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From Disk to Main Memory w»mes"e” Database
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From Disk to Main Memory w»mes"e” Database

P rO C e S S O r . . % 8 pezrcent degradation/bit/generation
_ Intrinsically hard to further & /
Y increase DRAM's density £ =
Server Memor RN
DRAM . Tei?‘moﬁ)sgy nisde (gﬁ'l) =i
DRAM DIMM Prices (USD)
DB (main data) Cost per GB does not scale 7 .
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Byte-Addressable Non-Volatile Memory WQ Dresden Database

Non-
Volatile
We assume . . Low. _ |
hardware-based L'erggifa\évége asymmetric Vl\/rltes n;])tlceabéy
wear-leveling latency slower than reads
NVRAM
Byte- v Denser More capacity and
cheaper than DRAM
han DRAM
addressable than - 3 TB per socket for
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efficient
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NVRAM as Transient Main Memory w»m“de” Patabase

DRAM as hardware-managed
cache for NVRAM
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NVRAM as Persistent Main Memory w»m“de” Database

* SNIA recommends to access

application NVRAM via file mmap
address
space . ! !  load/store; ¢ An NVRAM-aware filesystem
— T : i : T ides zero-copy mmap,
Virtual memory subsystem ' provide
— ' 1 ! | E bypassing the OS page cache
urrer
pool - DRAM - mmap()i
|

- Several filesystem proposals:
NOVA, PMES, SCMES, etc.

| file API
NVRAM-optimized filesystem

| file API'
Disk filesystem

- Linux ext4 and xfs already
provide Direct Access support

NVRAM may serve as memory and storage at the same time
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Towards a Single-Level Database W§ Dresden Database
Architecture*

. Hybrid NVM-DRAM architecture
Transactions » Primary data in NVM
o L 2 > Secondary data in DRAM or NVM
(Primalry Data) Secgnda"y - Near-instant recovery
micrologging ata
- No WAL log
- Low TX latency

*Instant Recovery for Main-Memory Databases. Oukid et al. In CIDR 2015.
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NVM can revolutionize database architecture

Is it a free lunch?




Data Durability

Little control over when data is
persisted

- CPU Cache eviction policy
- Memory reordering

Enforce order & durability of stores
- CLFLUSH, CLFLUSHOPT, CLWB
- MFENCE, SFENCE, LFENCE

- Non-temporal stores (MOVNT)

New primitives are being researched

- e.g., HOPS and its OFENCE and
DFENCE barriers
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Data Durability w» Dresden Database

Ensure preceding writes

/ CPU \

made it to the store buffer /“4(3:’ core || Core "}O\m
- guarantee that the latest \itore Buffer Store Buffer
data is flushed N L1 L1

_ R AN .
N

SFENCE + CLWB + SFENCE L3 /

/

Ensure CLWB
finishes executing

NVRAM Controller

NVRAM Device
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N

Ensure the NT
store buffer is

drained to
NVRAM
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Data Durability: Example WQDresden Database
Simplified array append operation

void push_back(int val){

m_array[m size] = val; What is in NVRAM after the insertion?
sfence(); % m_size m_array

clwb(&m_array[m _size]); 0 x
sfence();

m_size++;« ! xCorrupt!

sfence(); j( 3 017

clwb(&m_size); - x
sfence(); 1 (
}

myArray.push_back(2017);

Need to enforce write ordering and durability at cache-line granularity
) fivses 12




Partial Writes

p-atomic store - executes in a one CPU cycle

y/
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o Systems Group

Persist = sfence + clwb + sfence

Currently only 8-Byte stores are p-atomic on Intel x86

estr‘cpy(ptr‘, “SIGMOD Tutorial”);
persist(ptr, 15);

flag = true;

persist(&flag);

CL1

S

O

r

Cache

cL2|ilall

What is in NVRAM?

1.

