Vo
m Dresden Database
o Systems Group

Towards a Single-Level Database Architecture
on Byte-Addressable Non-Volatile Memory

Ismail Oukid (TU Dresden & SAP SE)

NVRAM Workshop, Paris, May 30t, 2017

: : &
From Disk to Main Memory w»mes"e” Database

...In ancient times ...10 years back ..today?

Processor Processor
A
\ 4

Server Memor

DRAM
DB (main data) » 7

DRAM
Buffer pool

file AP H file AP“

TECHNISCHE
@ UNIVERSITAT D
DRESDEN

: : &
From Disk to Main Memory w»mes"e” Database

P rO C e S S O r . . % 8 pezrcent degradation/bit/generation
_ Intrinsically hard to further & /
Y increase DRAM's density £ =
Server Memor RN
DRAM . Tei?‘moﬁ)sgy nisde (gﬁ'l) =i
DRAM DIMM Prices (USD)
DB (main data) Cost per GB does not scale 7 .
- 9,5x price for 4x capacity /I
I |
file API Ever-increasing need for

Importance of Memory in Power

more main memory

Core count increasing =
faster than DIMM capacity - [

Performance mat
Server

-_

“;x:"**ti‘iiia *kw | AhA

Power Consumption ’-'.!.\ 20% 26% 2%
e

DRAM is hitting its scalability limits EE

TECHNISCHE
@ UNIVERSITAT 3
DRESDEN

. Ja
Byte-Addressable Non-Volatile Memory WQ Dresden Database

Non-
Volatile
We assume . . Low. _ |
hardware-based L'erggifa\évége asymmetric Vl\/rltes n;])tlceabéy
wear-leveling latency slower than reads
NVRAM
Byte- v Denser More capacity and
cheaper than DRAM
han DRAM
addressable than - 3 TB per socket for
c first-gen 3D XPoint
nergy
efficient

TECHNISCHE
@ UNIVERSITAT 4
DRESDEN

NVRAM as Transient Main Memory w»m“de” Patabase

DRAM as hardware-managed
cache for NVRAM

Application Application N

- ~
- ~ . - ~
~ - ~
- ~ — ~

application - - application -
address space [i address space |

1 1
Vn’tual memory subsy#stem

NVRAM next to DRAM

Virtual memory $ubs:ystem

R I [N

| | K
DRAM § NVRAM

~ e ———————

TECHNISCHE
@ UNIVERSITAT 6
DRESDEN

NVRAM as Persistent Main Memory w»m“de” Database

* SNIA recommends to access

application NVRAM via file mmap
address
space . ! ! load/store; ¢ An NVRAM-aware filesystem
— T : i : T ides zero-copy mmap,
Virtual memory subsystem ' provide
— ' 1 ! | E bypassing the OS page cache
urrer
pool - DRAM - mmap()i
|

- Several filesystem proposals:
NOVA, PMES, SCMES, etc.

| file API
NVRAM-optimized filesystem

| file API'
Disk filesystem

- Linux ext4 and xfs already
provide Direct Access support

NVRAM may serve as memory and storage at the same time

TECHNISCHE
@ UNIVERSITAT 7
DRESDEN

Towards a Single-Level Database W§ Dresden Database
Architecture*

. Hybrid NVM-DRAM architecture
Transactions » Primary data in NVM
o L 2 > Secondary data in DRAM or NVM
(Primalry Data) Secgnda"y - Near-instant recovery
micrologging ata
- No WAL log
- Low TX latency

*Instant Recovery for Main-Memory Databases. Oukid et al. In CIDR 2015.

y/
W§ Dresden Database
o Systems Group

NVM can revolutionize database architecture

Is it a free lunch?

