

From Embedded World to High Performance Computing using STT-MRAM

Lionel Torres, Sophiane Senni

Paris, France May 29, 2017

Workshop NVRAM

OUTLINE

- 1. Motivation
- 2. Spintronics
 - 1. Basics
 - 2. STT-MRAM technology
- 3. STT-MRAM exploration at system level
 - 1. Embbeded systems & High Performance Computing
- 4. Conclusions and Future Work

Motivation

- CMOS scaling issues are observed...
 - Heat dissipation
 - Performance saturation
- Due to..
 - High leakage current
 - High power density
- Thermal constraints → partially turn off the system
- Turning off the memory part \rightarrow the execution state is lost

Need to go beyond CMOS

Non-volatile system-on-chip

Embedded

STT-MRAM

High performance bus

Memory

Controller

Current system-on-chip

GPU

DDR

Controller

External STT-MRAM

Anisotropic magnetoresistance

William Thomson 1824-1907

The electrical resistance 0 of magnetic metal varies with the presence of an external magnetic field

Resistance variation 0 \rightarrow 2% - 5% at room temperature

Giant magnetoresistance

Peter Grünberg Albert Fert 2007 Nobel Prize (Physics)

Large increase of the conductance Ο with structure alternating ferromagnetic / non-magnetic layers

Tunnel magnetoresistance

T. Miyazaki J. Moodera (not in the pictures: M. Jullière)

- Unlike GMR, the barrier is an isolant Ο
- With MgO, TMR of 608% reached at 0 room temperature

0 50 100

Tunnel magnetoresistance principle

• The transport of the electrons through the material is spin-dependent

Spin-up

Spin-down

STT-MRAM technology

Bit Cell Structure

- STT-MRAM can be used to build:
 - Flip-Flops
 - Cache memories
 - Main memories

4Gb LPDDR2 STT-MRAM [2]

[1] B. Jovanovic et al., "A hybrid magnetic/complementary metal oxide semiconductor three-context memory bit cell for non-volatile circuit design," AIP Journal of Applied Physics, April 2014. [2] K. Rho et al., "A 4Gb LPDDR2 STT-MRAM with compact 9F2 1T1MTJ cell and hierarchical bitline architecture," Solid-State Circuits Conference (ISSCC), February 2017.

STT-MRAM exploration

• The main objectives are...

- Evaluate the impact at system level of using STT-MRAM
- Explore new applications
 - Non-volatile working memories (registers, cache...)
 - In-memory computing

- This talk focuses on..
 - Non-volatile processor for embedded applications
 - STT-MRAM exploration framework for High Performance Computing

- Two application under study...
 - Normally-offComputing
 - The system is normally off
 - The execution state is preserved after a shutdown
 - Fast wakeup, near-zero leakage power in sleep mode

Checkpoint/Rollback

• Restore a safe state of the processor for instance after an execution error or a power failure

- Two 32-bit RISC processors considered...
 - Secretblaze (MIPS like)
 - Amber (ARM like)

Restore the register's state

- Conventional system
 - Leakage power during sleep mode
- Non-volatile system with instant-on/off
 - Near-zero leakage during sleep mode
 - Backup energy

 $Pleakage = 973 \mu W$

Ebackup = 1nJ

Tbackup = 20ns

Pleakage × Tbackup + Ebackup < Pleakage × Tsleep

 $\frac{Pleakage \times Tbackup + Ebackup}{Pleakage} < Tsleep$

Synthesis of the Amber processor

(Industrial 40nm CMOS low-power process)

Synthesis of the Secretblaze processor

(Industrial 40nm CMOS low-power process)

N	Non-Volatile Flip-Flops Performance							
	Latency (ns)		Energy (pJ)					
Technology	Restore	Back-up	Restore	Back-up				
STT-MRAM	0.2	4	0.012	0.5				

Tsleep >1.05 µs

*D. Chabi et al., "Ultra low power magnetic flip-flop based on checkpointing/power gating and self-enable mechanisms," IEEE Transaction on Circuits and Systems I, Jan uary 2014.

• Validation of the backup/recovery of the system

Blowfish application

• Evaluation of the cost

- Register level (Data from real flip-flop design)
 - Backup: ≈1nJ (<20ns)
 - Restore: <25pJ (≈1ns)
- Main memory level (Data from NVSim)
 - 1MB Main memory / 4kB Checkpoint memory
 - Backup: <100nJ (<20µs)
 - Restore: <100nJ (<20μs)

- A simulation framework has been developed to...
 - Explore the impact of STT-MRAM at system level
 - Provide essential feedback to enhance the development of STT-MRAM devices
 - Explore different memory technologies

- A cross-layer investigation is done...
 - Device level \rightarrow Physical Design Kit
 - − Circuit level \rightarrow Bit cell
 - − Memory level \rightarrow Cache, main memory...
 - System level \rightarrow Multi-core architectures

Case study...

- Architecture considered
 - 4-core out-of-order (ARMv7 ISA)
 - 32kB L1 instruction cache (SRAM)
 - 32kB L1 data cache (SRAM)
 - 1MB shared L2 cache
 - Two scenarios (SRAM / STT-MRAM)
 - 512MB DRAM DDR3 main memory

- Benchmarks

- PARSEC
- SPLASH-2

• Circuit-level analysis...

– Area

o STT-MRAM is denser for large cache capacity

- STT-MRAM cell size smaller than that of SRAM
- STT-MRAM needs large transistors for write operations

- Circuit-level analysis...
 - 1MB cache performances
 - Based on NVSim

		Read		Write		Standby	
Node	Technology	Latency (ns)	Energy (nJ)	Latency (ns)	Energy (nJ)	Leakage (mW)	
45nm	SRAM	10.6	0.51	10.6	0.05	630	26
	STT-MRAM	7.6	0.15	16.7	0.65	24	

o STT-MRAM < SRAM for reads</p>

- Small area of STT-MRAM
- STT-MRAM > SRAM for writes
- o STT-MRAM << SRAM for static power</p>

- Set of results...
 - Runtime
 - Similar performance when using STT-MRAM

- Set of results...
 - L2 cache energy
 - STT-MRAM based L2 cache consumes >80% less energy than SRAM based L2

PARSEC benchmarks

- Set of results...
 - System energy
 - Evaluate the impact of the memory part compared to the rest of the system

Energy (J)

Conclusions

• STT-MRAM is promising for:

- Energy-efficient & Reliable embedded systems
 - Normally-off computing
 - Checkpoint / Rollback
- Caches memories for High Performance Computing
- A system level simulation framework is developed to enhance the developement of STT-MRAM and other memory technologies

Future Work

- Strenghten the results by designing a real system-on-chip based on STT-MRAM
 - Ongoing work (European Project \rightarrow GREAT)
- Explore STT-MRAM at main memory level
 - Ongoing work
 - Extension of the simulation framework
- Explore other memory technologies
 - Spin-Orbit-Torque MRAM
 - Voltage-Controlled MRAM