Bounds on Derivatives and Martingale Optimal Transportation

Nizar Touzi Ecole Polytechnique

Joint work with Pierre Henry-Labordère

ANR ISTACE, February 5, 2013

э

(D) (A) (A)

Outline

1 Optimal Transportation– Monge-Kantorovitch

- 2 Martingale Transportation Problem
 - Formulation
 - Martingale Version of the Brenier Theorem
 - The main results
- 3 Multi-marginals Martingale Optimal Transportation
 - Martingale Transportation under finitely many marginals constraints
 - Continuous-Time Limit

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

Analytic formulation (Monge 1781)

- Initial distribution : probability measure μ
- \bullet Final distribution : probability measure ν

Problem : find an optimal transference plan T^*

$$P_2^M := \sup_{T \in \mathcal{T}(\mu,\nu)} \int c(x, T(x)) \mu(dx)$$

where $\mathcal{T}(\mu, \nu)$ of all maps $T: x \mapsto y = T(x)$ such that

$$\nu = \mu \circ T^{-1}$$

Probabilistic formulation (Kantorovich 1942)

Randomization of transference plans :

$$\overline{P}_2^{\mathcal{K}} := \sup_{\mathbb{P} \in \mathcal{P}_2(\mu,\nu)} \int c(x,y) \mathbb{P}(dx,dy)$$

where $\mathcal{P}_2(\mu,\nu)$ is the collection of all joint probability measures with marginals μ and ν

Example : $c(x, y) = -|x - y|^2 \implies$ maximization of correlations :

$$\sup_{\mathbb{P}\in\mathcal{P}_{2}(\mu,\nu)}\mathbb{E}^{\mathbb{P}}[XY]$$

э

Kantorovich duality

Duality in linear programming, Legendre-Fenchel duality...

$$\begin{array}{lll} D_2^0 & := & \inf_{(\varphi,\psi)\in\mathcal{D}_2^0} \int \varphi(x)\mu(dx) + \int \psi(y)\nu(dy) \\ \mathcal{D}_2^0 & := & \left\{(\varphi,\psi): \varphi^+\in\mathbb{L}^1(\mu), \psi^+\in\mathbb{L}^1(\nu), \varphi\oplus\psi\leq c\right\} \end{array}$$

where $\varphi \oplus \psi(x, y) := \varphi(x) + \psi(y)$

- Inequality $P_2^K \ge D_2^0$ obvious
- Reverse inequality needs Hahn-Banach theorem

3

・ロト ・聞ト ・ヨト ・ヨト

Back to the original Monge formulation

• $P_2^K \ge P_2^M$: Kantorovitch formulation \equiv relaxation of Monge one

Theorem (Y. Brenier)

Let $c \in C^1$ with $c_{xy} > 0$. Assume μ has no atoms. Then there is a unique optimal transference plan :

$$\mathbb{P}^*(dx, dy) = \mu(dx)\delta_{\{T^*(x)\}}(dy) \quad \text{with} \quad T^* = F_{\nu}^{-1} \circ F_{\mu}$$

Consequently $P_2^M = P_2^K$, and T^* solves both problems.

- T* : monotone rearrangement, Frechet-Hoeffding coupling
- $c_{xy} > 0$: Spence-Mirrlees condition

Back to the original Monge formulation

• $P_2^K \ge P_2^M$: Kantorovitch formulation \equiv relaxation of Monge one

Theorem (Y. Brenier)

Let $c \in C^1$ with $c_{xy} > 0$. Assume μ has no atoms. Then there is a unique optimal transference plan :

 $\mathbb{P}^*(dx, dy) = \mu(dx)\delta_{\{T^*(x)\}}(dy)$ with $T^* = F_{\nu}^{-1} \circ F_{\mu}$

Consequently $P_2^M = P_2^K$, and T^* solves both problems.

- T* : monotone rearrangement, Frechet-Hoeffding coupling
- $c_{xy} > 0$: Spence-Mirrlees condition

Back to the original Monge formulation

• $P_2^K \ge P_2^M$: Kantorovitch formulation \equiv relaxation of Monge one

Theorem (Y. Brenier)

Let $c \in C^1$ with $c_{xy} > 0$. Assume μ has no atoms. Then there is a unique optimal transference plan :

$$\mathbb{P}^*(dx, dy) = \mu(dx)\delta_{\{T^*(x)\}}(dy)$$
 with $T^* = F_{\nu}^{-1} \circ F_{\mu}$

Consequently $P_2^M = P_2^K$, and T^* solves both problems.

- T* : monotone rearrangement, Frechet-Hoeffding coupling
- $c_{xy} > 0$: Spence-Mirrlees condition

<ロ> (四) (四) (注) (注) (注) (注)

Back to the original Monge formulation

• $P_2^K \ge P_2^M$: Kantorovitch formulation \equiv relaxation of Monge one

Theorem (Y. Brenier)

Let $c \in C^1$ with $c_{xy} > 0$. Assume μ has no atoms. Then there is a unique optimal transference plan :

$$\mathbb{P}^*(dx, dy) = \mu(dx)\delta_{\{T^*(x)\}}(dy)$$
 with $T^* = F_{\nu}^{-1} \circ F_{\mu}$

Consequently $P_2^M = P_2^K$, and T^* solves both problems.

