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Optimal Transportation— Monge-Kantorovitch

Analytic formulation (Monge 1781)

e Initial distribution : probability measure p
e Final distribution : probability measure v

Problem : find an optimal transference plan T*

PM .= sup /c(x, T(x))p(dx)
TeT (1,v)

where T (u,v) of all maps T : x — y = T(x) such that
v = poT?
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Optimal Transportation— Monge-Kantorovitch

Probabilistic formulation (Kantorovich 1942)

Randomization of transference plans :

ﬁf ‘= sup /c(x,y)[P’(dx7 dy)
PeP>(p,v)

where Py (u, ) is the collection of all joint probability measures
with marginals i, and v

Example : ¢(x,y) = —|x — y|?> = maximization of correlations :
sup  EF[XY]
PeP2(p,v)
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Optimal Transportation— Monge-Kantorovitch

Kantorovich duality

Duality in linear programming, Legendre-Fenchel duality...

pf = int [ eu(@)+ [wtra)
(p¥)eDy
Dy = {(p¥):¢" €eLM(u), " eL(w), 9oy <c}
where ¢ & P(x,y) := o(x) + (y)
. K 0 .
e Inequality P;* > Dy obvious
e Reverse inequality needs Hahn-Banach theorem



Optimal Transportation— Monge-Kantorovitch

Back to the original Monge formulation

e PX > PM : Kantorovitch formulation = relaxation of Monge one
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Optimal Transportation— Monge-Kantorovitch

Back to the original Monge formulation

e PX > PM : Kantorovitch formulation = relaxation of Monge one

Theorem (Y. Brenier)

Let c € C* with ¢,y > 0. Assume i has no atoms. Then there is a
unique optimal transference plan :

P*(dx, dy) = u(dx)dg7+(x)3(dy) with T" = F,loF,

Consequently PM = PX, and T* solves both problems.
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Optimal Transportation— Monge-Kantorovitch

Back to the original Monge formulation

e PX > PM : Kantorovitch formulation = relaxation of Monge one

Theorem (Y. Brenier)

Let c € C* with ¢,y > 0. Assume i has no atoms. Then there is a
unique optimal transference plan :

P*(dx, dy) = u(dx)dg7+(x)3(dy) with T" = F,loF,

Consequently PM = PX, and T* solves both problems.

e T* : monotone rearrangement, Frechet-Hoeffding coupling

Nizar Touzi Optimal transportation and bounds on dervatives



Optimal Transportation— Monge-Kantorovitch

Back to the original Monge formulation

e PX > PM : Kantorovitch formulation = relaxation of Monge one

Theorem (Y. Brenier)

Let c € C* with ¢,y > 0. Assume i has no atoms. Then there is a
unique optimal transference plan :

P*(dx, dy) = u(dx)dg7+(x)3(dy) with T" = F,loF,

Consequently PM = PX, and T* solves both problems.

e T* : monotone rearrangement, Frechet-Hoeffding coupling

e c,, > 0 : Spence-Mirrlees condition lﬂ
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Optimal Transportation— Monge-Kantorovitch

On the Spence Mirrlees condition

The solution of the Kantorovitch optimal transportation problem

ﬁé{ = sup /c(x,y)IP’(dx, dy)
PePo(p,v)

is not modified by the change of performance criterion :
c(x,y) — &lx,y):=c(x,y)+a(x) + bly)

Notice that the Spence Mirrlees condition c,, > 0 is stable by this
transformation
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Optimal Transportation— Monge-Kantorovitch

Financial interpretation

e X ~ p and Y ~ v prices of two assets at time 1
e 1, and v identified from market prices of call options :
CK) = [ K) il ClK) = [ = K)*uldy)
(Breeden-Litzenberger 1978)
e c(X,Y) payoff of derivative security

e Robust bounds on dervative's price :

inf  EF[c(X,Y)] and sup  EF[c(X, Y)]
PeP2(p,v) PePo(p,v) lﬂ
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Optimal Transportation— Monge-Kantorovitch

