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Analytic formulation (Monge 1781)

• Initial distribution : probability measure µ

• Final distribution : probability measure ν

Problem : find an optimal transference plan T ∗

PM
2 := sup

T∈T (µ,ν)

∫
c
(
x ,T (x)

)
µ(dx)

where T (µ, ν) of all maps T : x 7−→ y = T (x) such that

ν = µ ◦ T−1

Nizar Touzi Optimal transportation and bounds on dervatives



Optimal Transportation– Monge-Kantorovitch
Martingale Transportation Problem

Multi-marginals Martingale Optimal Transportation

Probabilistic formulation (Kantorovich 1942)

Randomization of transference plans :

PK
2 := sup

P∈P2(µ,ν)

∫
c(x , y)P(dx , dy)

where P2(µ, ν) is the collection of all joint probability measures
with marginals µ and ν

Example : c(x , y) = −|x − y |2 =⇒ maximization of correlations :

sup
P∈P2(µ,ν)

EP[XY ]
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Kantorovich duality

Duality in linear programming, Legendre-Fenchel duality...

D0
2 := inf

(ϕ,ψ)∈D0
2

∫
ϕ(x)µ(dx) +

∫
ψ(y)ν(dy)

D0
2 :=

{
(ϕ,ψ) : ϕ+ ∈ L1(µ), ψ+ ∈ L1(ν), ϕ⊕ ψ ≤ c

}
where ϕ⊕ ψ(x , y) := ϕ(x) + ψ(y)

• Inequality PK
2 ≥ D0

2 obvious

• Reverse inequality needs Hahn-Banach theorem
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Back to the original Monge formulation

• PK
2 ≥ PM

2 : Kantorovitch formulation ≡ relaxation of Monge one

Theorem (Y. Brenier)

Let c ∈ C 1 with cxy > 0. Assume µ has no atoms. Then there is a
unique optimal transference plan :

P∗(dx , dy) = µ(dx)δ{T∗(x)}(dy) with T ∗ = F−1
ν ◦ Fµ

Consequently PM
2 = PK

2 , and T ∗ solves both problems.

• T ∗ : monotone rearrangement, Frechet-Hoeffding coupling

• cxy > 0 : Spence-Mirrlees condition
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On the Spence Mirrlees condition

The solution of the Kantorovitch optimal transportation problem

PK
2 := sup

P∈P2(µ,ν)

∫
c(x , y)P(dx , dy)

is not modified by the change of performance criterion :

c(x , y) −→ ĉ(x , y) := c(x , y) + a(x) + b(y)

Notice that the Spence Mirrlees condition cxy > 0 is stable by this
transformation
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Financial interpretation

• X ∼ µ and Y ∼ ν prices of two assets at time 1

• µ and ν identified from market prices of call options :

Cµ(K ) =

∫
(x − K )+µ(dx), Cν(K ) =

∫
(y − K )+ν(dy)

(Breeden-Litzenberger 1978)

• c(X ,Y ) payoff of derivative security

• Robust bounds on dervative’s price :

inf
P∈P2(µ,ν)

EP[c(X ,Y )] and sup
P∈P2(µ,ν)

EP[c(X ,Y )]
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Financial interpretation of the dual problem

• ϕ(X ), ψ(Y ) : optimal Vanilla position in Assets X and Y

• Can be expressed as a combination of calls/puts (Carr-Madan) :

g(s) = g(s∗)+(s−s∗)g ′(s∗)+

∫ s∗

0
(K−s)+g ′′(K )dK+

∫ ∞
s∗

(s−K )+g ′′(K )dK

so their market market prices are
∫
ϕdµ and

∫
ψdν

• Then

D0
2 = inf

(ϕ,ψ)∈D0
2

∫
ϕ(x)µ(dx) +

∫
ψ(y)ν(dy)

is the cheapest static position in X and Y so as to superhedge
c(X ,Y )
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Lower bound

