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• CMOS scaling issues are observed... 

– Heat dissipation 

– Performance saturation 

• Due to.. 

– High leakage current 

– High power density 

• Thermal constraints  partially turn off the system 

• Turning off the memory part  the execution state is lost 
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Electron properties 

 
Mass 

Electric charge 

Spin 

Electronics 
 

Electrons are moved (current)  

by acting on the charge 

Spintronics 
 

Motion by acting on the spin ! 

Phenomena related to spin 
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Spin Transfer torque 
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William Thomson 

1824-1907 

 

 Resistance variation  
 2% - 5% at room temperature 

 The electrical resistance 
of magnetic metal varies 
with the presence of an 
external magnetic field 

Anisotropic 

 magnetoresistance 

(F
e

/C
r)n

 

Peter Grünberg 

Albert Fert 

2007 Nobel Prize  

(Physics) 

 Large increase of the conductance 
with structure alternating 
ferromagnetic / non-magnetic layers 

Giant 

 magnetoresistance 

T. Miyazaki 

J. Moodera 

(not in the pictures:  

M. Jullière) 

 

CoFe/Al2O3/Co 

J. S. Moodera 1995 

CoFeB/MgO/CoFeB 

S. Ikeda 2008 

 Unlike GMR, the barrier is an isolant 

 With MgO, TMR of 608% reached at 
room temperature 

Tunnel 

 magnetoresistance 
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Tunnel magnetoresistance principle 

 The transport of the electrons through the material is spin-dependent 

Ferromagnetic Ferromagnetic Isolant 

Parallel configuration 

Ferromagnetic Ferromagnetic Isolant 

Antiparallel configuration 

Spin-up Spin-down 

RMAX  ‘1’ RMIN  ‘0’ 
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• STT-MRAM can be used to build: 

– Flip-Flops 

– Cache memories 

– Main memories 

RMIN  ‘0’ 

(Parallel state) 

RMAX  ‘1’ 

(Antiparallel state) 
- + 

Access 

Transistor 
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Sensing/Writing Current 

Storage Layer 
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Tunnel oxide 

4Gb LPDDR2 STT-MRAM [2]  NVFF STT-MRAM [1] 

[1] B. Jovanovic et al., “A hybrid magnetic/complementary metal oxide semiconductor three-context memory bit cell for non-volatile circuit design,” AIP Journal of Applied Physics, April 2014. 

[2] K. Rho  et al., “A 4Gb LPDDR2 STT-MRAM with compact 9F2 1T1MTJ cell and hierarchical bitline architecture,” Solid-State Circuits Conference (ISSCC), February 2017.  

Bit Cell Structure 



30-May-17 Workshop NVRAM 9 

• The main objectives are… 
– Evaluate the impact at system level of using  

STT-MRAM 

– Explore new applications 

• Non-volatile working memories (registers, cache…) 

• In-memory computing 

 

 

• This talk focuses on.. 
– Non-volatile processor for embedded applications 

– STT-MRAM exploration framework for High Performance Computing 
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Non-volatile processor based on STT-MRAM 

• Two application under study… 

– Normally-off Computing 

• The system is normally off 

• The execution state is preserved after a shutdown 

• Fast wakeup, near-zero leakage power in sleep mode 

 

– Checkpoint/Rollback 

• Restore a safe state of the processor for instance  
after an execution error or a power failure 

 

 

 

• Two 32-bit RISC processors considered… 

– Secretblaze (MIPS like) 

– Amber (ARM like) 
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Non-volatile processor based on STT-MRAM 
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Hybrid CMOS/STT-MRAM flip-flop 

• Speed of CMOS 

• Non-volatility of STT-MRAM 

STT-MRAM main memory 

Checkpoint memory for the Rollback 

• Data are preserved after a shutdown 

• Store a valid state of the system to be tolerant  

against execution errors and power failures 

Non-volatile Processor 

Architecture 
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Non-volatile processor based on STT-MRAM 

Normally-off 
Computing 

Back up the register’s state 
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• Conventional system 

– Leakage power during sleep mode 

 

• Non-volatile system with instant-on/off 

– Near-zero leakage during sleep mode 

– Backup energy 

Conventional system Non-volatile system 

Minimum Tsleep required to be 

 more energy efficient ? 

