
Mean Field Games: Numerical Methods

Yves Achdou

LJLL, Université Paris Diderot
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∂u

∂t
− ν∆u+H(x,∇u) = Φ[m] in (0, T ] × T

∂m

∂t
+ ν∆m+ div

(

m
∂H

∂p
(x,∇u)

)

= 0 in [0, T ) × T

u(t = 0) = Φ0[m(t = 0)]
m(t = T ) = m◦

(∗)
where

H(x, p) = sup
γ∈Rd

(p · γ − L(x, γ)) .

Except when mentioned,

T = (R/Z)d (periodic problem).

Most of what follows holds with Neumann or Dirichlet
conditions.
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Note the special structure of the system

forward/backward w.r.t. time

the operator in the Fokker-Planck equation is the adjoint of
the linearized version of the operator in the HJB equation

coupling: via Φ in the HJB equation and via ∂pH(x,∇u) in
the Fokker-Planck equation, and possibly via the initial
condition

Realistic models may include congestion, i.e. L depends on m,
for example

L(x,m, γ) = `(x) + (c1 + c2m)q|γ|β .

This induces a stronger coupling between u and m in (∗).
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A simple case

Framework

d = 1

L is strictly convex

H(x, p) = sup
γ∈R

(p · γ − L(x, γ))

Φ[m](x) = F (m(x)) and F = W ′ where W : R → R is a
strictly convex function

Φ0[m](x) = F0(m(x)) and F0 = W ′
0 where W0 : R → R is a

strictly convex function
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A simple case

Framework

d = 1

L is strictly convex

H(x, p) = sup
γ∈R

(p · γ − L(x, γ))

Φ[m](x) = F (m(x)) and F = W ′ where W : R → R is a
strictly convex function

Φ0[m](x) = F0(m(x)) and F0 = W ′
0 where W0 : R → R is a

strictly convex function

(*) can be found as the optimality conditions of an optimal
control problem on a transport equation.
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Optimal control problem

Minimize

J(m, γ) =

∫ T

0

∫

T

(

m(t, x)L(x, γ(t, x)) +W (m(t, x))
)

dxdt

+

∫

T

W0(m(x, 0))dx

subject to the constraints

{

∂m

∂t
+ ν∆m+ div(mγ) = 0, in (0, T ) × T,

m(T, x) = mT (x) in T.
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Optimality conditions

δγ 7→ δm 7→ δJ

{

∂tδm+ ν∆δm+ div(δmγ) = −div(mδγ), in (0, T ) × T,
δm(T, x) = 0 in T.
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Optimality conditions

δγ 7→ δm 7→ δJ

{

∂tδm+ ν∆δm+ div(δmγ) = −div(mδγ), in (0, T ) × T,
δm(T, x) = 0 in T.

δJ(m, γ) =

∫ T

0

∫

T

δm(t, x)
(

L(x, γ(t, x)) + F (m(t, x))
)

+

∫ T

0

∫

T

δγ(t, x)m(t, x)
∂L

∂γ
(x, γ(t, x)) +

∫

T

δm(0, x)F0(m(0, x)).
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Optimality conditions

δγ 7→ δm 7→ δJ

{

∂tδm+ ν∆δm+ div(δmγ) = −div(mδγ), in (0, T ) × T,
δm(T, x) = 0 in T.

δJ(m, γ) =

∫ T

0

∫

T

δm(t, x)
(

L(x, γ(t, x)) + F (m(t, x))
)

+

∫ T

0

∫

T

δγ(t, x)m(t, x)
∂L

∂γ
(x, γ(t, x)) +

∫

T

δm(0, x)F0(m(0, x)).

Adjoint problem

{

∂u

∂t
− ν∆u+ γ · ∇u = L(x, γ) + F (m) in (0, T ] × T

u(t = 0) = F0(m|t=0)
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Variation of J

δJ(m, γ) =

∫ T

0

∫

T

−u(t, x)
(

∂tδm+ ν∆δm+ div(δmγ)
)

+

∫ T

0

∫

T

m(t, x)δγ(t, x)
∂L

∂γ
(x, γ(t, x))

=

∫ T

0

∫

T

m(t, x)

(

∂L

∂γ
(x, γ(t, x)) −∇u(t, x)

)

δγ(t, x).
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Variation of J

δJ(m, γ) =

∫ T

0

∫

T

−u(t, x)
(

∂tδm+ ν∆δm+ div(δmγ)
)

+

∫ T

0

∫

T

m(t, x)δγ(t, x)
∂L

∂γ
(x, γ(t, x))

=

∫ T

0

∫

T

m(t, x)

(

∂L

∂γ
(x, γ(t, x)) −∇u(t, x)

)

δγ(t, x).

