–294*, 1933.

Foundation of **Probability** :

A. Kolgomorov Fundamental concepts of probability. In , 1933.

Foundation of Mathematical statistics :

Kong, W. I. The Annals of Mathematical Statistics. In Ann. Math. Statist. 1 1-2., 1930.

1930's motivation: Agriculture, Clinical trials. \implies Today: Agroecology, Personalized medecine.

Further reading: Estigler SM The history of statistics in 1933. In Statistical Science, 244-52., 1996.

AGRICULTURE AND AGROECOLOGY

Agriculture

- ► Mostly single objective , variable of interest (yield).
- Available models for variable of interests

Agroecology

- Diversity of objectives, practices, variables of interest.
- **No model** available, **scarce** experimental data.

 \implies Planning and Control.

 $\implies \text{Personalized, contextual} \\ \implies \text{Reinforcement Learning and Bandits}$

EXPERIMENT: GROW BEANS

CONTEXT Stable Conditions

- ► SOIL: Type, Prep., Cover, etc.
- ► CLIMATE: T°, Sun, Rain, etc.
- ► USER: Tools, Worktime, etc.

EXPERIMENT: GROW BEANS

CONTEXT Stable Conditions

- ► SOIL: Type, Prep., Cover, etc.
- ► CLIMATE: T°, Sun, Rain, etc.
- ► USER: Tools, Worktime, etc.

POLICIES Where to plant?

- In (PLAIN SUN) vs (MORNING SUN) vs (EVENING SUN).
- Near (BORAGE) vs (TOMATO) vs (NONE) vs (BOTH).

When to water?

(1L PER DAY if no rain) vs (5L PER 3 DAYS) vs (1L PER 3 DAYS until flower, then 2L PER DAY).

 $A = 3 \times 4 \times 3$

EXPERIMENT: GROW BEANS

CONTEXT Stable Conditions

- ► SOIL: Type, Prep., Cover, etc.
- ► CLIMATE: T°, Sun, Rain, etc.
- ► USER: Tools, Worktime, etc.

STOCHASTIC AgroEcoSYSTEM: Same strategy in same context gives Diverse outputs .

POLICIES Where to plant?

- In (PLAIN SUN) vs (MORNING SUN) vs (EVENING SUN).
- Near (BORAGE) vs (TOMATO) vs (NONE) vs (BOTH).

When to water?

(1L PER DAY if no rain) vs (5L PER 3 DAYS) vs (1L PER 3 DAYS until flower, then 2L PER DAY).

 $A = 3 \times 4 \times 3$

Combes, R., Talebi, M. S., & Proutiere, A. **Combinatorial bandits revisited**. In *Advances in Neural Information Processing Systems 28*, 2015.

REINFORCEMENT LEARNING CHALLENGE

b Beyond same environment: **Contextual** RL, **Continual** RL.

SEQUENTIAL OR GROUP EXPERIMENTS

SEQUENTIAL OR GROUP EXPERIMENTS

Odalric-Ambrym Maillard Reinforcement learning challenges for agroecology

Ínría_

HOW TO ALLOCATE?

Ínría

Adaptive Batch Exploration

Odalric-Ambrym Maillard Reinforcement learning challenges for agroecology

UNCERTAIN OUTPUTS

► STUDIED EFFECTS: How many trials ?

Same strategy π :

WHAT IS YOUR SCORE

PROCESS: Apply strategy a_t at time t, receive reward r_t .

Example: YIELD DISTRIBUTION for 4 strategies (planting date) using model DSSAT.

RL CHALLENGES FOR AGROECOLOGY

- Contextual RL, Continual RL
- Combinatorial policy structure
- Group Sequential RL, Adaptive experimental design
- Stochastic , Risk-averse RL

We also want:

Learning guarantee , Reproducibility , Explainability > Sequential Data from experiments.

©: Within-episode regret minimization.

A = {π₁,..., π_K} policies with unknown mean m₁,..., m_K.
 Performance guarantee on the Cumulative Regret

$$\liminf_{T} \frac{\sum_{t=1}^{T} m_{\star} - \mathbb{E}\left[\sum_{t=1}^{T} m_{a_{t}}\right]}{\log(T)} \ge \sum_{a \in \mathcal{A}} \frac{(m^{\star} - m_{a})}{\mathcal{K}_{a}(\mu^{\star})}$$

OPTIMAL BANDITS STRATEGIES

State-of-the-art strategies for Expected criterion:

▶ Optimistic $\underset{a \in A}{\operatorname{argmax}} \widehat{m}_a(t) + B_a(t)$ where $B_a(t) \ge m_a - \widehat{m}_a(t)$ with high probability.

KL-UCB: Cappé, O., Garivier, A., Maillard, O. A., Munos, R., & Stoltz, G. Kullback-Leibler upper confidence bounds for optimal sequential allocation. In *The Annals of Statistics*, 1516-1541, 2013.

Bayesian $\underset{a \in \mathcal{A}}{\operatorname{argmax}} \tilde{m}_a(t)$ where $\tilde{m}_a \sim \operatorname{Posterior}/\operatorname{Randomly}$ reweighted mean.

TS: Thompson, W. R. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. In *Biometrika*, 25(3-4), 285-294, 1933.

 $\blacktriangleright \text{Likelihood} \operatorname{argmin}_{a \in \mathcal{A}} N_t(a) D(\widehat{m}_a(t), \max_a \widehat{m}_a(t)) + \ln(N_t(a)) \text{ with divergence } D.$

IMED: Honda, J., & Takemura, A. Non-Asymptotic Analysis of a New Bandit Algorithm for Semi-Bounded Rewards. In *Journal of Machine Learning Research*, 16, 3721-3756, 2015.