Financial interpretation of the dual problem

e o(X),¥(Y) : optimal Vanilla position in Assets X and Y

e Can be expressed as a combination of calls/puts (Carr-Madan) :

s*

£(5) = £()H(s—5 ) () [ (K=5)" g (K) K+ [ (s=K) ()

so their market market prices are [ @dp and [¢dv

e Then
pg = inf [ elau(e)+ [v(nidy)
(p4)eD3
is the cheapest static position in X and Y so as to superhedge lﬂ
c(X,Y) -
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Optimal Transportation— Monge-Kantorovitch

Lower bound

Set ¢(X,y) := —c(—X,y). Then

inf  EP[c(X,Y)] = — sup EF[e(—X,Y)
PeP2(p,v) PePo(u,v)

where
o X := —X ~ ji with c.d.f. Fz(x) :=1— F,(—x)

e C satisfies the Spence Mirrlees condition, whenever ¢ does. So,
the lower bound is attained by the anti-monotone transference
plan :

P.(dx, dy) = i d)or.oy(dy),  Tulx):=Fho F "
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Optimal Transportation— Monge-Kantorovitch

Multimarginals Optimal transportation problem

e Gangbo and Swiech 1998, Carlier 2003, Pass 2011

swp E[c(X)]
Pepn(ﬂ)

where X = (X1,...,Xp), o= (1, .-, 1n), and Pp(p) = ...

e Pass 2012
1
PG;L:E(“)IE{c(/O Xtdt>]

where X = (Xt)te[o,l]' B= (Mt)te[o,l]v and Poo(pt) = ...
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Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results
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© Martingale Transportation Problem
@ Formulation
@ Martingale Version of the Brenier Theorem
@ The main results
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Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results

One asset observed at two future dates

Our interest now is on the case where
X=Xy and Y =X
are the prices of the same asset at two future dates 0 and 1

Interest rate is reduced to zero

This setting introduces a new feature :

@ the possibility of dynamic trading the asset between times 0
and 1

@ duality converts this possibility into the martingale condition
EP[Y|X] = X
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Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results

The superhedging problem

e Start from initial capital V4, hold h(X) shares shares of X —

Vo + h(X)(Y — X)
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Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results

The superhedging problem

e Start from initial capital V4, hold h(X) shares shares of X —
Vo + h(X)(Y — X)
e Trading in all European call options of any strike is possible —>

VPP = Vo + h(X)(Y = X) + o(X) — u() + o(Y) — v(w)
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Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results

The superhedging problem

e Start from initial capital V4, hold h(X) shares shares of X —
Vo + h(X)(Y — X)
e Trading in all European call options of any strike is possible —>

VPP = Vo + h(X)(Y = X) + o(X) — u() + o(Y) — v(w)

Superhedging problem :

vo :=inf { Vg : VP > ¢(X, Y) for some h € L, p € LY (u), ¢ € L'(v)}
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Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results

Superhedging = Kantorovitch dual problem

Equivalently :

vo = DAMV):(¢JgdbbA¢%+WwH

where 1(¢) = [ pdu, p(y) = [dv, and

Do:={(p,9,h) : ot eLi(p),v* €eLi(v),helf
e ®Y+h® > c}

h®(x,y) == h(x)(y — x)
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Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results

The Martingale Optimal Transportation Problem

The corresponding dual problem is :

Py(p,v) = sup EP[C(X,Y)]
PeMa(p,v)

where Mo (p,v) == {P € Po(p,v) : EF[Y[X] = X}

and we recall Po(p,v) := {P € Pgz: X ~p p, Y ~p v}
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Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results

Implication of the convex ordering

Kellerer 1972 : Ma(p,v) # 0 iff o and v have same mean and
p = v (convex), i.e. with 0F := F, — F,

/5F £)dé =0 andforallk/ F(§)d¢ >0
00,k)

\mu <=\nu in convex order

B

delta F = F_\nu -F_\mu

AV
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Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results