Optimality conditions

∇u(t, x) = ∂L
∂γ (x, γ∗(t, x))

γ∗(t, x) achieves the max. in H(x, p) = sup
γ

(p · γ − L(x, γ))

and
γ∗(t, x) = Hp(x,∇u(t, x))

⇒ MFG system of PDEs
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A discrete scheme when L(x, γ) = f(x) + `(γ)

Assume that ` is strictly convex and `(0) = `′(0) = 0

Uniform grid: xi = ih, tn = n∆t

The transport equation for m

γ is discretized on a staggered grid: γn
i+1/2 ≈ γ(tn, xi + h/2)

upwind scheme (explicit w.r.t γ)

0 =
mn+1

i −mn
i

∆t
+ ν(∆hm

n)i

+ γn+1,+
i+1/2 m

n
i+1 − γn+1,−

i+1/2 m
n
i − γn+1,+

i−1/2 m
n
i + γn+1,−

i−1/2 m
n
i−1.

The scheme is conservative and preserves positivity: it is L1

stable.
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Discrete version of J : many possible choices

Lachapelle, Salomon, Turinici: trapezoidal rule
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Discrete version of J : many possible choices

Lachapelle, Salomon, Turinici: trapezoidal rule

To preserve the structure of the PDE system, we rather
choose:

Jh = h∆t
∑

n

∑

i

mn
i

(

f(xi) + `(γn+1,+
i−1/2 ) + `(−γn+1,−

i+1/2 )
)

+ h∆t
∑

n

∑

i

W (mn
i ) + h

∑

i

W0(m
n
i )
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Discrete version of J : many possible choices

Lachapelle, Salomon, Turinici: trapezoidal rule

To preserve the structure of the PDE system, we rather
choose:

Jh = h∆t
∑

n

∑

i

mn
i

(

f(xi) + `(γn+1,+
i−1/2 ) + `(−γn+1,−

i+1/2 )
)

+ h∆t
∑

n

∑

i

W (mn
i ) + h

∑

i

W0(m
n
i )

Adjoint equation

un+1

i − un
i

∆t
− ν(∆hu

n+1)i + γn+1,+
i−1/2

un+1

i − un+1

i−1

h
− γn+1,−

i+1/2

un+1

i+1 − un+1

i

h

=f(xi) + `(γn+1,+
i−1/2

) + `(−γn+1,−
i+1/2

) + F (mn
i )
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Optimality conditions for the discrete problem

∂`

∂γ
(γn+1,∗

i+1/2 ) = (un+1
i+1 − un+1

i )/h.

Kushner-Dupuis numerical Hamiltonian:

g(x, p1, p2) = −f(x) + max
γ∈R

(

−p−1 γ + p+
2 γ − `(γ)

)

Then

γn+1,∗,−
i+1/2

= − ∂g

∂p1

(

xi, (u
n+1

i+1 − un+1

i )/h, (un+1

i − un+1

i−1 )/h
)

,

γn+1,∗,+
i−1/2

=
∂g

∂p2

(

xi, (u
n+1

i+1 − un+1

i )/h, (un+1

i − un+1

i−1 )/h
)

.

un+1
i − un

i

∆t
−ν(∆hu

n+1)i+g

(

xi,
un+1

i+1 − un+1
i

h
,
un+1

i − un+1
i−1

h

)

= F (mn
i )
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Direct discretization of (*)

Take d = 2.

Let Th be a uniform grid on the torus with mesh step h,
and xij be a generic point in Th

Uniform time grid: ∆t = T/NT , tn = n∆t

The values of u and m at (xi,j , tn) are approximated by un
i,j

and mn
i,j
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Notation

The discrete Laplace operator:

(∆hw)i,j =
1

h2
(wi+1,j + wi−1,j + wi,j+1 + wi,j−1 − 4wi,j)

Right-sided finite difference formulas for ∂w
∂x1

(xi,j) and
∂w
∂x2

(xi,j)

(D1w)i,j =
wi+1,j − wi,j

h
, and (D2w)i,j =

wi,j+1 − wi,j

h

The collection of the 4 first order finite difference formulas
at xi,j

[Dhw]i,j =
{

(D1w)i,j , (D1w)i−1,j , (D2w)i,j , (D2w)i,j−1

}
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For the Bellman equation, a semi-implicit
monotone scheme