Data Durability

Little control over when data is
persisted

- CPU Cache eviction policy
- Memory reordering

Enforce order & durability of stores
- CLFLUSH, CLFLUSHOPT, CLWB
- MFENCE, SFENCE, LFENCE

- Non-temporal stores (MOVNT)

New primitives are being researched

- e.g., HOPS and its OFENCE and
DFENCE barriers

7

Dresden Database

Systems Group

/ CPU \
/MQ:/ Core 4 Core M;)VN
Store Buffer Store Buffer T ient
B 9 >_rar15|er1
N
L2 L2
\, U 4
N
L3
"\ J
NVRAM Controller
Persistent
NVRAM Device
10

Data Durability w» Dresden Database

Ensure preceding writes

/ CPU \

made it to the store buffer /“4(3:’ core || Core "}O\m
- guarantee that the latest \itore Buffer Store Buffer
data is flushed N L1 L1

_ R AN .
N

SFENCE + CLWB + SFENCE L3 /

/

Ensure CLWB
finishes executing

NVRAM Controller

NVRAM Device

TECHNISCHE
@ UNIVERSITAT
DRESDEN

SFENCE

N

Ensure the NT
store buffer is

drained to
NVRAM

11

oy /\
Data Durability: Example WQDresden Database
Simplified array append operation

void push_back(int val){

m_array[m size] = val; What is in NVRAM after the insertion?
sfence(); % m_size m_array

clwb(&m_array[m _size]); 0 x
sfence();

m_size++;« ! xCorrupt!

sfence(); j(3 017

clwb(&m_size); - x
sfence(); 1 (
}

myArray.push_back(2017);

Need to enforce write ordering and durability at cache-line granularity
) fivses 12

Partial Writes

p-atomic store - executes in a one CPU cycle

y/
W§ Dresden Database
o Systems Group

Persist = sfence + clwb + sfence

Currently only 8-Byte stores are p-atomic on Intel x86

estr‘cpy(ptr‘, “SIGMOD Tutorial”);
persist(ptr, 15);

flag = true;

persist(&flag);

CL1

S

O

r

Cache

cL2|ilall

What is in NVRAM?

1.

2."SIGM”

3."SIGMOD T

4."SIGMOD Tutor”

5."SIGMOD Tutorial”
6."\O\O\O\O\O\O\O\O\O\0\0\Oial"

N CL2 evicted before CL1, e.g., due to a context switch

Need software-built p-atomicity for writes > 8 bytes

13

Persistent Memory Leaks w» oresden Database

New class of memory leaks resulting from failures
Example: crash during a linked-list insertion

void append(int val){

Persistent allocation
node *newNode = new node()"”’//*

J

newNode->value = val; m tail

persist(&(newNode->value));
5m_tail->next = newNode; E[Failure-induced

¥

persist(m tail); ’I persistent
m_tail = newNode; m_tail memory leak!

List.append(9);

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Avoiding memory leaks is a requirement

14

Data

-
-

A
Recove ry w» gsfgnigreog Database
Application

-

~~. Address space lost upon restart

Application - —> stored virtual pointers become invalid

address space

Filesystem provides a naming scheme

One file per object not realistic
- How to recover objects?

Need persistent, recoverable NVRAM addressing scheme

TECHNISCHE
@ UNIVERSITAT
DRESDEN

15

. A
Testing of NVRAM-Based Software w»m“de” Database

Traditional storage media __--- e |
accessed via DRAM > = - NVRAM directly exposed

D . <k application to the user space -
ata corruption risks address space more corruption risks
minimized

| 1 load/store
|

Virtual memory subsysiem : , ,
! ! Dangling pointer -
mmap() | persistent data corruption

NVRAM-optimizec
Missing or misplaced
persistence primitives;

wrong store order, etc.
Need testing and validation tools for NVRAM-based software

Corruption happens first
in DRAM - catch the
corruption before it
propagates to disk

TECHNISCHE
UNIVERSITAT
@ DRESDEN 16

NVRAM Programming Models

We look at the following NVRAM
programming challenges:

1.

How to provide a recoverable
addressing scheme?

How to avoid persistent memory
leaks?

How to ensure data consistency?

-
-

-

Dresden Database

SARL >~
o Systems Group
Application

~
~ o

~

application
.-. address space .