Set c̄(x̄ , y) := −c(−x̄ , y). Then

inf
P∈P2(µ,ν)

EP[c(X ,Y )] = − sup
P∈P2(µ,ν)

EP[c̄(−X̄ ,Y )]

where

• X̄ := −X ∼ µ̄ with c.d.f. Fµ̄(x̄) := 1− Fµ(−x̄)

• c̄ satisfies the Spence Mirrlees condition, whenever c does. So,
the lower bound is attained by the anti-monotone transference
plan :

P∗(dx , dy) := µ(dx)δ{T∗(x)}(dy), T∗(x) := F−1
ν ◦ Fµ̄
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Multimarginals Optimal transportation problem

• Gangbo and Świȩch 1998, Carlier 2003, Pass 2011

sup
P∈Pn(µ)

E[c(X )]

where X = (X1, . . . ,Xn), µ = (µ1, . . . , µn), and Pn(µ) = ...
• Pass 2012

sup
P∈P∞(µ)

E
[
c
(∫ 1

0
Xtdt

)]
where X = (Xt)t∈[0,1], µ = (µt)t∈[0,1], and P∞(µ) = ...
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One asset observed at two future dates

Our interest now is on the case where

X = X0 and Y = X1

are the prices of the same asset at two future dates 0 and 1

Interest rate is reduced to zero

This setting introduces a new feature :
the possibility of dynamic trading the asset between times 0
and 1
duality converts this possibility into the martingale condition
EP[Y |X ] = X
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The superhedging problem

• Start from initial capital V0, hold h(X ) shares shares of X =⇒

V0 + h(X )(Y − X )

• Trading in all European call options of any strike is possible =⇒

VH,ϕ,ψ
1 := V0 + h(X )(Y − X ) + ϕ(X )− µ(ϕ) + ψ(Y )− ν(ψ)

Superhedging problem :

v0 := inf
{
V0 : V h,ϕ,ψ

1 ≥ c(X ,Y ) for some h ∈ L0, ϕ ∈ L1(µ), ψ ∈ L1(ν)
}
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Superhedging ≡ Kantorovitch dual problem

Equivalently :

v0 = D2(µ, ν) = inf
(ϕ,ψ,h)∈D2

{
µ(ϕ) + ν(ψ)

}
where µ(ϕ) =

∫
ϕdµ, µ(ψ) =

∫
ψdν, and

D2 :=
{

(ϕ,ψ, h) : ϕ+ ∈ L1(µ), ψ+ ∈ L1(ν), h ∈ L0

ϕ⊕ ψ + h⊗ ≥ c
}

h⊗(x , y) := h(x)(y − x)
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The Martingale Optimal Transportation Problem

The corresponding dual problem is :

P2(µ, ν) := sup
P∈M2(µ,ν)

EP[c(X ,Y )
]

whereM2(µ, ν) :=
{
P ∈ P2(µ, ν) : EP[Y |X ] = X

}
and we recall P2(µ, ν) :=

{
P ∈ PR2 : X ∼P µ,Y ∼P ν

}
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Implication of the convex ordering

Kellerer 1972 :M2(µ, ν) 6= ∅ iff µ and ν have same mean and
µ � ν (convex), i.e. with δF := Fν − Fµ∫

δF (ξ)dξ = 0 and for all k
∫

(−∞,k)
δF (ξ)dξ ≥ 0
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Duality

Assume c(x , y) USC with linear growth, and recall

M2(µ, ν) :=
{
P : X ∼P µ, Y ∼P ν and EP[Y |X ] = X

}
D2 :=

{
(ϕ,ψ, h) ∈ L1(µ)× L1(ν)× L0 : ϕ⊕ ψ + h⊗ ≥ c

}
• The inequality P2(µ, ν) ≥ D2(µ, ν) is obvious

Theorem (Beiglbock, Henry-Labordère, Penkner 2011)

P2(µ, ν) = D2(µ, ν). Moreover existence holds for the Martingale
Transportation Problem P2(µ, ν)

• existence for the dual problem D2(µ, ν) may fail
• duality result is not needed for our main result
• Continuous-time : Galichon, Henry-Labordère, T. 2011, Dolinsky
& Soner 2012
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Worst Case Financial Market – Brenier Theorem

• The solution P∗ ∈M2(µ, ν) always exists

• Question 1 : Is there a transference plan, i.e. optimal
transportation of µ to ν through a map T ∗ ? (Brenier Theorem)

Can not be a map, unless µ = ν !