Duality

Assume c¢(x, y) USC with linear growth, and recall

Mo(p,v) = {P: X~ppu, Y~pvand E'[Y[X] =X}
D2 = {(p9,h) €LN(u) x L (w) x LO: 9@+ h® > c}

e The inequality Pa(u,v) > Da(u,v) is obvious
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Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results

Duality

Assume c¢(x, y) USC with linear growth, and recall

Mo(p,v) = {P: X~ppu, Y~pvand E'[Y[X] =X}
D2 = {(p9,h) €LN(u) x L (w) x LO: 9@+ h® > c}

e The inequality Pa(u,v) > Da(u,v) is obvious

Theorem (Beiglbock, Henry-Labordére, Penkner 2011)

P>(p,v) = Do(u,v). Moreover existence holds for the Martingale
Transportation Problem Py (i, 1)

e existence for the dual problem Ds(u, ) may fail

e duality result is not needed for our main result

e Continuous-time : Galichon, Henry-Labordére, T. 2011, Dolinsky

& Soner 2012 lﬁ
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Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results

Worst Case Financial Market — Brenier Theorem

e The solution P* € M>(u,v) always exists

e Question 1 : Is there a transference plan, i.e. optimal
transportation of x4 to v through a map T*7 (Brenier Theorem)

Can not be a map, unless = v
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Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results

Worst Case Financial Market — Brenier Theorem

e The solution P* € M>(u,v) always exists

e Question 1 : Is there a transference plan, i.e. optimal
transportation of x4 to v through a map T*7 (Brenier Theorem)

Can not be a map, unless = v

e Question 2 : Is there a transference plan along a minimal
randomization

Y = T,(X) with probability q(X)
X <

Y = Ty(X) with probability 1 — g(X)

Nizar Touzi Optimal transportation and bounds on dervatives



Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results

Previous literature

Hobson and Neuberger (MF 2012) :
@ Analyse the specific case c(x,y) = |x — y|

@ They characterize an optimal P* defined by a transference
plan :

P*(dx,dy) = pu(du)[q(x)d(T, )3 (dy) + (1 = a)(x)d¢7, 03 (dy)]
where
q(x) = ————— Ta(x) < x < Tu(x)

and
T, and T4 are non-decreasing
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Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results

Previous literature : Beiglblock and Juillet (2012)

Definition
P € My(u,v) is left-monotone if P[(X, Y) € Il = 1, for some
NcR xR, and

/

for all (x,y1), (x,32), (X', y') €T x<x' = y' & (y1,2)

Definition

P € Ms(u,v) is called a left curtain if P is left-monotone and
concentrated on two graphs

P = p(dx) [q(x){ 7003 (dy) (L — @) ()¢ 7, (x)3 (dY)]
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Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results

Previous literature : Beiglblock and Juillet (2012)

Theorem

U2 = p1, 1 without atoms. Then :
(i) there exists a unique left-monotone P* € My(u,v), and P* is a
left-curtain

(ii) P* is a solution Py(p,v) in the following cases :
e c(x,y) = h(x —y) with i strictly convex,
o c(x,y) = p(x)¥(y), v,¥ >0, 9 strict convex, ¢ decreasing

Our objective :
@ explicit derivation of P*
e extend the class of couplings ¢ for which P* is optimal
@ extend to the multi-marginals case
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Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results

Explicit left-monotone transference plan

Theorem

Let u,v have finite first moment, same mean, u < v, and [
without atoms. Then, the unique left-monotone transference plan is

P*(dx, dy) = [q(x)d700)(dx) + (1 — q)(x)d7,x)(cx)] p(dx)

where T,, Ty are explicitly defined as follows...
In particular, outside jumps, T, and T4 solve the following ODEs :

d(0F o Ty) = (1 — q)dF,, d(F,oT,)=qdF,
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Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results

Duality and explicit Martingale Version of the Brenier
Theorem

Theorem

Let i, v have finite first moment, same mean, i < v, and
without atoms. Assume that c,,, > 0. Then