NVRAM library

;————————————————————————————————~

NVRAM

DRAM

Recoverable Addressing Scheme

Start address

Two alternatives
= Fixed-address memory-mapping Offset
Persistent pointer = virtual pointer

» Unrestricted memory-mapping

Dresden Database

Systems Group

Persistent pointer - file ID + offset

Volatile pointer = File start address + Offset

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Program root
at known offset

Qo

O

(40

— O

© U

2 n

ST

> v

©

I 1 O

| <
: (mmap) !
: :
1 1

: =

<C

o

>

=z

[EEN

8

Recoverable Addressing Scheme w»mes"e” Patabase

Fixed-address memory-mapping Unrestricted memory-mapping
Pros: Pros:

- Familiar interface - Safe, easy-to-implement, and
- No runtime overhead portable approach

Cons: Cons:

- Fixed address is a security issue - Potential overhead for

- Can unmap existing mappings converting to regular pointer

Unrestricted memory-mapping the safest way to go

EEEEEEEEEE
UNIVERSITAT
@ DRESDEN 19

. ? \
Preventing Memory Leaks w» Dresden Database

—> Traditional interface has a "blind spot”

Three alternatives
» Reference passing
- allocate(PPtr &pptr, size t allocSize)
pptr is owned by the data structure

= Transactional logging
- Wrap operation involving allocation within fail-atomic transaction
BEGIN TX {pptr = allocate(size); persist(&pptr);} END TX

» Offline garbage collection
- Scan allocated blocks upon recovery to detect memory leaks

EEEEEEEEEE
UNIVERSITAT
@ DRESDEN 2 O

. y \
Preventing Memory Leaks w» Dresden Database

Reference Transactional Offline Garbage
Passing Logging Collection
Pros: Pros: Pros:
- Explicit memory - Data structure canbe - Catch existing memory
management leak-oblivious leaks upon restart
- No runtime overhead - No runtime overhead
Cons: Cons: Cons:
- Data structure must be - Runtime overhead due - Restricts programming
aware of memory leaks to write-ahead log language

- Slow recovery

Reference passing closer to becoming the standard

EEEEEEEEEE
UNIVERSITAT
@ DRESDEN 2 1

. i Z&L
Consistency Handling w» Dresden Database

Transactional Model Lightweight Primitives

Provide durable transaction semantics Provide basic functionality, e.g., memory

for NVRAM programming allocation, leak avoidance etc.
void push_back(int val){ void push_back(int val){
TXBEGIN { m_array[m size] = val;
m_array[m_size] = val; persist(&m_array[m_size]);
m_size++; m_size++;
} TXEND persist(&m_size);
} }
At least 4 writes Only 2 writes

EEEEEEEEEE
UNIVERSITAT
@ DRESDEN 2 2

. . y\
Consistency Handling w» Dresden Database

Transactional Model Lightweight Primitives
Pros: Pros:
- Easy to use and to reason about - Low-level optimizations possible
Cons: Cons:
- Overhead due to systematic logging - Programmer must reason about
- Low-level optimizations not possible the application state

- Harder to use and error prone

High Performance - Lightweight Primitives

EEEEEEEEEE
UNIVERSITAT
@ DRESDEN 2 3

Existing NVRAM Libraries w»mesden Database

PPtr = Persistent Pointer

Approach Consistency Addressing Scheme Leak Prevention Compiler Source
Handling support

Mnemosyne Transactional & PPtr: file offset Reference passing | ASPLOS11
Lightweight primitives = Recovery: new mmap in Transactional logging
reserved address space

NV-Heaps Transactional PPtr: file Id + offset Transactional logging No ASPLOS11
Recovery: new mmap
Intel NVML Transactional & PPtr: file Id + offset Reference passing | No http://pmem.io/
Lightweight primitives ~ Recovery: new mmap Transactional logging
Atlas Transactional (sections PPtr: volatile pointer Transactional logging Yes OOPSLA14
determined by locks) Recovery: fixed mmap
REWIND Transactional Undefined, hints > Transactional logging Yes VLDB'15

PPtr: volatile pointer
Recovery: fixed mmap

PAllocator Lightweight primitives PPtr: file Id + offset Reference passing No To appear
Recovery: new mmap

Recommended starting point: NVML - rich, open source, actively developed
() Beseeese 24

DRESDEN

http://pmem.io/

Vo
m Dresden Database
o Systems Group

Fundamental Building Blocks

Persistent . Testing tools
Persistent Data
Memory for NVM-Based
. Structures+ o
Management Software

* Memory management techniques for large-scale persistent-memory-based system. VLDB 2017.
+ FPTree: A hybrid SCM-DRAM persistent and concurrent B-Tree for Storage Class Memory. SIGMOD 2016.
° On testing persistent-memory-based software. DaMoN 2016 (co-located with SIGMOD 2016).