• Question 2 : Is there a transference plan along a minimal
randomization

Y = Tu(X ) with probability q(X )

X ��
��1

PPPPq Y = Td (X ) with probability 1− q(X )
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Previous literature

Hobson and Neuberger (MF 2012) :
Analyse the specific case c(x , y) = |x − y |
They characterize an optimal P∗ defined by a transference
plan :

P∗(dx , dy) = µ(du)
[
q(x)δ{Tu(x)}(dy) + (1− q)(x)δ{Td (x)}(dy)

]
where

q(x) :=
x − Td (x)

Tu(x)− Td (x)
, Td (x) ≤ x ≤ Tu(x)

and
Tu and Td are non-decreasing
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Previous literature : Beiglblock and Juillet (2012)

Definition
P ∈M2(µ, ν) is left-monotone if P[(X ,Y ) ∈ Γ] = 1, for some
Γ ⊂ R× R, and

for all (x , y1), (x , y2), (x ′, y ′) ∈ Γ : x < x ′ =⇒ y ′ 6∈ (y1, y2)

Definition
P ∈M2(µ, ν) is called a left curtain if P is left-monotone and
concentrated on two graphs

P = µ(dx)
[
q(x)δ{Tu(x)}(dy)(1− q)(x)δ{Td (x)}(dy)

]
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Previous literature : Beiglblock and Juillet (2012)

Theorem
µ2 � µ1, µ1 without atoms. Then :
(i) there exists a unique left-monotone P∗ ∈M2(µ, ν), and P∗ is a
left-curtain
(ii) P∗ is a solution P2(µ, ν) in the following cases :

c(x , y) = h(x − y) with h′ strictly convex,
c(x , y) = ϕ(x)ψ(y), ϕ,ψ ≥ 0, ψ strict convex, ϕ decreasing

Our objective :
explicit derivation of P∗

extend the class of couplings c for which P∗ is optimal
extend to the multi-marginals case
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Explicit left-monotone transference plan

Theorem
Let µ, ν have finite first moment, same mean, µ � ν, and µ
without atoms. Then, the unique left-monotone transference plan is

P∗(dx , dy) =
[
q(x)δTd (x)(dx) + (1− q)(x)δTu(x)(dx)

]
µ(dx)

where Tu,Td are explicitly defined as follows...
In particular, outside jumps, Tu and Td solve the following ODEs :

d(δF ◦ Td ) = (1− q)dFµ, d(Fν ◦ Tu) = qdFµ
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Duality and explicit Martingale Version of the Brenier
Theorem

Theorem
Let µ, ν have finite first moment, same mean, µ � ν, and µ
without atoms. Assume that cxyy > 0. Then

P2 = D2

and there is an explicit dual optimizer (ϕ∗, ψ∗, h∗) defined as
follows...
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The martingale version of the Spence-Mirrlees condition

... is cxyy > 0 :

• Notice that the solution of the Martingale Transport problem is
not altered by the change of performance criterion :

c(x , y) −→ ĉ(x , y) := c(x , y) + a(x) + b(y) + h(x)(y − x)

• ĉxyy = cxyy

• The conditions of Beiglblock and Juillet :
c(x , y) = h(x − y) with h′ strictly convex,
c(x , y) = ϕ(x)ψ(y), ϕ,ψ ≥ 0, ψ strict convex, ϕ decreasing

satisfy cxyy > 0
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Lower bound