- T* : monotone rearrangement, Frechet-Hoeffding coupling
- $c_{xy} > 0$: Spence-Mirrlees condition

On the Spence Mirrlees condition

The solution of the Kantorovitch optimal transportation problem

$$\overline{P}_2^{\mathcal{K}} := \sup_{\mathbb{P} \in \mathcal{P}_2(\mu,\nu)} \int c(x,y) \mathbb{P}(dx,dy)$$

is not modified by the change of performance criterion :

$$c(x,y) \longrightarrow \hat{c}(x,y) := c(x,y) + a(x) + b(y)$$

Notice that the Spence Mirrlees condition $c_{xy} > 0$ is stable by this transformation

Financial interpretation

- $X \sim \mu$ and $Y \sim \nu$ prices of two assets at time 1
- $\bullet~\mu$ and ν identified from market prices of call options :

$$C_{\mu}(K) = \int (x - K)^+ \mu(dx), \qquad C_{\nu}(K) = \int (y - K)^+ \nu(dy)$$

(Breeden-Litzenberger 1978)

- c(X, Y) payoff of derivative security
- Robust bounds on dervative's price :

$$\inf_{\mathbb{P}\in\mathcal{P}_2(\mu,\nu)}\mathbb{E}^{\mathbb{P}}[c(X,Y)] \text{ and } \sup_{\mathbb{P}\in\mathcal{P}_2(\mu,\nu)}\mathbb{E}^{\mathbb{P}}[c(X,Y)]$$

э

イロト イポト イヨト イヨト

Financial interpretation of the dual problem

- $\varphi(X), \psi(Y)$: optimal Vanilla position in Assets X and Y
- Can be expressed as a combination of calls/puts (Carr-Madan) :

$$g(s) = g(s^{*}) + (s - s^{*})g'(s^{*}) + \int_{0}^{s^{*}} (K - s)^{+}g''(K)dK + \int_{s^{*}}^{\infty} (s - K)^{+}g''(K)dK$$

so their market market prices are $\int \varphi d\mu$ and $\int \psi d\nu$

• Then

$$D_2^0 = \inf_{(\varphi,\psi)\in\mathcal{D}_2^0}\int \varphi(x)\mu(dx) + \int \psi(y)
u(dy)$$

is the cheapest static position in X and Y so as to superhedge c(X, Y)

Lower bound

Set
$$\bar{c}(\bar{x}, y) := -c(-\bar{x}, y)$$
. Then

$$\inf_{\mathbb{P}\in\mathcal{P}_{2}(\mu,\nu)}\mathbb{E}^{\mathbb{P}}[c(X,Y)] = -\sup_{\mathbb{P}\in\mathcal{P}_{2}(\mu,\nu)}\mathbb{E}^{\mathbb{P}}[\bar{c}(-\bar{X},Y)]$$

where

•
$$\bar{X} := -X \sim \bar{\mu}$$
 with c.d.f. $F_{\bar{\mu}}(\bar{x}) := 1 - F_{\mu}(-\bar{x})$

• \bar{c} satisfies the Spence Mirrlees condition, whenever c does. So, the lower bound is attained by the anti-monotone transference plan :

$$\mathbb{P}_*(dx, dy) := \mu(dx) \delta_{\{\mathcal{T}_*(x)\}}(dy), \qquad \mathcal{T}_*(x) := F_{
u}^{-1} \circ F_{\overline{\mu}}$$

æ

(D) (A) (A) (A) (A)

Multimarginals Optimal transportation problem

• Gangbo and Święch 1998, Carlier 2003, Pass 2011

 $\sup_{\mathbb{P}\in\mathcal{P}_n(\mu)}\mathbb{E}[c(X)]$

where $X = (X_1, ..., X_n)$, $\mu = (\mu_1, ..., \mu_n)$, and $\mathcal{P}_n(\mu) = ...$ • Pass 2012

$$\sup_{\mathbb{P}\in\mathcal{P}_{\infty}(\mu)}\mathbb{E}\Big[c\Big(\int_{0}^{1}X_{t}dt\Big)\Big]$$

where $X = (X_t)_{t \in [0,1]}$, $\mu = (\mu_t)_{t \in [0,1]}$, and $\mathcal{P}_{\infty}(\mu) = \dots$

э

Formulation Martingale Version of the Brenier Theorem The main results

Outline

Optimal Transportation- Monge-Kantorovitch

2 Martingale Transportation Problem

- Formulation
- Martingale Version of the Brenier Theorem
- The main results

3 Multi-marginals Martingale Optimal Transportation

- Martingale Transportation under finitely many marginals constraints
- Continuous-Time Limit

э

Formulation Martingale Version of the Brenier Theorem The main results

One asset observed at two future dates

Our interest now is on the case where

 $X = X_0$ and $Y = X_1$

are the prices of the same asset at two future dates 0 and 1 $\,$

Interest rate is reduced to zero

This setting introduces a new feature :

- the possibility of dynamic trading the asset between times 0 and 1
- duality converts this possibility into the martingale condition $\mathbb{E}^{\mathbb{P}}[Y|X] = X$

Formulation Martingale Version of the Brenier Theorem The main results

The superhedging problem

• Start from initial capital V_0 , hold h(X) shares shares of $X \Longrightarrow$

 $V_0 + h(X)(Y - X)$

ullet Trading in all European call options of any strike is possible \Longrightarrow

$$V_1^{H,\varphi,\psi} := V_0 + h(X)(Y - X) + \varphi(X) - \mu(\varphi) + \psi(Y) - \nu(\psi)$$

Superhedging problem :

 $v_0:= \inf ig\{ V_0: \ V_1^{h,arphi,\psi} \geq c(X,Y) ext{ for some } h \in \mathbb{L}^0, \ arphi \in \mathbb{L}^1(\mu), \ \psi \in \mathbb{L}^1(
u) ig\}$

イロト 不得下 イヨト イヨト

Formulation Martingale Version of the Brenier Theorem The main results

The superhedging problem

• Start from initial capital V_0 , hold h(X) shares shares of $X \Longrightarrow$