TECHNISCHE
UNIVERSITAT
@ DRESDEN 2 5

Vo
m Dresden Database
o Systems Group

Fundamental Building Blocks

Persistent . Testing tools
Persistent Data
Memory for NVM-Based
. Structures+ 0
Management Software

* Memory management techniques for large-scale persistent-memory-based system. VLDB 2017.
+ FPTree: A hybrid SCM-DRAM persistent and concurrent B-Tree for Storage Class Memory. SIGMOD 2016.
° On testing persistent-memory-based software. DaMoN 2016 (co-located with SIGMOD 2016).

TECHNISCHE
UNIVERSITAT
@ DRESDEN 2 6

: : ZA
NVRAM Performance Implications w» oo 005

Slowdown

6

5

| —@— B -Tree read
| —=— Rand. read
—A— BT _Tree write

 —4— Seq. read

Random memory accesses
suffer from higher latencies

Sequential memory accesses
are resilient to higher latencies

CCCCCCCCC

E
UNIVERSITAT
RESDEN 27

90 200 300 400 500 600 700

Latency[ns]

Hybrid NVM-DRAM Data Structures TV @ Drescen Database

Inner nodes Iin
DRAM for better
performance

Leaves in NVM to
ensure durability

Recovery is up to 100x faster than a full rebuild
Near DRAM performance with only 3% of data in DRAM

m EEEEEEEEEE 8

Unsorted Leaves

Sorted leaf

Counter
\
1 3 7 |14
b | c
—_—
2 3 7 | 14
. b | c
v
3 3 517 (14
d b | c
v
4 4 5117 |14

I Potential
corruption

I Writes slower
than reads

Vo
m Dresden Database
o Systems Group

Unsorted leaf

1' 7114|121 10
e| f|lglh
) 51| 14| 12 | 10
—>
d| f|g|h
3 —_
| 5114|1210
d|flgl|h

Bitmap

p-atomic

p-atomicity + decreased
number of writes

29

: C ZA
Fingerprinting w» Dresden Database

A fingerprint is a 1-byte hash of a key

ﬁnge/rgrints

bitmap

s Group

pNext [HEEEHE KV={(k1,01)...(kn V)

lock

—

optimally one-Cache-line-sized

Fingerprints act as a filter

30

Fingerprinting

- 256
83 128
g% 04
E & 32
= >
= o 16
o =4
8« 8
3 3 4
ol
n = 2
1

y/
W§ Dresden Database
o Systems Group

<«— | |near search

<+— Binary search

+— Fingerprinting

4 &8 16 32 64 128256

Number of leaf entries m

One expected key probe for up to 512 entries

31

Systems Group

Hardware Transactional Memory W§ Dresden Database

Allows optimistic execution of critical sections

Time Thread 1 Thread 2 L1 Cache
Transactions keep
XBEGIN == read and write sets
Critical YBEGIN in L1 cache
section Critical
D SECTOT \CLFLUSH - Abort!
XEND

\4

There is an incompatibility between HTM and NVM

32

Selective Concurrency w» Dresden Database

33

Selective Concurrency: Insertion

— — — — — — — — — — — — — — — — —

' Transient l

I
I
1 3 4 I
e
1 2 3 4 I
I

ﬂ?ﬁ |
B-B-E-5-
I

I

Persistent

r

L

Vo
m Dresden Database
o Systems Group

1. Find and || 2. Modify || 3. Update || 4. Unlock
lock leaf leaf parents leaf
XBEGIN

CLFLUSH XEND

XBEGIN

Reconcile HTM and NVM

34

/o
W§ Dresden Database
o Systems Group

Fundamental Building Blocks

Persistent . Testing tools
Persistent Data
Memory for NVM-Based
. Structures+ 5
Management Software

* Memory management techniques for large-scale persistent-memory-based system. VLDB 2017.
+ FPTree: A hybrid SCM-DRAM persistent and concurrent B-Tree for Storage Class Memory. SIGMOD 2016.
° On testing persistent-memory-based software. DaMoN 2016 (co-located with SIGMOD 2016).