P> = Dy

and there is an explicit dual optimizer (p*, ", h*) defined as
follows...
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Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results

The martingale version of the Spence-Mirrlees condition

1S Cxyy >0

e Notice that the solution of the Martingale Transport problem is
not altered by the change of performance criterion :

c(x,y) — e(xy) = clx,y)+a(x)+ bly) + h(x)(y — x)
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Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results

The martingale version of the Spence-Mirrlees condition

1S Cxyy >0

e Notice that the solution of the Martingale Transport problem is
not altered by the change of performance criterion :

c(x,y) — e(xy) = clx,y)+a(x)+ bly) + h(x)(y — x)

® Cxyy = Cxyy
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Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results

The martingale version of the Spence-Mirrlees condition

1S Cxyy >0

e Notice that the solution of the Martingale Transport problem is
not altered by the change of performance criterion :

c(x,y) — e(xy) = clx,y)+a(x)+ bly) + h(x)(y — x)
® Oy = Gy

e The conditions of Beiglblock and Juillet :
e c(x,y) = h(x — y) with A strictly convex,
o c(x,y) = p(x)¢¥(y), p,¢ > 0, ¥ strict convex, ¢ decreasing
satisfy ¢, >0 Aﬂ
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Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results

Lower bound

Suppose ¢y, > 0. Then
¢(x,y) := —c(—x,—y) satisfies Txyy >0
We exploit this symmetry to derive the lower bound :
e (V] = = e B[ V)
= E™[c(X,Y)]
where P, is the left-monotone transference plan constructed from

Fa(%):=1—F,(-%) and Fp(y):=1— F,(-y—)
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Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results

Construction : One local maximizer of 6 F

Easy case : T, " and T4\, after my, and
P*(dx,dy) = po(dx)[a(x)dgr, )1 (dy) + (1 = q(x))dg7, 3 (dy)]
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Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results

Martingale transportation constraints

e First marginal is 19, Martingale condition holds if g € [0, 1]
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Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results

Martingale transportation constraints

e First marginal is 19, Martingale condition holds if g € [0, 1]

e Second marginal :

@ either y < mq, then

P.[Y € dy] = dFu(y) +E[(1 — a)(X) {7, (x)edy}]) - SO
Y ~p, v with decreasing T, implies

d(6Fo Ty) = —(1-q)dF,,
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Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results

Martingale transportation constraints

e First marginal is 19, Martingale condition holds if g € [0, 1]

e Second marginal :
@ either y < mq, then

P.[Y € dy] = dFu(y) +E[(1 — a)(X) {7, (x)edy}]) - SO
Y ~p, v with decreasing T, implies

d(6Fo Ty) = —(1-q)dF,,

@ or y > my, then P,[Y € dy] = E[q(X)]I{TU(X)Edy}]- So
Y ~p, v with increasing T, implies that

d(F,oT,) = qdF,.
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Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results

Characterizing T, and T4

By direct integration :

Tu(x) = g(x, Ta(x))
and Ty4(x) is the unique solution in (—oo, my) of
ijloFu(x 4(x)
/ SdFu(€ / §dFu(¢ / (g(x,)—¢€)déF(£) =0

where

g(x,y) = F 1 (Fu(x)+6F(y))

(compare to Fréchet-Hoeffding coupling!)
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Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results

T, and T4 as solutions of ODEs

e Assume Fg and F; are differentiable. Then

T/:_(l_q)Fé r_ qFg
97 GF 0Ty Y FloT,

where g = (x — Tg)/(Ty — Tq)

e If in addition m; is a global maximizer of §F, and Fg, F; are twice
differentiable near my,

Ty(m+)=my, Ti(m+)=-1/2 and T/ (m)=+cc
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Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results

The Kantorovitch Dual Side

So far, we have :

E[e(X,Y)] < sup EF[e(X,Y)] < inf {1u(¢) + v(¥)}
Ma(p,v) 2

Our next goal is to construct
(90*7 Qp*v h*) € DZ SUCh that /’L((p*) + V(d}*) = EP* [C(Xa Y)]