∂u

∂t
− ν∆u+H(x,∇u) = Φ[m]

↓
un+1

i,j − un
i,j

∆t
− ν(∆hu

n+1)i,j + g(xi,j , [Dhu
n+1]i,j) = (Φh[mn])i,j

where [Dhu]i,j ∈ R
4 is the collection of the two first order finite

difference formulas at xi,j for ∂xu and for ∂yu.

g(xi,j , [Dhu
n+1]i,j)

=g
(

xi,j, (D1u
n+1)i,j, (D1u

n+1)i−1,j , (D2u
n+1)i,j , (D2u

n+1)i,j−1

)
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Assumptions on the discrete Hamiltonian g

(q1, q2, q3, q4) → g (x, q1, q2, q3, q4) .

Monotonicity:

g is nonincreasing with respect to q1 and q3
g is nondecreasing with respect to to q2 and q4
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Assumptions on the discrete Hamiltonian g

(q1, q2, q3, q4) → g (x, q1, q2, q3, q4) .

Monotonicity:

g is nonincreasing with respect to q1 and q3
g is nondecreasing with respect to to q2 and q4

Consistency:

g (x, q1, q1, q3, q3) = H(x, q), ∀x ∈ T,∀q = (q1, q3) ∈ R
2

Differentiability: g is of class C1

Convexity (for uniqueness and stability):

(q1, q2, q3, q4) → g (x, q1, q2, q3, q4) is convex
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Coupling

Local operator: if Φ[m](x) = F (m(x)), take

(Φh[m])i,j = F (mi,j)
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(Φh[m])i,j = F (mi,j)

If Φ is a nonlocal operator, choose a consistent discrete
approximation. For example, if it is possible,

(Φh[m])i,j = Φ[mh](xi,j),

calling mh the piecewise constant function on T taking the
value mi,j in the square |x− xi,j|∞ ≤ h/2
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If Φ is a nonlocal operator, choose a consistent discrete
approximation. For example, if it is possible,

(Φh[m])i,j = Φ[mh](xi,j),

calling mh the piecewise constant function on T taking the
value mi,j in the square |x− xi,j|∞ ≤ h/2

For uniqueness and stability, the following assumption will
be useful:

(Φh[m] − Φh[m̃],m− m̃)2 ≤ 0 ⇒ Φh[m] = Φh[m̃]
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Coupling

Local operator: if Φ[m](x) = F (m(x)), take

(Φh[m])i,j = F (mi,j)

If Φ is a nonlocal operator, choose a consistent discrete
approximation. For example, if it is possible,

(Φh[m])i,j = Φ[mh](xi,j),

calling mh the piecewise constant function on T taking the
value mi,j in the square |x− xi,j|∞ ≤ h/2

For uniqueness and stability, the following assumption will
be useful:

(Φh[m] − Φh[m̃],m− m̃)2 ≤ 0 ⇒ Φh[m] = Φh[m̃]

Same thing for Φ0,h
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The approximation of the Fokker-Planck
equation

∂m

∂t
+ ν∆m+ div

(

m
∂H

∂p
(x,∇v)

)

= 0. (†)

It is chosen so that

each time step leads to a linear system for m with a matrix

whose diagonal coefficients are negative
whose off-diagonal coefficients are nonnegative

in order to hopefully get a discrete maximum principle
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The approximation of the Fokker-Planck
equation

∂m

∂t
+ ν∆m+ div

(

m
∂H

∂p
(x,∇v)

)

= 0. (†)

It is chosen so that

each time step leads to a linear system for m with a matrix

whose diagonal coefficients are negative
whose off-diagonal coefficients are nonnegative

in order to hopefully get a discrete maximum principle

The argument for uniqueness should hold in the discrete
case, so the discrete Hamiltonian g should be used
for (†) as well
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Principle

Discretize −

Z

T

div

„

m
∂H

∂p
(x,∇u)

«

w

Y. Achdou Dauphine



Principle

Discretize −

Z

T

div

„

m
∂H

∂p
(x,∇u)

«

w =

Z

T

m
∂H

∂p
(x,∇u) · ∇w
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Principle

Discretize −

Z

T

div

„

m
∂H

∂p
(x,∇u)

«

w =

Z

T

m
∂H

∂p
(x,∇u) · ∇w

by h2
P

i,j
mi,j∇qg(xi,j, [Dhu]i,j ) · [Dhw]i,j
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Principle

Discretize −

Z

T

div

„

m
∂H

∂p
(x,∇u)