TECHNISCHE
UNIVERSITAT
@ DRESDEN 3 5

Bug Example

BN —

L =

Simplified vector append operation:

array|[size] = val;

size++;

persist (&size);

array[silize] = val;
' <<

Slzet+;

persist (&size);

Missing persist —

V/
m Dresden Database
o Systems Group

persist (&array[size]),; Correct code

Cache

alaslcin

NVM

4l

36

Suspend-Test-Resume

Main
Process

Normal
Execution

Simulated

V/
m Dresden Database
o Systems Group

— Simulate power failure

Original Mirror
Files Files
~—

Replicate Flushes

fork recovery test process

Copy-on-Write

A 4

Crash

Resume
Execution

v

+ Fast and automated

Child |[]...|]

Process

Recovery procedure
+ user-defined tests

- Not exhaustive

37

Bug Example Revisited

2| size++;"
3| persist (&size);

I|array[size]

Vo
m Dresden Database
o Systems Group

val;

Missing persist

Cache

4alalBlcip

Original File

4 ABIC D

Mirror File

4l

Efficiently catch missing persistence primitives

38

V/
m Dresden Database
o Systems Group

Some more challenges...

39

Operating System Limitations w» phaden Database

» Filesystems not designed to handle millions of files
- NVM programming model relies on file creation and mmapping
- Single pool not an option (e.g., due to fragmentation)

»Page Table (lack of) scalability
- Memory mapping millions of files upon startup a challenge
- Slow memory reclamation upon process termination

EEEEEEEEEE
UNIVERSITAT
@ DRESDEN 4 O

. . . ZA
Process Termination Duration w»mes"e” Database

mmap, touch, kill
1152 cores 32-socket 16 TByte RAM E7-8890 v3

N
Ul

N
@)

Total time in minutes
o u o O
-
-
|
I

ol

N I

co I
—
]
]
I

1 2 3 4 5 9 10 11 12 13 14 15
TBytes of memory used

Courtesy of Robert Kettler and Daniel Booss 41

. / \
Conclusion w» Dresden Database

» NVM brings great opportunities for databases
— Near-instant recovery
— Remove the need to traditional write-ahead logging
— Better transaction throughput and latency
— Larger, cheaper, more energy-efficient machines

Hybrid SCM-DRAM data structures is a promising approach

» NVM brings great challenges as well
— Novel programming model - novel programming challenges
— Operating systems not ready for NVM
— Aggravated corruption risks, novel failure scenarios
— Exhaustive testing not feasible: theoretical guarantees a prerequisite

EEEEEEEEEE
UNIVERSITAT
@ DRESDEN 42

A
References w» gsfgnigsg Database

Our work
— Memory Management Techniques for Large-Scale Persistent-Main-Memory Systems.
Oukid et al. In VLDB 2017.

— Data Structure Engineeting for Byte-Addressable Non-Volatile Memory. Oukid |. &
Lehner W. In SIGMOD 2017 (Tutorial)

— Slides = http://sigmod2017.org/sigmod-program/#stutorial6
— Storage Class Memory and Databases: Opportunities and Challenges. Oukid et al. In
Informatoin Technology - it 2017.

— FPTree: A Hybrid SCM-DRAM Persistent and Concurrent B-Tree for Storage Class
Memory. Oukid et al. In SIGMOD 2016.

— On Testing Persistent-Memory-Based Software. Oukid et al. In DaMoN 2016.
— Instant Recovery for Main Memory Databases. Oukid et al. In CIDR 2015.

— SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery. Oukid et al. In
DaMoN 2014.