In particular, this would imply duality and existence hold
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Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results

The Kantorovitch Dual Side

So far, we have :

E[e(X,Y)] < sup EF[e(X,Y)] < inf {1u(¢) + v(¥)}
Ma(p,v) 2

Our next goal is to construct
(90*7 Qp*v h*) € DZ SUCh that /’L((p*) + V(d}*) = EP* [C(Xa Y)]

In particular, this would imply duality and existence hold

= (X)) + V(YY) + h(X)(Y = X) — c(X,Y) =0, P,—a.s.
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Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results

The Kantorovitch Dual Side

So far, we have :

E[e(X,Y)] < sup EF[e(X,Y)] < inf {1u(¢) + v(¥)}
Ma(p,v) 2

Our next goal is to construct
(90*7 Qp*v h*) € DZ SUCh that /’L((p*) + V(d}*) = EP* [C(Xa Y)]

In particular, this would imply duality and existence hold
= (X) + (YY) + h(X)(Y = X) — (X, Y) =0, P,—as.

= pu(x) = maxyer{c(x,y) — ¥u(y) — h(x)(y —x)}, x €R
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Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results

Explicit Dual Optimizers

e Dynamic hedging strategy :

T on (my,o0)

h; — CX(.,TU)—CX(.,Td)
he=h.o T, +¢,(..) —¢(Ty%.) on (—o0, m)

e Static hedging in Y :

w; = Cy(Tu_lv') - h* © 7—u_1 on (ml,OO)
Pl = Cy(Td_l, ) —heo Td_1 on (—oo,m)

e Static hedging in X :

u(x) =EX [c(x, Y) =¥ (Y)[X =x] xeR
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Formulation
Martingale Transportation Problem Martingale Version of the Brenier Theorem
The main results

Multiple local maxima of dF

Tu

—— N

-
|
L+
B




Martingale Transportation under finitely many marginals const
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Multi-marginals Martingale Optimal Transportation Comiin e Ut (i

Outline

© Multi-marginals Martingale Optimal Transportation
@ Martingale Transportation under finitely many marginals
constraints
o Continuous-Time Limit
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Martingale Transportation under finitely many marginals const
. . . . . i -Ti Limi
Multi-marginals Martingale Optimal Transportation Comiin e Ut (i

Finitely many marginals martingale transportation

e Extension to finite discrete-time is immediate :
@ u; have same mean, and pu, = ... > uo
@ Optimal transportation with n marginals constraint :

n—1
Po(n) = sup EF[c(X)],  c(xa,.. ) =D (%, xip1)
PeM(p) i=1

@ The dual problem :

Dp(p) = inf Zu, up),

(u,h)€Dx ]

where

Dy i= {(u h) < (w)* € LA(pu) and @y i+ Y01 b > e},

Nizar Touzi Optimal transportation and bounds on dervatives



Martingale Transportation under finitely many marginals cons

. . . . . i -Ti Limi
Multi-marginals Martingale Optimal Transportation Comiin e Ut (i

Martingale Transportation under finitely many marginals
constraints

Theorem

Suppose 11 < ... = un in convex order, with finite first moment,
same mean, and ji1, ..., jin—1 have no atoms. Assume further that
Cyyy > 0. Then, the strong duality holds, the transference plan

P (dx) = pa(dxa) 1727 T (xi, dxit1)

is optimal for the martingale transportation problem P,(1.), and
(u*, h*) is optimal for the dual problem D, (1)
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Martingale Transportation under finitely many marginals cons

. . . . . i -Ti Limi
Multi-marginals Martingale Optimal Transportation Comiin e Ut (i

Martingale Transportation under finitely many marginals
constraints

Theorem

Suppose 11 < ... = un in convex order, with finite first moment,
same mean, and ji1, ..., jin—1 have no atoms. Assume further that

i

Cyyy > 0. Then, the strong duality holds, the transference plan

P (dx) = pa(dxa) 1727 T (xi, dxit1)

is optimal for the martingale transportation problem P,(1.), and
(u*, h*) is optimal for the dual problem D, (1)