2."SIGM”

3."SIGMOD T

4."SIGMOD Tutor”

5."SIGMOD Tutorial”
6."\O\O\O\O\O\O\O\O\O\0\0\Oial"

N CL2 evicted before CL1, e.g., due to a context switch

Need software-built p-atomicity for writes > 8 bytes
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Persistent Memory Leaks w» oresden Database

New class of memory leaks resulting from failures
Example: crash during a linked-list insertion

void append(int val){

Persistent allocation
node *newNode = new node()"”’//*

J

newNode->value = val; m tail

persist(&(newNode->value));
5m_tail->next = newNode; E[ Failure-induced

¥

persist(m tail); ’I persistent
m_tail = newNode; m_tail memory leak!

List.append(9);
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Avoiding memory leaks is a requirement
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Data

-
-

A
Recove ry w» gsfgnigreog Database
Application

-

~~. Address space lost upon restart

Application - —> stored virtual pointers become invalid

address space

Filesystem provides a naming scheme

One file per object not realistic
- How to recover objects?

Need persistent, recoverable NVRAM addressing scheme
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Testing of NVRAM-Based Software w»m“de” Database

Traditional storage media  __--- e |
accessed via DRAM > = - NVRAM directly exposed

D . <k application to the user space -
ata corruption risks address space more corruption risks
minimized

| 1 load/store
|

Virtual memory subsysiem : , ,
! ! Dangling pointer -
mmap() | persistent data corruption

NVRAM-optimizec
Missing or misplaced
persistence primitives;

wrong store order, etc.
Need testing and validation tools for NVRAM-based software

Corruption happens first
in DRAM - catch the
corruption before it
propagates to disk

TECHNISCHE
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NVRAM Programming Models

We look at the following NVRAM
programming challenges:

1.

How to provide a recoverable
addressing scheme?

How to avoid persistent memory
leaks?

How to ensure data consistency?

-
-

-

Dresden Database

SARL >~
o Systems Group
Application

~
~ o

~

application
.-. address space .

NVRAM library

;————————————————————————————————~

NVRAM

DRAM

__________________________________




Recoverable Addressing Scheme

Start address

Two alternatives
= Fixed-address memory-mapping Offset
Persistent pointer = virtual pointer

» Unrestricted memory-mapping

Dresden Database

Systems Group

Persistent pointer - file ID + offset

Volatile pointer = File start address + Offset
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Recoverable Addressing Scheme w»mes"e” Patabase

Fixed-address memory-mapping Unrestricted memory-mapping
Pros: Pros:

- Familiar interface - Safe, easy-to-implement, and
- No runtime overhead portable approach

Cons: Cons:

- Fixed address is a security issue - Potential overhead for

- Can unmap existing mappings converting to regular pointer

Unrestricted memory-mapping the safest way to go
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Preventing Memory Leaks w» Dresden Database

—> Traditional interface has a "blind spot”

Three alternatives
» Reference passing
- allocate(PPtr &pptr, size t allocSize)
pptr is owned by the data structure

= Transactional logging
- Wrap operation involving allocation within fail-atomic transaction
BEGIN TX {pptr = allocate(size); persist(&pptr);} END TX

» Offline garbage collection
- Scan allocated blocks upon recovery to detect memory leaks

EEEEEEEEEE
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Preventing Memory Leaks w» Dresden Database

Reference Transactional Offline Garbage
Passing Logging Collection
Pros: Pros: Pros:
- Explicit memory - Data structure canbe - Catch existing memory
management leak-oblivious leaks upon restart
- No runtime overhead - No runtime overhead
Cons: Cons: Cons:
- Data structure must be - Runtime overhead due - Restricts programming
aware of memory leaks to write-ahead log language

- Slow recovery

Reference passing closer to becoming the standard

EEEEEEEEEE
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Consistency Handling w» Dresden Database

Transactional Model Lightweight Primitives

Provide durable transaction semantics  Provide basic functionality, e.g., memory

for NVRAM programming allocation, leak avoidance etc.
void push_back(int val){ void push_back(int val){
TXBEGIN { m_array[m size] = val;
m_array[m_size] = val; persist(&m_array[m_size]);
m_size++; m_size++;
} TXEND persist(&m_size);
} }
At least 4 writes Only 2 writes