Suppose cxyy > 0. Then

c̄(x̄ , ȳ) := −c(−x̄ ,−ȳ) satisfies c̄x̄ ȳ ȳ > 0

We exploit this symmetry to derive the lower bound :

inf
P∈M2(µ,ν)

EP[c(X ,Y )
]

= − sup
P∈M2(µ,ν)

EP[c̄(X̄ , Ȳ )
]

= EP∗[c(X ,Y )
]

where P∗ is the left-monotone transference plan constructed from

Fµ̄(x̄) := 1− Fµ(−x̄) and Fν̄(ȳ) := 1− Fν(−ȳ−)
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Construction : One local maximizer of δF

Easy case : Tu ↗ and Td ↘ after m1, and

P∗(dx , dy) = µ0(dx)
[
q(x)δ{Tu(x)}(dy) + (1− q(x))δ{Td (x)}(dy)

]
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Martingale transportation constraints

• First marginal is µ0, Martingale condition holds if q ∈ [0, 1]

• Second marginal :
either y ≤ m1, then
P∗[Y ∈ dy ] = dFµ(y) + E

[
(1− q)(X )1I{Td (X )∈dy}

]
. So

Y ∼P∗ ν with decreasing Td implies

d(δF ◦ Td ) = −(1− q)dFµ,

or y ≥ m1, then P∗[Y ∈ dy ] = E
[
q(X )1I{Tu(X )∈dy}

]
. So

Y ∼P∗ ν with increasing Tu implies that

d(Fν ◦ Tu) = qdFµ.
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Martingale transportation constraints

• First marginal is µ0, Martingale condition holds if q ∈ [0, 1]

• Second marginal :
either y ≤ m1, then
P∗[Y ∈ dy ] = dFµ(y) + E

[
(1− q)(X )1I{Td (X )∈dy}

]
. So

Y ∼P∗ ν with decreasing Td implies

d(δF ◦ Td ) = −(1− q)dFµ,

or y ≥ m1, then P∗[Y ∈ dy ] = E
[
q(X )1I{Tu(X )∈dy}

]
. So

Y ∼P∗ ν with increasing Tu implies that

d(Fν ◦ Tu) = qdFµ.
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Characterizing Tu and Td

By direct integration :

Tu(x) = g
(
x ,Td (x)

)
and Td (x) is the unique solution in (−∞,m1) of∫ F−1

ν ◦Fµ(x)

−∞
ξdFν(ξ)−

∫ x

−∞
ξdFµ(ξ)+

∫ Td (x)

−∞

(
g(x , ξ)−ξ

)
dδF (ξ) = 0

where

g(x , y) := F−1
ν

(
Fµ(x) + δF (y)

)
(compare to Fréchet-Hoeffding coupling !)
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Tu and Td as solutions of ODEs

• Assume F0 and F1 are differentiable. Then

T ′d = −(1− q)F ′0
δF ′ ◦ Td

, T ′u =
qF ′0

F ′1 ◦ Tu
on (−∞,m1)

where q = (x − Td )/(Tu − Td )

• If in addition m1 is a global maximizer of δF , and F0,F1 are twice
differentiable near m1,

Td (m1+) = m1, T ′d (m1+) = −1/2 and T ′′d (m1) = +∞

Nizar Touzi Optimal transportation and bounds on dervatives



Optimal Transportation– Monge-Kantorovitch
Martingale Transportation Problem

Multi-marginals Martingale Optimal Transportation

Formulation
Martingale Version of the Brenier Theorem
The main results

The Kantorovitch Dual Side

So far, we have :

EP∗ [c(X ,Y )] ≤ sup
M2(µ,ν)

EP[c(X ,Y )] ≤ inf
D2

{
µ(ϕ) + ν(ψ)

}
Our next goal is to construct

(ϕ∗, ψ∗, h∗) ∈ D2 such that µ(ϕ∗) + ν(ψ∗) = EP∗ [c(X ,Y )]

In particular, this would imply duality and existence hold

=⇒ ϕ∗(X ) + ψ∗(Y ) + h∗(X )(Y − X )− c(X ,Y ) = 0, P∗−a.s.