Example : applies to the discrete monitoring variance swap :

c(xt,--.yxn) =01 (In X’,’il)2 lﬂ
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Martingale Transportation under finitely many marginals const

Multi-marginals Martingale Optimal Transportation G- s (L

One maximizer m(t) of 0;F(t,x) : first guess

e Continuous-time limit : guess
Tu(t,x) = x4 j4(t,x)At and Ty(t,x) =x —jo(t,x)
Plugg in the ODEs d(6F o Ty) = (1 — q)dF,, d(F,o T,) = qdF,

A - - ju(t,X) f(t,x) . .
Oxja(t,x) = 1+jd(t,x)0tf(t,x—jd(t,x))’ > m(t)
OliufHex) = —0cf(ex) — 2 b ) x s m(e)

_/.d(tax)

Nizar Touzi Optimal transportation and bounds on dervatives



Martingale Transportation under finitely many marginals const

Multi-marginals Martingale Optimal Transportation G- s (L

One maximizer m(t) of 0;F(t,x) : first guess

e Continuous-time limit : guess
Tu(t,x) = x4 j4(t,x)At and Ty(t,x) =x —jo(t,x)
Plugg in the ODEs d(6F o Ty) = (1 — q)dF,, d(F,o T,) = qdF,

A - - ju(t,X) f(t,x) . .
Oxja(t,x) = 1+jd(t,x)0tf(t,x—jd(t,x))’ > m(t)
OliufHex) = —0cf(ex) — 2 b ) x s m(e)

_/.d(tax)

e Point of view 1 : solve for j”,jd
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Martingale Transportation under finitely many marginals const

Multi-marginals Martingale Optimal Transportation G- s (L

One maximizer m(t) of 0;F(t,x) : first guess

e Continuous-time limit : guess
Tu(t,x) = x4 j4(t,x)At and Ty(t,x) =x —jo(t,x)
Plugg in the ODEs d(6F o Ty) = (1 — q)dF,, d(F,o T,) = qdF,

A - - ju(t,X) f(t,x) . .
Pt = A e o (e x gty <7
Ox{juf }(t,x) = *5)tf(t;X)*J.u(t’X) f(t,x), x> m(t)

_]d(t,X)
e Point of view 1 : solve for j”,jd

e pointof view 2 : Fokker-Planck equation for the density f

What kind of continuous-time dynamics? Aﬂ
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The equation satisfied by the density is :
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The continuous-time dynamics

The equation satisfied by the density is :

.juf —1 Juf .
8 f:_]:[ x<m T 74 A N t7T t,X —I[ x>m f—ax f
t {x< (t)}Jd(l_ade)( d ( )) {x> (t)}<fd Uu ))

e Consider the pure (downward) jump Markov process in the spirit
of local Lévy models (Carr-Madan-Geman-Yor)

Xe = Xo — Jo Tixe > m(eyfa(ts Xe—) (dNe — vedt)
Vi 1= 1{Xt7>m(t)} ﬁ(t,xt_)
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Multi-marginals Martingale Optimal Transportation G- s (L

The continuous-time dynamics

The equation satisfied by the density is :
juf -1 Juf .

Oef = —Tg oo —2 (6, Tt %)) = Tpsm e (22— 0 (i

: txsme g gy (B Ta (6:X)) {>(t)}<1d ()

e Consider the pure (downward) jump Markov process in the spirit

of local Lévy models (Carr-Madan-Geman-Yor)

Xe = Xo — Jo Tixe > m(eyfa(ts Xe—) (dNe — vedt)
Vi 1= 1{Xt7>m(t)} ﬁ(t,xt_)

The process X induces an a.c. measure with density f satisfying the
above FP equation

e This is remarkable Peacock (PCOC) in the terminology of Yor g
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