EEEEEEEEEE
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Consistency Handling w» Dresden Database

Transactional Model Lightweight Primitives
Pros: Pros:
- Easy to use and to reason about - Low-level optimizations possible
Cons: Cons:
- Overhead due to systematic logging - Programmer must reason about
- Low-level optimizations not possible the application state

- Harder to use and error prone

High Performance - Lightweight Primitives

EEEEEEEEEE
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Existing NVRAM Libraries w»mesden Database

PPtr = Persistent Pointer

Approach Consistency Addressing Scheme Leak Prevention Compiler Source
Handling support

Mnemosyne Transactional & PPtr: file offset Reference passing | ASPLOS11
Lightweight primitives = Recovery: new mmap in  Transactional logging
reserved address space

NV-Heaps Transactional PPtr: file Id + offset Transactional logging No ASPLOS11
Recovery: new mmap
Intel NVML  Transactional & PPtr: file Id + offset Reference passing | No http://pmem.io/
Lightweight primitives ~ Recovery: new mmap Transactional logging
Atlas Transactional (sections  PPtr: volatile pointer Transactional logging Yes OOPSLA14
determined by locks) Recovery: fixed mmap
REWIND Transactional Undefined, hints > Transactional logging Yes VLDB'15

PPtr: volatile pointer
Recovery: fixed mmap

PAllocator Lightweight primitives  PPtr: file Id + offset Reference passing No To appear
Recovery: new mmap

Recommended starting point: NVML - rich, open source, actively developed
() Beseeese 24
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http://pmem.io/
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Fundamental Building Blocks

Persistent . Testing tools
Persistent Data
Memory for NVM-Based
. Structures+ o
Management Software

* Memory management techniques for large-scale persistent-memory-based system. VLDB 2017.
+ FPTree: A hybrid SCM-DRAM persistent and concurrent B-Tree for Storage Class Memory. SIGMOD 2016.
° On testing persistent-memory-based software. DaMoN 2016 (co-located with SIGMOD 2016).
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Fundamental Building Blocks

Persistent . Testing tools
Persistent Data
Memory for NVM-Based
. Structures+ 0
Management Software

* Memory management techniques for large-scale persistent-memory-based system. VLDB 2017.
+ FPTree: A hybrid SCM-DRAM persistent and concurrent B-Tree for Storage Class Memory. SIGMOD 2016.
° On testing persistent-memory-based software. DaMoN 2016 (co-located with SIGMOD 2016).
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NVRAM Performance Implications w» oo 005

Slowdown

6

5

| —@— B -Tree read
| —=— Rand. read
—A— BT _Tree write

 —4— Seq. read

Random memory accesses
suffer from higher latencies

Sequential memory accesses
are resilient to higher latencies

CCCCCCCCC

E
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Hybrid NVM-DRAM Data Structures TV @ Drescen Database

Inner nodes Iin
DRAM for better
performance

Leaves in NVM to
ensure durability

Recovery is up to 100x faster than a full rebuild
Near DRAM performance with only 3% of data in DRAM

m EEEEEEEEEE 8




Unsorted Leaves

Sorted leaf

Counter
\
1 3 7 |14
b | c
—_—
2 3 7 | 14
. b | c
v
3 3 517 (14
d b | c
v
4 4 5117 |14

I Potential
corruption

I Writes slower
than reads
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Unsorted leaf

1' 7114|121 10
e| f|lglh
) 51| 14| 12 | 10
—>
d| f|g|h
3 —_
| 5114|1210
d|flgl|h

Bitmap

p-atomic

p-atomicity + decreased
number of writes
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Fingerprinting w» Dresden Database

A fingerprint is a 1-byte hash of a key

ﬁnge/rgrints

bitmap

s Group

pNext [HEEEHE KV={(k1,01)...(kn V)

lock

—

optimally one-Cache-line-sized

Fingerprints act as a filter

30



Fingerprinting

- 256
83 128
g% 04
E & 32
= >
= o 16
o =4
8« 8
3 3 4
ol
n = 2
1
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W§ Dresden Database
o Systems Group