TsleepPleakageEbackupTbackupPleakage 

Tsleep
Pleakage

EbackupTbackupPleakage




µWPleakage 973

nJEbackup 1

nsTbackup 20

µsTsleep 05.1

Synthesis of the Amber processor 
(Industrial 40nm CMOS low-power process) 

µWPleakage 775

nJEbackup 1

nsTbackup 20

µsTsleep 32.1

Synthesis of the Secretblaze processor 
(Industrial 40nm CMOS low-power process) 

* D. Chabi et al., “Ultra low power magnetic flip-flop based on checkpointing/power gating and self-enable mechanisms,” IEEE Transaction on Circuits and Systems I, January 2014.  
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Checkpoint/Rollback 
(Memory part) 

NORMAL EXECUTION 

- Only the main memory contents are modified 

- Buffer to back up the addresses of the modified memory locations 

Main 
memory 

Checkpoint 
memory 

Buffer (128 entries) 
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Main 
memory 
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memory 
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CHECKPOINT 

- Only the modified memory locations are copied  

Main 
memory 

Checkpoint 
memory 

Buffer (128 entries) 

Restore ON ON 

ROLLBACK 

- Only the modified memory locations are restored  
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• Validation of the backup/recovery of the system 

 

 

 

 

 

 

 

 

 

• Evaluation of the cost 

– Register level (Data from real flip-flop design) 

• Backup: ≈1nJ (<20ns) 

• Restore: <25pJ (≈1ns) 

– Main memory level (Data from NVSim) 

• 1MB Main memory / 4kB Checkpoint memory 
– Backup: <100nJ (<20µs) 

– Restore: <100nJ (<20µs) 

 

Blowfish application 

DES application 
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• A simulation framework has been developed to… 
– Explore the impact of STT-MRAM at system level 

– Provide essential feedback to enhance the 
 development of STT-MRAM devices 

– Explore different memory technologies 

 

 

• A cross-layer investigation is done… 
– Device level  Physical Design Kit 

– Circuit level  Bit cell 

– Memory level  Cache, main memory… 

– System level  Multi-core architectures 
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• Case study… 
– Architecture considered 

• 4-core out-of-order (ARMv7 ISA) 

• 32kB L1 instruction cache (SRAM) 

• 32kB L1 data cache (SRAM) 

• 1MB shared L2 cache 

– Two scenarios (SRAM / STT-MRAM) 

• 512MB DRAM DDR3 main memory 

 

– Benchmarks 

• PARSEC 

• SPLASH-2 

Core 3 Core 1 Core 0 

L1 I/D L1 I/D L1 I/D 

Shared L2 

DDR3 

Core 2 

L1 I/D 

High Performance Computing using STT-MRAM 
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• Circuit-level analysis… 

– Area 

High Performance Computing using STT-MRAM 
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 STT-MRAM is denser for large cache capacity 

 STT-MRAM cell size smaller than that of SRAM 

  STT-MRAM needs large transistors for write operations 

Process Technology 
1MB L2 
(mm²) 

32kB L1 
(mm²) 

45nm 
SRAM 2.7 0.091 

STT-MRAM 1.12 0.116 
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• Circuit-level analysis… 

– 1MB cache performances 

• Based on NVSim 

High Performance Computing using STT-MRAM 

Node Technology 
Latency 

(ns) 
Energy 

(nJ) 

45nm 
SRAM 10.6 0.51 

STT-MRAM 7.6 0.15 

Read Write Standby 

Latency 
(ns) 

Energy 
(nJ) 

10.6 0.05 

16.7 0.65 

Leakage 
(mW) 

630 

24 
/26 

 STT-MRAM < SRAM for reads 

 Small area of STT-MRAM 

  STT-MRAM > SRAM for writes 

 STT-MRAM << SRAM for static power 
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• Set of results… 

– Runtime 
• Similar performance when using STT-MRAM 
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High Performance Computing using STT-MRAM 
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• Set of results… 

– L2 cache energy 
• STT-MRAM based L2 cache consumes >80% less energy than 

SRAM based L2 
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• Set of results… 

– System energy 
• Evaluate the impact of the memory part compared to the rest of 

the system 
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• Set of results… 

– System energy 
• The impact for  

different number of cores 
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Conclusions 

• STT-MRAM is promising for: 
– Energy-efficient & Reliable embedded systems 

• Normally-off computing 

• Checkpoint / Rollback 

– Caches memories for High Performance Computing 

 

• A system level simulation framework is developed to 
enhance the developement of STT-MRAM and other 
memory technologies 
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Future Work 

• Strenghten the results by designing a real system-on-chip 
based on STT-MRAM 

– Ongoing work (European Project  GREAT) 

 

• Explore STT-MRAM at main memory level 
– Ongoing work 

• Extension of the simulation framework 

 

• Explore other memory technologies 

– Spin-Orbit-Torque MRAM 

– Voltage-Controlled MRAM 