 $V_0 + h(X)(Y - X)$

ullet Trading in all European call options of any strike is possible \Longrightarrow

$$V_1^{H,\varphi,\psi} := V_0 + h(X)(Y-X) + \varphi(X) - \mu(\varphi) + \psi(Y) - \nu(\psi)$$

Superhedging problem :

 $v_0 := \inf \left\{ V_0: \ V_1^{h, arphi, \psi} \geq c(X, Y) ext{ for some } h \in \mathbb{L}^0, \ arphi \in \mathbb{L}^1(\mu), \ \psi \in \mathbb{L}^1(
u)
ight\}$

Formulation Martingale Version of the Brenier Theorem The main results

The superhedging problem

• Start from initial capital V_0 , hold h(X) shares shares of $X \Longrightarrow$

 $V_0 + h(X)(Y - X)$

ullet Trading in all European call options of any strike is possible \Longrightarrow

$$V_1^{H,\varphi,\psi} := V_0 + h(X)(Y-X) + \varphi(X) - \mu(\varphi) + \psi(Y) - \nu(\psi)$$

Superhedging problem :

 $v_0 := \inf \left\{ V_0: \ V_1^{h,\varphi,\psi} \geq c(X,Y) \text{ for some } h \in \mathbb{L}^0, \ \varphi \in \mathbb{L}^1(\mu), \ \psi \in \mathbb{L}^1(\nu) \right\}$

イロト 不得下 イヨト イヨト

Formulation Martingale Version of the Brenier Theorem The main results

Superhedging \equiv Kantorovitch dual problem

Equivalently :

$$\begin{split} \mathbf{v}_0 &= D_2(\mu, \nu) = \inf_{(\varphi, \psi, h) \in \mathcal{D}_2} \left\{ \mu(\varphi) + \nu(\psi) \right\} \\ \text{where } \mu(\varphi) &= \int \varphi d\mu, \ \mu(\psi) = \int \psi d\nu, \text{ and} \\ \mathcal{D}_2 &:= \left\{ (\varphi, \psi, h) : \varphi^+ \in \mathbb{L}^1(\mu), \psi^+ \in \mathbb{L}^1(\nu), h \in \mathbb{L}^0 \\ \varphi \oplus \psi + h^{\otimes} \geq c \right\} \end{split}$$

$$h^{\otimes}(x,y) := h(x)(y-x)$$

æ

・ロン ・四と ・ヨン ・ヨン

Formulation Martingale Version of the Brenier Theorem The main results

The Martingale Optimal Transportation Problem

The corresponding dual problem is :

$$P_2(\mu,
u)$$
 := $\sup_{\mathbb{P} \in \mathcal{M}_2(\mu,
u)} \mathbb{E}^{\mathbb{P}}[c(X, Y)]$

where
$$\mathcal{M}_2(\mu, \nu) := \left\{ \mathbb{P} \in \mathcal{P}_2(\mu, \nu) : \mathbb{E}^{\mathbb{P}}[Y|X] = X \right\}$$

and we recall
$$\mathcal{P}_2(\mu,
u):=ig\{\mathbb{P}\in\mathcal{P}_{\mathbb{R}^2}:X\sim_{\mathbb{P}}\mu,Y\sim_{\mathbb{P}}
uig\}$$

æ

イロト イポト イヨト イヨト

Formulation Martingale Version of the Brenier Theorem The main results

Implication of the convex ordering

Kellerer 1972 : $\mathcal{M}_2(\mu, \nu) \neq \emptyset$ iff μ and ν have same mean and $\mu \preceq \nu$ (convex), i.e. with $\delta F := F_{\nu} - F_{\mu}$

$$\int \delta F(\xi) d\xi = 0 \quad \text{and for all } k \quad \int_{(-\infty,k)} \delta F(\xi) d\xi \ge 0$$

Formulation Martingale Version of the Brenier Theorem The main results

Duality

Assume c(x, y) USC with linear growth, and recall

$$\begin{array}{lll} \mathcal{M}_2(\mu,\nu) &:= & \left\{ \mathbb{P}: \; X \sim_{\mathbb{P}} \mu, \; Y \sim_{\mathbb{P}} \nu \; \text{and} \; \mathbb{E}^{\mathbb{P}}[Y|X] = X \right\} \\ \mathcal{D}_2 &:= \; \left\{ (\varphi,\psi,h) \in \mathbb{L}^1(\mu) \times \mathbb{L}^1(\nu) \times \mathbb{L}^0: \; \varphi \oplus \psi + h^{\otimes} \geq c \right\} \end{array}$$

• The inequality $P_2(\mu,
u) \geq D_2(\mu,
u)$ is obvious

Theorem (Beiglbock, Henry-Labordère, Penkner 2011)

 $P_2(\mu, \nu) = D_2(\mu, \nu)$. Moreover existence holds for the Martingale Transportation Problem $P_2(\mu, \nu)$

- existence for the dual problem $D_2(\mu, \nu)$ may fail
- duality result is not needed for our main result
- Continuous-time : Galichon, Henry-Labordère, T. 2011, Dolinsky & Soper 2012

Э

・ロト ・四ト ・ヨト ・ヨト

Formulation Martingale Version of the Brenier Theorem The main results

Duality

Assume c(x, y) USC with linear growth, and recall

$$\begin{array}{lll} \mathcal{M}_2(\mu,\nu) &:= & \left\{ \mathbb{P}: \; X \sim_{\mathbb{P}} \mu, \; Y \sim_{\mathbb{P}} \nu \; \text{and} \; \mathbb{E}^{\mathbb{P}}[Y|X] = X \right\} \\ \mathcal{D}_2 &:= \; \left\{ (\varphi,\psi,h) \in \mathbb{L}^1(\mu) \times \mathbb{L}^1(\nu) \times \mathbb{L}^0: \; \varphi \oplus \psi + h^{\otimes} \geq c \right\} \end{array}$$

