Oraderis

Maximize energy efficiency in a normally-off system using NVRAM

- Stéphane Gros
- Yeter Akgul

THE COMPANY

THE CONTEXT

THE TECHNOLOGY

THE SYSTEM

THE CO-DEVELOPMENT

CONCLUSION

Lab spin-off

Incorporated

2014

17 people (14 technical) **IP Fabless**

Non volatile **Semiconductor IP** STTRAM

ReRAM

eSTTRAM

(eMRAM) eReRAM

(eRRAM)

Value proposition

Positioning

May 31, 2017

aderis

Summary

THE COMPANY

THE CONTEXT

THE TECHNOLOGY

THE SYSTEM

THE CO-DEVELOPMENT

CONCLUSION

The issue

MCU level

Board level

THE COMPANY

THE CONTEXT

THE SYSTEM

THE CO-DEVELOPMENT

CONCLUSION

Memory comparison 1/3

	eFlash/eEE	eSRAM	eSTTRAM	eRRAM (Ox)
Non-volatile	Yes	No	Yes	Yes
Compatible with front end logic	No FinFET, FDSOI	Yes	Yes	Yes
Scalable	Sub-28nm?	Yes (size?)	Yes	Yes
Cell size (density F2)	10-30 (>30 for eEE)	60-80 (HD/LP)	10-30	10-20
Access time	10-100ns (not destructive)	<1ns (not destructive)	2-10ns (not destructive)	10ns (not destructive)
Write/erase process	byte/block/page level	bit level	bit level	bit level
Write/erase time	1us/10ms (erase) (page, byte level)	<1ns	2-10ns (bit level)	10-50ns (bit level)
Endurance	10 ⁵ -10 ⁶	>10 ¹⁶	10 ¹⁰ -10 ¹⁵	10 ⁷ -10 ⁹
Array standby current	0	1-10µA/Mb(25C)	0	0

Memory comparison 2/3

Storage energy @ constant data (1Mb/1s)

- MRAM vs. SRAM:
 - 100x more energy for writing in MRAM
 - 0 leakage at standby mode (MRAM off)
 - ~4x less area MRAM

Memory comparison 3/3

aderis

THE CONTEXT

THE TECHNOLOGY

THE SYSTEM

THE CO-DEVELOPMENT

CONCLUSION

NVP & NVS advantages

• Increase battery life

aderis

- Instant ON/OFF → minimize SoC boot energy loss
- Normally-OFF → no idle power consumption (power down)
- Intermittent power supply support
 - Harvesting
 - Avoid rollback
- Simplify sleep modes → simplify code dev.
- Simplify code maintenance
 - Flexible memory partitioning
 - Update over-the-air
- Multi-application support
 - Instant context switching
 - Reduced context saving overhead

NV CPU and System

SW retention state

- + Minimal HW impact
- Requires an API → more validation
- Requires memory protection
- Energy cost state dependent
- Duration state dependent \rightarrow Not suitable for RT applications
- Complications with caches

HW Retention state

- Existing approaches:
 - Retention FF: most efficient but largest
 - Scan-chain based approach:
 - uses existing scan-chain hardware
 - minimal area cost but slow and more power consuming
 - Complex (flow/dft)
 - Drowsy state retention:
 - freeze and reduce voltage
 - lowest area cost but least efficient
 - Complex power management (analog)

Limitations:

- Leakage overhead
- Not power failure tolerant
- Area overhead
- HW impact + controller \rightarrow extra verification

24

HW Retention state

• Our approach: NV-FF (extend Retention FF)

- Advantages over existing approach:
 - Limited area overhead
 - No extra leakage

aderis

- Power failure tolerant
- Partial vs Full replacement
 - Reduces area and energy overhead
 - Requires detailed knowledge of the design
 - → Find best trade-off

THE CONTEXT

THE TECHNOLOGY

THE SYSTEM

THE CO-DEVELOPMENT

CONCLUSION

Hybridization

« But how to efficiently exchange data between the two technologies with near instant-on/off capabilities ? »

NVSRAM level

Hybridization at **bit cell level**

Massives parallels (save/restore) transfers (fast)
Energy-efficient transfers
The largest area / SRAM bit cell/array adaptation
Impact on SRAM read/write power and latency

Hybridization at **IP level**

Significant parallels (save/restore) transfers (fast)
Energy-efficient transfers
The smallest area
No impact on SRAM

Hybridization at system level

Limited parallels (save/restore) transfers (slow)
Not energy-efficient transfers / complex routing
Acceptable area
No impact on SRAM

NVSRAM architecture

System Bus: access to SRAM only (hidden STTRAM), CPU/logic frequency

NVSRAM

THE COMPANY

THE CONTEXT

THE TECHNOLOGY

THE SYSTEM

THE CO-DEVELOPMENT

CONCLUSION

Oraderis