Sub-sampling Play all $\{a : m_a^{\dagger}(t) \ge \max_a \widehat{m}_a(t)\}$ with $\mu_a^{\dagger}(t)$ sub-sampled mean.

SDA: Baudry, D. and Kaufmann, E. and Maillard, O-A. Sub-sampling for Efficient Non-Parametric Bandit Exploration. In *Neural Information Processing System*, 2020.

RISK-AVERSE OPTIMAL NON-PARAMETRIC STRATEGY

CVAR THOMPSON SAMPLING

Known upper bound *B* on max reward.

Action $a \in \mathcal{A}$, tried $n_a(t)$ times until t, observed rewards (X_1, \ldots, X_{n_t})

For each *a*, draw a weight vector $w = (w_1, \ldots, w_{n_a(t)+1}) \sim \text{Dir}(\underbrace{1, \ldots, 1}_{n_a(t)}, 1)$ from a Dirichlet.

For each *a*, build the **randomly reweighted** empirical distribution:

$$\tilde{\nu}_{a,t} = \sum_{i=1}^{n_a(t)} w_i \delta_{X_i} + w_{n_a(t)+1} \delta_B.$$

► Plays
$$\underset{a \in \mathcal{A}}{\operatorname{argmax}} \operatorname{CVaR}_{\alpha}(\tilde{\nu}_{a,t})$$

Baudry, D. and Gautron, R. and Kaufmann, E. and Maillard, O-A. **Thompson Sampling for CVaR Bandits**. In *International Conference in Machine Learning*, 2021.

Riou, C., & Honda, J. Bandit algorithms based on thompson sampling for bounded reward distributions. In *Algorithmic Learning Theory*, pp. 777-826, 2020.

[GYM-DSSAT] SIMULATOR

DSSAT: Decision Support System for AgroEcology Transfer, 30-year old internationally used Fortran simulator, integrating expertise from agronomists.

Gym standardized Python for Reinforcement Learning environments.

BATCH BANDIT SETUP

Gautron, R., Baudry, D., Adam, M., Falconnier, G. N., Hoogenboom, G., King, B., & Corbeels, M. **A new adaptive** identification strategy of best crop management with farmers. In *Field Crops Research*, 307, 109249., 2024.

EXPERIMENT CONTEXT and POLICIES

▶ SOIL contexts:

soil name	$\mathbf{texture}$	fertility	\mathbf{depth}	prop.
ITML840101	clay loam	low	medium	7%
ITML840102	loam	low	medium	9%
ITML840103	silty loam	low	deep	21%
ITML840104	silty clay loam	medium	medium	4%
ITML840105	silty clay loam	low	medium	24%
ITML840106	loam	low	medium	27%
ITML840107	silty clay loam	medium	medium	8%

EXPERT policies:

index	$\begin{array}{l} {\rm max \ tot. \ N} \\ {\rm (kg/ha)} \end{array}$	max appl. #	${f rainfall}\ {f thres}.$	NSTRES	$15 { m DAP N} \ ({ m kgN/ha})$	$\begin{array}{c} 30 \hspace{0.1cm} \mathrm{DAP} \hspace{0.1cm} \mathrm{N} \\ \mathrm{(kgN/ha)} \end{array}$	$\begin{array}{c} 45 \hspace{0.1cm} \mathrm{DAP} \hspace{0.1cm} \mathrm{N} \\ \mathrm{(kgN/ha)} \end{array}$
0	135	2	No	No	15	120	0
1	135			Yes	15	120	0
2	135		Yes	No	15	120	0
3	135			Yes	15	120	0
4	135	3	No	No	15	60	60
5	135			Yes	15	60	60
6	135		Yes	No	15	60	60
7	135			Yes	15	60	60
8	70	2	No	No	23	0	47
9	180	3	No	No	60	60	60

STRATEGY PERFORMANCE I: REGRET

Averaged over #960 replications for alpha=30% mean batch size: 299 **B_CVTS_BATCH** ETC_CVAR_BATCH_3 5000 ETC_CVAR_BATCH_5 cumulated YE CVAR regret (kg/ha) 0.05 to 0.95 quantile range 4000 3000 2000 1000 0 12 14 16 18 10 20 0 2 8 time step T

(The lower the better: Bandit is Blue)

STRATEGY PERFORMANCE II: RISK

(The more mass on the left the better: Bandit is Blue)

Table of contents

WHAT IS NEXT?

FARM-GYM: The ATARI of Farming

RL PLATFORM to design and simulate gamified agroecosystems [README] [DEMO] [DIY] [TUTO]

► To foster **Reproducible** research on **Continual** RL in **stochastic** environment.

MODULAR building blocks : Farms consist of fields, farmers, entities, scoring function.

INTERACTING ENTITIES

► Each entity has its own dynamic plus interacts with others.

DATA ACQUISITION

WEGARDEN PLATFORM [wegarden.lille.inria.fr]

Co-identification of good practices with personalized contexts.

Ínría

COLLABORATIVE EXPERIMENTATION

Much remains to be done

- More interdisciplinarity between RL and Agro community
- Massify data collection, F.A.I.R. principles, reproducibility
- Improved models , simulators
- From RL algorithms to RL software
- **Compliance**, **Appropriation**, human feedback.

PEPR AgroEcoReco §

. . .

MERCI

"The more applied you go, the stronger theory you need" odalric.maillard@inria.fr