• The inequality
$$P_2(\mu,
u) \geq D_2(\mu,
u)$$
 is obvious

Theorem (Beiglbock, Henry-Labordère, Penkner 2011)

 $P_2(\mu, \nu) = D_2(\mu, \nu)$. Moreover existence holds for the Martingale Transportation Problem $P_2(\mu, \nu)$

- existence for the dual problem $D_2(\mu, \nu)$ may fail
- duality result is not needed for our main result
- Continuous-time : Galichon, Henry-Labordère, T. 2011, Dolinsky & Soner 2012

Э

Formulation Martingale Version of the Brenier Theorem The main results

Worst Case Financial Market - Brenier Theorem

ullet The solution $\mathbb{P}^* \in \mathcal{M}_2(\mu,
u)$ always exists

• Question 1 : Is there a transference plan, i.e. optimal transportation of μ to ν through a map T^* ? (Brenier Theorem)

Can not be a map, unless $\mu = \nu$!

• Question 2 : Is there a transference plan along a minimal randomization

 $X \qquad \qquad Y = T_u(X) \text{ with probability } q(X)$ $Y = T_d(X) \text{ with probability } 1 - q(X)$

Formulation Martingale Version of the Brenier Theorem The main results

Worst Case Financial Market - Brenier Theorem

ullet The solution $\mathbb{P}^* \in \mathcal{M}_2(\mu,
u)$ always exists

• Question 1 : Is there a transference plan, i.e. optimal transportation of μ to ν through a map T^* ? (Brenier Theorem)

Can not be a map, unless $\mu = \nu$!

 \bullet Question 2 : Is there a transference plan along a minimal randomization

 $X \qquad \qquad Y = T_u(X) \text{ with probability } q(X)$ $Y = T_d(X) \text{ with probability } 1 - q(X)$

(D) (A) (A) (A)

Formulation Martingale Version of the Brenier Theorem The main results

Previous literature

Hobson and Neuberger (MF 2012) :

- Analyse the specific case c(x, y) = |x y|
- They characterize an optimal \mathbb{P}^\ast defined by a transference plan :

 $\mathbb{P}^{*}(dx, dy) = \mu(du) \big[q(x) \delta_{\{T_{u}(x)\}}(dy) + (1-q)(x) \delta_{\{T_{d}(x)\}}(dy) \big]$

where

$$q(x) := rac{x - T_d(x)}{T_u(x) - T_d(x)}, \qquad T_d(x) \le x \le T_u(x)$$

and

 T_u and T_d are non-decreasing

3

Formulation Martingale Version of the Brenier Theorem The main results

Previous literature : Beiglblock and Juillet (2012)

Definition

 $\mathbb{P} \in \mathcal{M}_2(\mu, \nu)$ is left-monotone if $\mathbb{P}[(X, Y) \in \Gamma] = 1$, for some $\Gamma \subset \mathbb{R} \times \mathbb{R}$, and

for all $(x, y_1), (x, y_2), (x', y') \in \Gamma$: $x < x' \implies y' \notin (y_1, y_2)$

Definition

 $\mathbb{P} \in \mathcal{M}_2(\mu, \nu)$ is called a **left curtain** if \mathbb{P} is left-monotone and concentrated on two graphs

$$\mathbb{P} = \mu(dx) \big[q(x) \delta_{\{T_u(x)\}}(dy)(1-q)(x) \delta_{\{T_d(x)\}}(dy) \big]$$

э

・ロン ・四と ・ヨン ・ヨン

Formulation Martingale Version of the Brenier Theorem The main results

Previous literature : Beiglblock and Juillet (2012)

Theorem

 $\mu_2 \succeq \mu_1$, μ_1 without atoms. Then :

(i) there exists a unique left-monotone $\mathbb{P}^* \in \mathcal{M}_2(\mu, \nu)$, and \mathbb{P}^* is a left-curtain

(ii) \mathbb{P}^* is a solution $\mathsf{P}_2(\mu,\nu)$ in the following cases :

•
$$c(x,y) = h(x - y)$$
 with h' strictly convex,

• $c(x,y) = \varphi(x)\psi(y)$, $\varphi, \psi \ge 0$, ψ strict convex, φ decreasing

Our objective :

- explicit derivation of \mathbb{P}^*
- extend the class of couplings c for which \mathbb{P}^* is optimal
- extend to the multi-marginals case

3

・ロト ・ 日 ・ ・ 目 ・ ・ 日 ・ ・

Formulation Martingale Version of the Brenier Theorem The main results

Explicit left-monotone transference plan

Theorem

Let μ, ν have finite first moment, same mean, $\mu \leq \nu$, and μ without atoms. Then, the unique left-monotone transference plan is

$$\mathbb{P}^*(dx, dy) = \left[q(x)\delta_{\mathcal{T}_d(x)}(dx) + (1-q)(x)\delta_{\mathcal{T}_u(x)}(dx)\right]\mu(dx)$$

where T_u , T_d are explicitly defined as follows... In particular, outside jumps, T_u and T_d solve the following ODEs :

$$d(\delta F \circ T_d) = (1-q)dF_{\mu}, \ \ d(F_{\nu} \circ T_u) = qdF_{\mu}$$

Formulation Martingale Version of the Brenier Theorem The main results

Duality and explicit Martingale Version of the Brenier Theorem

Theorem

Let μ, ν have finite first moment, same mean, $\mu \leq \nu$, and μ without atoms. Assume that $c_{xyy} > 0$. Then

$$P_2 = D_2$$

and there is an explicit dual optimizer ($\varphi^*,\psi^*,h^*)$ defined as follows...