<«— | |near search

<+— Binary search

+— Fingerprinting

4 &8 16 32 64 128256

Number of leaf entries m

One expected key probe for up to 512 entries
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Systems Group

Hardware Transactional Memory W§ Dresden Database

Allows optimistic execution of critical sections

Time Thread 1 Thread 2 L1 Cache
Transactions keep
XBEGIN == read and write sets
Critical YBEGIN in L1 cache
section Critical
D SECTOT \CLFLUSH - Abort!
XEND

\4

There is an incompatibility between HTM and NVM

32



Selective Concurrency w» Dresden Database
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Selective Concurrency: Insertion

— — — — — — — — — — — — — — — — —

' Transient l

I
I
1 3 4 I
e
1 2 3 4 I
I

ﬂ?ﬁ |
B-B-E-5-
I

I

Persistent

r

L
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1. Find and || 2. Modify || 3. Update || 4. Unlock
lock leaf leaf parents leaf
XBEGIN

CLFLUSH  XEND

XBEGIN

Reconcile HTM and NVM

34
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Fundamental Building Blocks

Persistent . Testing tools
Persistent Data
Memory for NVM-Based
. Structures+ 5
Management Software

* Memory management techniques for large-scale persistent-memory-based system. VLDB 2017.
+ FPTree: A hybrid SCM-DRAM persistent and concurrent B-Tree for Storage Class Memory. SIGMOD 2016.
° On testing persistent-memory-based software. DaMoN 2016 (co-located with SIGMOD 2016).
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Bug Example

BN —

L =

Simplified vector append operation:

array|[size] = val;

size++;

persist (&size);

array[silize] = val;
' <<

Slzet+;

persist (&size);

Missing persist —

V/
m Dresden Database
o Systems Group

persist (&array[size]),; Correct code

Cache

alaslcin

NVM

4l
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Suspend-Test-Resume

Main
Process

Normal
Execution

Simulated

V/
m Dresden Database
o Systems Group

— Simulate power failure

Original Mirror
Files Files
~—

Replicate Flushes

fork recovery test process

Copy-on-Write

A 4

Crash

Resume
Execution

v

+ Fast and automated

Child |[]...| ]

Process

Recovery procedure
+ user-defined tests

- Not exhaustive
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Bug Example Revisited

2| size++;"
3| persist (&size);

I|array[size]

Vo
m Dresden Database
o Systems Group

val;

Missing persist

Cache

4alalBlcip

Original File

4 ABIC D

Mirror File

4l

Efficiently catch missing persistence primitives
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Some more challenges...
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Operating System Limitations w» phaden Database

» Filesystems not designed to handle millions of files
- NVM programming model relies on file creation and mmapping
- Single pool not an option (e.g., due to fragmentation)

»Page Table (lack of) scalability
- Memory mapping millions of files upon startup a challenge
- Slow memory reclamation upon process termination

EEEEEEEEEE
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Process Termination Duration w»mes"e” Database

mmap, touch, kill
1152 cores 32-socket 16 TByte RAM E7-8890 v3

N
Ul

N
@)

Total time in minutes
o u o O
-
-
|
I

ol

N I

co I
—
]
]
I

1 2 3 4 5 9 10 11 12 13 14 15
TBytes of memory used

Courtesy of Robert Kettler and Daniel Booss 41
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Conclusion w» Dresden Database

» NVM brings great opportunities for databases
— Near-instant recovery
— Remove the need to traditional write-ahead logging
— Better transaction throughput and latency
— Larger, cheaper, more energy-efficient machines

Hybrid SCM-DRAM data structures is a promising approach

» NVM brings great challenges as well
— Novel programming model - novel programming challenges
— Operating systems not ready for NVM
— Aggravated corruption risks, novel failure scenarios
— Exhaustive testing not feasible: theoretical guarantees a prerequisite

EEEEEEEEEE
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