TECHNISCHE
@ UNIVERSITAT
DRESDEN

43

http://sigmod2017.org/sigmod-program/#stutorial6

: ZA
Further Readings w» oresden Database

Resources

— SNIANVM Programming Model V1.1. Technical report, 2015. http://www.snia.org/sites/default/files/NVMProgrammingModel_v1.1.pdf.
— Intel Architecture Instruction Set Extensions Programming Reference. http://software.intel.com/en-us/intel-isa-extensions.
Architecting SCM

— Scalable high performance main memory system using phase-change memory technology. Qureshi et al. In ISCA 2009.

— Architecting phase change memory as a scalable dram alternative. Lee et al. In SIGARCH Comput. Archit. News, 37(3), 2009.

— Systems and Applications for Persistent Memory. SR. Dulloor. PhD Thesis, 2016.
https://smartech.gatech.edu/bitstream/handle/1853/54396/DULLOOR-DISSERTATION-2015.pdf.

— System software for persistent memory. Dulloor et al. In EuroSys 2014.

Persistent Memory Management
— Mnemosyne: Lightweight persistent memory. Volos et al. In ACM SIGPLAN Not., 47(4), 2011.

— Nv-heaps: Making persistent objects fast and safe with next-generation, non-volatile memories. Coburn et al. In ACM SIGPLAN Not,,
47(4), 2011.

— Rewind: Recovery write-ahead system for in-memory non-volatile data-structures. Chatzistergiou et al. In VLDB 2015.

— NVML: A collection of open-source libraries by Intel to manage SCM. http://pmem.io/nvml/

— Makalu: Fast Recoverable Allocation of Non-volatile Memory. Bhandari et al. In OOPSLA'16.

— Consistent, durable, and safe memory management for byte-addressable non volatile main memory. Moraru et al. In TRIOS'13.
— WAIlloc: An Efficient Wear-Aware Allocator for Non-Volatile Main Memory. Yu et al. In IEEE IPCCC'15.

— nvm malloc: Memory Allocation for NVRAM. Schwalb et al. In ADMS@VLDB'15.

TECHNISCHE
UNIVERSITAT
@ DRESDEN 44

http://www.snia.org/sites/default/files/NVMProgrammingModel_v1.1.pdf
http://software.intel.com/en-us/intel-isa-extensions
https://smartech.gatech.edu/bitstream/handle/1853/54396/DULLOOR-DISSERTATION-2015.pdf
http://pmem.io/nvml/

: ZA
Further Readings w» oresden Database

P

ersistent Data Structures
Rethinking database algorithms for phase change memory. Chen et al. In CIDR 2011.
Consistent and durable data structures for non-volatile byte-addressable memory. Venkataraman et al. In USENIX FAST, 2011.

NV-Tree: A consistent and workload-adaptive tree structure for non-volatile memory. Yang et al. In IEEE Transactions on Computers,
2015.

Persistent b+-trees in non-volatile main memory. Chen et al. In VLDB 2015.

Testing of Persistent Software

An open-source extension of Valgrind for byte-addressable non-volatile memory. https://github.com/pmem/nvml
Yat: A validation framework for persistent memory software. Lantz et al. In USENIX ATC, 2014.

NVM and Databases

©

High Performance Database Logging using Storage Class Memory. Fang et al. In ICDE 2011

Storage Management in the NVRAM-Era. Pelley et al. In VLDB 2014

Scalable Logging through Emerging Non-Volatile Memory. Wang et al. In VLDB 2014

NVRAM-Aware Logging in Transaction Systems. Huang et al. In VLDB 2015

Let's Talk About Storage & Recovery Methods for Non-Volatile Memory Database Systems. Arulraj et al. In SIGMOD 2015
FOEDUS: OLTP engine for a thousand cores and NVRAM. H. Kimura. In SIGMOD 2015

REWIND: Recovery write-ahead system for in-memory non-volatile data-structures. Chatzistergiou et al. In VLDB 2015

TECHNISCHE
UNIVERSITAT
DRESDEN 45

https://github.com/pmem/nvml