The martingale version of the Spence-Mirrlees condition

... is $c_{xyy} > 0$:

• Notice that the solution of the Martingale Transport problem is not altered by the change of performance criterion :

$$c(x,y) \longrightarrow \hat{c}(x,y) := c(x,y) + a(x) + b(y) + h(x)(y-x)$$

• $\hat{c}_{xyy} = c_{xyy}$

• The conditions of Beiglblock and Juillet :

• c(x,y) = h(x - y) with h' strictly convex,

• $c(x, y) = \varphi(x)\psi(y)$, $\varphi, \psi \ge 0$, ψ strict convex, φ decreasing satisfy $c_{xyy} > 0$

э

The martingale version of the Spence-Mirrlees condition

... is $c_{xyy} > 0$:

• Notice that the solution of the Martingale Transport problem is not altered by the change of performance criterion :

$$c(x,y) \longrightarrow \hat{c}(x,y) := c(x,y) + a(x) + b(y) + h(x)(y-x)$$

•
$$\hat{c}_{xyy} = c_{xyy}$$

• The conditions of Beiglblock and Juillet :

• c(x, y) = h(x - y) with h' strictly convex,

• $c(x, y) = \varphi(x)\psi(y)$, $\varphi, \psi \ge 0$, ψ strict convex, φ decreasing satisfy $c_{xyy} > 0$

э

The martingale version of the Spence-Mirrlees condition

... is $c_{xyy} > 0$:

• Notice that the solution of the Martingale Transport problem is not altered by the change of performance criterion :

$$c(x,y) \longrightarrow \hat{c}(x,y) := c(x,y) + a(x) + b(y) + h(x)(y-x)$$

• $\hat{c}_{xyy} = c_{xyy}$

• The conditions of Beiglblock and Juillet :

• c(x, y) = h(x - y) with h' strictly convex,

• $c(x,y) = \varphi(x)\psi(y)$, $\varphi, \psi \ge 0$, ψ strict convex, φ decreasing satisfy $c_{xyy} > 0$

イロト 不得下 イヨト イヨト

э

Lower bound

Suppose $c_{xyy} > 0$. Then

$$ar{c}(ar{x},ar{y}):=-c(-ar{x},-ar{y})$$
 satisfies $ar{c}_{ar{x}ar{y}ar{y}}>0$

We exploit this symmetry to derive the lower bound :

$$\inf_{\mathbb{P}\in\mathcal{M}_{2}(\mu,\nu)} \mathbb{E}^{\mathbb{P}}[c(X,Y)] = -\sup_{\mathbb{P}\in\mathcal{M}_{2}(\mu,\nu)} \mathbb{E}^{\mathbb{P}}[\bar{c}(\bar{X},\bar{Y})]$$
$$= \mathbb{E}^{\mathbb{P}*}[c(X,Y)]$$

where \mathbb{P}_\ast is the left-monotone transference plan constructed from

$$egin{array}{ll} {\mathcal F}_{ar\mu}(ar x):=1-{\mathcal F}_\mu(-ar x) \quad ext{and} \quad {\mathcal F}_{ar
u}(ar y):=1-{\mathcal F}_
u(-ar y-) \end{array}$$

3

イロト イヨト イヨト イヨト

Formulation Martingale Version of the Brenier Theorem The main results

Construction : One local maximizer of δF

Easy case : $T_u \nearrow$ and $T_d \searrow$ after m_1 , and

 $\mathbb{P}^{*}(dx, dy) = \mu_{0}(dx) \big[q(x) \delta_{\{T_{u}(x)\}}(dy) + (1 - q(x)) \delta_{\{T_{d}(x)\}}(dy) \big]$

(日) (部) (E) (E) (E)

Formulation Martingale Version of the Brenier Theorem The main results

Martingale transportation constraints

• First marginal is μ_0 , Martingale condition holds if $q \in [0,1]$

• Second marginal :

• either $y \leq m_1$, then $\mathbb{P}_*[Y \in dy] = dF_{\mu}(y) + \mathbb{E}[(1-q)(X)\mathbb{1}_{\{T_d(X) \in dy\}}]$. So $Y \sim_{\mathbb{P}_*} \nu$ with decreasing T_d implies

$$d(\delta F \circ T_d) = -(1-q)dF_{\mu},$$

• or $y \ge m_1$, then $\mathbb{P}_*[Y \in dy] = \mathbb{E}[q(X)\mathbb{1}_{\{T_u(X) \in dy\}}]$. So $Y \sim_{\mathbb{P}_*} \nu$ with increasing T_u implies that

$$d(F_{\nu} \circ T_{u}) = qdF_{\mu}.$$

э

Formulation Martingale Version of the Brenier Theorem The main results

Martingale transportation constraints

- First marginal is μ_0 , Martingale condition holds if $q \in [0,1]$
- Second marginal :
 - either $y \leq m_1$, then $\mathbb{P}_*[Y \in dy] = dF_{\mu}(y) + \mathbb{E}[(1-q)(X)\mathbb{1}_{\{T_d(X) \in dy\}}]$. So $Y \sim_{\mathbb{P}_*} \nu$ with decreasing T_d implies

$$d(\delta F \circ T_d) = -(1-q)dF_{\mu},$$

• or $y \ge m_1$, then $\mathbb{P}_*[Y \in dy] = \mathbb{E}[q(X)\mathbb{1}_{\{T_u(X) \in dy\}}]$. So $Y \sim_{\mathbb{P}_*} \nu$ with increasing T_u implies that

$$d(F_{\nu} \circ T_{u}) = qdF_{\mu}.$$

3

Formulation Martingale Version of the Brenier Theorem The main results

Martingale transportation constraints

- First marginal is μ_0 , Martingale condition holds if $q \in [0,1]$
- Second marginal :