=⇒ ϕ∗(x) = maxy∈R{c(x , y)− ψ∗(y)− h∗(x)(y − x)}, x ∈ R
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Explicit Dual Optimizers

• Dynamic hedging strategy :∣∣∣∣∣ h′∗ = cx (.,Tu)−cx (.,Td )
Tu−Td

on (m1,∞)

h∗ = h∗ ◦ T−1
d + cy (., .)− cy (T−1

d , .) on (−∞,m1)

• Static hedging in Y :∣∣∣∣ ψ′∗ = cy (T−1
u , .)− h∗ ◦ T−1

u on (m1,∞)

ψ′∗ = cy (T−1
d , .)− h∗ ◦ T−1

d on (−∞,m1)

• Static hedging in X :

ϕ∗(x) = EP∗[c(x ,Y )− ψ∗(Y )|X = x
]

x ∈ R
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Multiple local maxima of δF
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Finitely many marginals martingale transportation

• Extension to finite discrete-time is immediate :
µi have same mean, and µn � . . . � µ0

Optimal transportation with n marginals constraint :

Pn(µ) = sup
P∈Mn(µ)

EP[c(X )], c(x1, . . . , xn) =
n−1∑
i=1

c i (xi , xi+1)

The dual problem :

Dn(µ) := inf
(u,h)∈Dn

n∑
i=1

µi (ui ),

where

Dn :=
{

(u, h) : (ui )
+ ∈ L1(µi ) and ⊕n

i=1 ui +
∑n−1

i=1 h⊗
i

i ≥ c
}
.
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Martingale Transportation under finitely many marginals
constraints

Theorem
Suppose µ1 � . . . � µn in convex order, with finite first moment,
same mean, and µ1, . . . , µn−1 have no atoms. Assume further that
c i
xyy > 0. Then, the strong duality holds, the transference plan

P∗n(dx) = µ1(dx1)
∏n−1

i=1 T i
∗(xi , dxi+1)

is optimal for the martingale transportation problem Pn(µ), and
(u∗, h∗) is optimal for the dual problem Dn(µ)

Example : applies to the discrete monitoring variance swap :
c(x1, . . . , xn) :=

∑n
i=1
(
ln xi

xi−1

)2
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Continuous-Time Limit

One maximizer m(t) of ∂tF (t, x) : first guess

• Continuous-time limit : guess

Tu(t, x) = x + ju(t, x)∆t and Td (t, x) = x − jd (t, x)

Plugg in the ODEs d(δF ◦Td ) = (1− q)dFµ, d(Fν ◦Tu) = qdFµ

∂x jd (t, x) = 1 +
ju(t, x)

jd (t, x)

f (t, x)

∂t f (t, x − jd (t, x))
, x > m(t)

∂x{juf }(t, x) = −∂t f (t, x)− ju(t, x)

jd (t, x)
f (t, x), x > m(t)

• Point of view 1 : solve for ju, jd

• pointof view 2 : Fokker-Planck equation for the density f

What kind of continuous-time dynamics ?
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The continuous-time dynamics

The equation satisfied by the density is :

∂t f = −1I{x<m(t)}
juf

jd (1− ∂x jd )

(
t,T−1

d (t, x)
)
−1I{x>m(t)}

( juf
jd
−∂x(juf )

)
• Consider the pure (downward) jump Markov process in the spirit
of local Lévy models (Carr-Madan-Geman-Yor)

Xt = X0 −
∫ t
0 1I{Xt−>m(t)}jd (t,Xt−)

(
dNt − νtdt

)
νt := 1{Xt−>m(t)}

ju
jd

(t,Xt−)

Theorem
The process X induces an a.c. measure with density f satisfying the
above FP equation

• This is remarkable Peacock (PCOC) in the terminology of Yor
Nizar Touzi Optimal transportation and bounds on dervatives
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