• either $y \leq m_1$, then $\mathbb{P}_*[Y \in dy] = dF_{\mu}(y) + \mathbb{E}[(1-q)(X)\mathbb{1}_{\{T_d(X) \in dy\}}]$. So $Y \sim_{\mathbb{P}_*} \nu$ with decreasing T_d implies

$$d(\delta F \circ T_d) = -(1-q)dF_{\mu},$$

• or $y \ge m_1$, then $\mathbb{P}_*[Y \in dy] = \mathbb{E}[q(X)\mathbb{1}_{\{T_u(X) \in dy\}}]$. So $Y \sim_{\mathbb{P}_*} \nu$ with increasing T_u implies that

$$d(F_{\nu} \circ T_{u}) = q dF_{\mu}.$$

э

Formulation Martingale Version of the Brenier Theorem The main results

Characterizing T_u and T_d

By direct integration :

$$T_u(x) = g(x, T_d(x))$$

and $T_d(x)$ is the unique solution in $(-\infty, m_1)$ of

$$\int_{-\infty}^{F_{\nu}^{-1} \circ F_{\mu}(x)} \xi dF_{\nu}(\xi) - \int_{-\infty}^{x} \xi dF_{\mu}(\xi) + \int_{-\infty}^{T_{d}(x)} (g(x,\xi) - \xi) d\delta F(\xi) = 0$$

where

$$g(x,y)$$
 := $F_{\nu}^{-1}(F_{\mu}(x)+\delta F(y))$

(compare to Fréchet-Hoeffding coupling!)

æ

Formulation Martingale Version of the Brenier Theorem The main results

T_u and T_d as solutions of ODEs

• Assume F_0 and F_1 are differentiable. Then

$$T'_d = -\frac{(1-q)F'_0}{\delta F' \circ T_d}, \quad T'_u = \frac{qF'_0}{F'_1 \circ T_u} \quad \text{on} \quad (-\infty, m_1)$$

where $q = (x - T_d)/(T_u - T_d)$

• If in addition m_1 is a global maximizer of δF , and F_0 , F_1 are twice differentiable near m_1 ,

 $T_d(m_1+) = m_1, \ T_d'(m_1+) = -1/2 \ \text{and} \ T_d''(m_1) = +\infty$

э

Formulation Martingale Version of the Brenier Theorem The main results

The Kantorovitch Dual Side

So far, we have :

$$\mathbb{E}^{\mathbb{P}_*}[c(X,Y)] \leq \sup_{\mathcal{M}_2(\mu,\nu)} \mathbb{E}^{\mathbb{P}}[c(X,Y)] \leq \inf_{\mathcal{D}_2} \left\{ \mu(\varphi) + \nu(\psi) \right\}$$

Our next goal is to construct

 $(arphi_*,\psi_*,h_*)\in\mathcal{D}_2$ such that $\mu(arphi_*)+
u(\psi_*)=\mathbb{E}^{\mathbb{P}_*}[c(X,Y)]$

In particular, this would imply duality and existence hold

 $\Longrightarrow arphi_*(X) + \psi_*(Y) + h_*(X)(Y-X) - c(X,Y) = \mathsf{0}, \ \mathbb{P}_*-\mathsf{a.s.}$

 $\implies \varphi_*(x) = \max_{y \in \mathbb{R}} \{ c(x, y) - \psi_*(y) - h_*(x)(y - x) \}, x \in \mathbb{R}$

э

Formulation Martingale Version of the Brenier Theorem The main results

The Kantorovitch Dual Side

So far, we have :

$$\mathbb{E}^{\mathbb{P}_*}[c(X,Y)] \leq \sup_{\mathcal{M}_2(\mu,\nu)} \mathbb{E}^{\mathbb{P}}[c(X,Y)] \leq \inf_{\mathcal{D}_2} \left\{ \mu(\varphi) + \nu(\psi) \right\}$$

Our next goal is to construct

 $(\varphi_*,\psi_*,h_*)\in\mathcal{D}_2$ such that $\mu(\varphi_*)+
u(\psi_*)=\mathbb{E}^{\mathbb{P}_*}[c(X,Y)]$

In particular, this would imply duality and existence hold

$$\Longrightarrow arphi_*(X) + \psi_*(Y) + h_*(X)(Y-X) - c(X,Y) = 0, \ \mathbb{P}_*-a.s.$$

 $\implies \varphi_*(x) = \max_{y \in \mathbb{R}} \{ c(x, y) - \psi_*(y) - h_*(x)(y - x) \}, \, x \in \mathbb{R}$

3

Formulation Martingale Version of the Brenier Theorem The main results

The Kantorovitch Dual Side

So far, we have :

$$\mathbb{E}^{\mathbb{P}_*}[c(X,Y)] \leq \sup_{\mathcal{M}_2(\mu,\nu)} \mathbb{E}^{\mathbb{P}}[c(X,Y)] \leq \inf_{\mathcal{D}_2} \left\{ \mu(\varphi) + \nu(\psi) \right\}$$

Our next goal is to construct

 $(\varphi_*,\psi_*,h_*)\in\mathcal{D}_2$ such that $\mu(\varphi_*)+
u(\psi_*)=\mathbb{E}^{\mathbb{P}_*}[c(X,Y)]$

In particular, this would imply duality and existence hold

$$\implies \varphi_*(X) + \psi_*(Y) + h_*(X)(Y - X) - c(X, Y) = 0, \mathbb{P}_* - a.s.$$

$$\implies \varphi_*(x) = \max_{y \in \mathbb{R}} \{ c(x, y) - \psi_*(y) - h_*(x)(y - x) \}, x \in \mathbb{R}$$

3

Formulation Martingale Version of the Brenier Theorem The main results

Explicit Dual Optimizers

• Dynamic hedging strategy :

$$\begin{aligned} h'_{*} &= \frac{c_{x}(.,T_{d}) - c_{x}(.,T_{d})}{T_{u} - T_{d}} \text{ on } (m_{1},\infty) \\ h_{*} &= h_{*} \circ T_{d}^{-1} + c_{y}(.,.) - c_{y}(T_{d}^{-1},.) \text{ on } (-\infty,m_{1}) \end{aligned}$$

• Static hedging in Y :

$$\begin{vmatrix} \psi'_{*} = c_{y}(T_{u}^{-1},.) - h_{*} \circ T_{u}^{-1} & \text{on} & (m_{1},\infty) \\ \psi'_{*} = c_{y}(T_{d}^{-1},.) - h_{*} \circ T_{d}^{-1} & \text{on} & (-\infty,m_{1}) \end{vmatrix}$$

• Static hedging in X :

$$\varphi_*(x) = \mathbb{E}^{\mathbb{P}_*} \left[c(x, Y) - \psi_*(Y) | X = x
ight] \ x \in \mathbb{R}$$

æ

・ロト ・聞ト ・ヨト ・ヨト

Formulation Martingale Version of the Brenier Theorem The main results

Multiple local maxima of δF

Martingale Transportation under finitely many marginals const Continuous-Time Limit

Outline

Optimal Transportation– Monge-Kantorovitch

2 Martingale Transportation Problem

- Formulation
- Martingale Version of the Brenier Theorem
- The main results

3 Multi-marginals Martingale Optimal Transportation

- Martingale Transportation under finitely many marginals constraints
- Continuous-Time Limit

・ロン ・四と ・ヨン ・ヨン

э

Martingale Transportation under finitely many marginals const Continuous-Time Limit

1

Finitely many marginals martingale transportation

- Extension to finite discrete-time is immediate :
 - μ_i have same mean, and $\mu_n \succeq \ldots \succeq \mu_0$
 - Optimal transportation with *n* marginals constraint :

$$P_n(\mu) = \sup_{\mathbb{P}\in\mathcal{M}_n(\mu)} \mathbb{E}^{\mathbb{P}}[c(X)], \qquad c(x_1,\ldots,x_n) = \sum_{i=1}^{n-1} c^i(x_i,x_{i+1})$$

• The dual problem :

$$D_n(\mu) := \inf_{(u,h)\in\mathcal{D}_n}\sum_{i=1}^n \mu_i(u_i),$$

where

 $\mathcal{D}_n := \{(u, h) : (u_i)^+ \in \mathbb{L}^1(\mu_i) \text{ and } \oplus_{i=1}^n u_i + \sum_{i=1}^{n-1} h_i^{\otimes i} \ge c\}.$

Martingale Transportation under finitely many marginals const Continuous-Time Limit

Martingale Transportation under finitely many marginals constraints

Theorem

Suppose $\mu_1 \leq \ldots \leq \mu_n$ in convex order, with finite first moment, same mean, and μ_1, \ldots, μ_{n-1} have no atoms. Assume further that $c_{xyy}^i > 0$. Then, the strong duality holds, the transference plan

$$\mathbb{P}_n^*(dx) = \mu_1(dx_1) \prod_{i=1}^{n-1} T_*^i(x_i, dx_{i+1})$$

is optimal for the martingale transportation problem $P_n(\mu)$, and (u^*, h^*) is optimal for the dual problem $D_n(\mu)$

Example : applies to the discrete monitoring variance swap : $c(x_1, ..., x_n) := \sum_{i=1}^n \left(\ln \frac{x_i}{x_{i-1}} \right)^2$

Э

・ロト ・四ト ・ヨト ・ヨト

Martingale Transportation under finitely many marginals const Continuous-Time Limit

Martingale Transportation under finitely many marginals constraints

Theorem

Suppose $\mu_1 \leq \ldots \leq \mu_n$ in convex order, with finite first moment, same mean, and μ_1, \ldots, μ_{n-1} have no atoms. Assume further that $c_{xyy}^i > 0$. Then, the strong duality holds, the transference plan

$$\mathbb{P}_n^*(dx) = \mu_1(dx_1) \prod_{i=1}^{n-1} T_*^i(x_i, dx_{i+1})$$

is optimal for the martingale transportation problem $P_n(\mu)$, and (u^*, h^*) is optimal for the dual problem $D_n(\mu)$

Example : applies to the discrete monitoring variance swap : $c(x_1, \ldots, x_n) := \sum_{i=1}^n \left(\ln \frac{x_i}{x_{i-1}} \right)^2$

Martingale Transportation under finitely many marginals const Continuous-Time Limit

One maximizer m(t) of $\partial_t F(t, x)$: first guess

• Continuous-time limit : guess

$$T_u(t,x) = x + j^u(t,x)\Delta t$$
 and $T_d(t,x) = x - j^d(t,x)$

Plugg in the ODEs $d(\delta F \circ T_d) = (1-q)dF_{\mu}, \ d(F_{\nu} \circ T_u) = qdF_{\mu}$

$$\partial_{x}j_{d}(t,x) = 1 + \frac{j_{u}(t,x)}{j_{d}(t,x)} \frac{f(t,x)}{\partial_{t}f(t,x-j_{d}(t,x))}, \quad x > m(t)$$

$$\partial_{x}\{j_{u}f\}(t,x) = -\partial_{t}f(t,x) - \frac{j_{u}(t,x)}{j_{d}(t,x)}f(t,x), \quad x > m(t)$$

• Point of view 1 : solve for j^{u}, j^{d}

3

Martingale Transportation under finitely many marginals const Continuous-Time Limit

One maximizer m(t) of $\partial_t F(t, x)$: first guess

• Continuous-time limit : guess

$$T_u(t,x) = x + j^u(t,x)\Delta t$$
 and $T_d(t,x) = x - j^d(t,x)$

Plugg in the ODEs $d(\delta F \circ T_d) = (1-q)dF_{\mu}, \ d(F_{\nu} \circ T_u) = qdF_{\mu}$

$$\partial_{x}j_{d}(t,x) = 1 + \frac{j_{u}(t,x)}{j_{d}(t,x)} \frac{f(t,x)}{\partial_{t}f(t,x-j_{d}(t,x))}, \quad x > m(t)$$

$$\partial_{x}\{j_{u}f\}(t,x) = -\partial_{t}f(t,x) - \frac{j_{u}(t,x)}{j_{d}(t,x)}f(t,x), \quad x > m(t)$$

• Point of view 1 : solve for j^u, j^d

3

Martingale Transportation under finitely many marginals const Continuous-Time Limit

One maximizer m(t) of $\partial_t F(t, x)$: first guess

• Continuous-time limit : guess

$$T_u(t,x) = x + j^u(t,x)\Delta t$$
 and $T_d(t,x) = x - j^d(t,x)$

Plugg in the ODEs $d(\delta F \circ T_d) = (1-q)dF_{\mu}, \ d(F_{\nu} \circ T_u) = qdF_{\mu}$

$$\partial_{x}j_{d}(t,x) = 1 + \frac{j_{u}(t,x)}{j_{d}(t,x)} \frac{f(t,x)}{\partial_{t}f(t,x-j_{d}(t,x))}, \quad x > m(t)$$

$$\int_{x}\{j_{u}f\}(t,x) = -\partial_{t}f(t,x) - \frac{j_{u}(t,x)}{j_{d}(t,x)}f(t,x), \quad x > m(t)$$

• Point of view 1 : solve for j^u, j^d

 ∂

• point of view 2 : Fokker-Planck equation for the density f

What kind of continuous-time dynamics?

æ

(D) (A) (A) (A)

Martingale Transportation under finitely many marginals const Continuous-Time Limit

The continuous-time dynamics

The equation satisfied by the density is :

$$\partial_t f = -\mathbb{I}_{\{x < m(t)\}} \frac{j_u f}{j_d (1 - \partial_x j_d)} (t, T_d^{-1}(t, x)) - \mathbb{I}_{\{x > m(t)\}} \left(\frac{j_u f}{j_d} - \partial_x (j_u f) \right)$$

• Consider the pure (downward) jump Markov process in the spirit of local Lévy models (Carr-Madan-Geman-Yor)

$$\begin{aligned} X_t &= X_0 - \int_0^t \mathbb{1}_{\{X_{t-} > m(t)\}} j_d(t, X_{t-}) \left(dN_t - \nu_t dt \right) \\ \nu_t &:= \mathbb{1}_{\{X_{t-} > m(t)\}} \frac{j_u}{j_d}(t, X_{t-}) \end{aligned}$$

Theorem

The process X induces an a.c. measure with density f satisfying the above FP equation

• This is remarkable Peacock (PCOC) in the terminology of Yor

Nizar Touzi Optimal transportation and bounds on dervatives

Martingale Transportation under finitely many marginals const Continuous-Time Limit

The continuous-time dynamics

The equation satisfied by the density is :

$$\partial_t f = -\mathbb{1}_{\{x < m(t)\}} \frac{j_u f}{j_d (1 - \partial_x j_d)} \left(t, T_d^{-1}(t, x)\right) - \mathbb{1}_{\{x > m(t)\}} \left(\frac{j_u f}{j_d} - \partial_x (j_u f)\right)$$

• Consider the pure (downward) jump Markov process in the spirit of local Lévy models (Carr-Madan-Geman-Yor)

$$\begin{aligned} X_t &= X_0 - \int_0^t \mathbb{1}_{\{X_{t-} > m(t)\}} j_d(t, X_{t-}) \big(dN_t - \nu_t dt \big) \\ \nu_t &:= \mathbb{1}_{\{X_{t-} > m(t)\}} \frac{j_u}{j_d}(t, X_{t-}) \end{aligned}$$

Theorem

The process X induces an a.c. measure with density f satisfying the above FP equation

• This is remarkable Peacock (PCOC) in the terminology of Yor

Martingale Transportation under finitely many marginals const Continuous-Time Limit

The continuous-time dynamics

The equation satisfied by the density is :

$$\partial_t f = -\mathbb{1}_{\{x < m(t)\}} \frac{j_u f}{j_d (1 - \partial_x j_d)} \left(t, T_d^{-1}(t, x)\right) - \mathbb{1}_{\{x > m(t)\}} \left(\frac{j_u f}{j_d} - \partial_x (j_u f)\right)$$

• Consider the pure (downward) jump Markov process in the spirit of local Lévy models (Carr-Madan-Geman-Yor)

$$X_{t} = X_{0} - \int_{0}^{t} \mathbb{1}_{\{X_{t-} > m(t)\}} j_{d}(t, X_{t-}) (dN_{t} - \nu_{t} dt)$$
$$\nu_{t} := \mathbb{1}_{\{X_{t-} > m(t)\}} \frac{j_{u}}{j_{d}}(t, X_{t-})$$

Theorem

The process X induces an a.c. measure with density f satisfying the above FP equation

• This is remarkable Peacock (PCOC) in the terminology of Yor