«

w =

Z

T

m
∂H

∂p
(x,∇u) · ∇w

by − h2
P

i,j
Ti,j(u, m)wi,j ≡ h2

P

i,j
mi,j∇qg(xi,j, [Dhu]i,j ) · [Dhw]i,j

Discrete version of div(mHp(x,∇u)):

Ti,j(u,m)

=
1

h





























mi,j
∂g

∂q1
(xi,j , [Dhu]i,j) −mi−1,j

∂g

∂q1
(xi−1,j , [Dhu]i−1,j)

+mi+1,j
∂g

∂q2
(xi+1,j , [Dhu]i+1,j) −mi,j

∂g

∂q2
(xi,j , [Dhu]i,j)







+







mi,j
∂g

∂q3
(xi,j , [Dhu]i,j) −mi,j−1

∂g

∂q3
(xi,j−1, [Dhu]i,j−1)

+mi,j+1

∂g

∂q4
(xi,j+1, [Dhu]i,j+1) −mi,j

∂g

∂q4
(xi,j , [Dhu]i,j)
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Semi-implicit scheme























un+1
i,j − un

i,j

∆t
− ν(∆hu

n+1)i,j + g(xi,j , [Dhu
n+1]i,j) = (Φh[mn])i,j

mn+1
i,j −mn

i,j

∆t
+ ν(∆hm

n)i,j + Ti,j(u
n+1,mn) = 0

The operator m 7→ ν(∆hm)i,j + Ti,j(u,m) is the adjoint of the
linearized version of u 7→ ν(∆hu)i,j − g(xi,j , [Dhu]i,j).

The discrete MFG system has the same structure as
the continuous one.
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Semi-implicit scheme























un+1
i,j − un

i,j

∆t
− ν(∆hu

n+1)i,j + g(xi,j , [Dhu
n+1]i,j) = (Φh[mn])i,j

mn+1
i,j −mn

i,j

∆t
+ ν(∆hm

n)i,j + Ti,j(u
n+1,mn) = 0

Well known discrete Hamiltonians g can be chosen.

For example, if the Hamiltonian is of the form
H(x,∇u) = ψ(x, |∇u|), a possible choice is the upwind
scheme:

g(x, q1, q2, q3, q4) = ψ

(

x,
√

(q−1 )2 + (q+
2 )2 + (q−3 )2 + (q+

4 )2
)

.
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Existence and bounds

Define the set of discrete probability densities

K =
{

(mi,j)0≤i,j<N : h2
∑

i,j mi,j = 1,mi,j ≥ 0
}

.

If

g is of class C1, and monotone w.r.t. q

Φh and Φ0,h are continuous operators on K
then the discrete problem has a solution such that
mn ∈ K, ∀n.
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Existence and bounds

Define the set of discrete probability densities

K =
{

(mi,j)0≤i,j<N : h2
∑

i,j mi,j = 1,mi,j ≥ 0
}

.

If

g is of class C1, and monotone w.r.t. q

Φh and Φ0,h are continuous operators on K
then the discrete problem has a solution such that
mn ∈ K, ∀n.

Discrete Lipschitz estimates on u can be obtained if Φh is a
suitable approximation of a nonlocal smoothing operator and if
g satisfies additional properties, for example

∣

∣

∣

∣

∂g

∂x

(

x, (q1, q2, q3, q4)
)

∣

∣

∣

∣

≤ C(1 + |q1| + |q2| + |q3| + |q4|).
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Strategy of proof

Brouwer fixed point theorem in KNT taking advantage of
the structure of the system

estimates on u uniform w.r.t m, but possibly depending on
h and ∆t (using the monotonicity of g)

if Φ is a nonlocal smoothing operator, discrete Lipchitz
bounds on Φh[m] yield estimates on the discrete Lipschitz
norm of u, uniform in m, h and ∆t
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A key identity for uniqueness and stability

Y. Achdou Dauphine



A perturbed system























ũn+1

i,j − ũn
i,j

∆t
− ν(∆hũ

n+1)i,j + g(xi,j , [Dhũ
n+1]i,j) = (Φh[m̃n])i,j + an

i,j

m̃n+1

i,j − m̃n
i,j

∆t
+ ν(∆hm̃

n)i,j + Ti,j(ũ
n+1, m̃n) = bni,j

Multiply the 2 discrete HJB equations by mn
i,j − m̃n

i,j, sum
on n, i, j, and subtract the results

Multiply the 2 discrete FP equations by un+1
i,j − ũn+1

i,j , sum
on n, i, j, and subtract the results

Add the 2 resulting identities
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One gets

− 1

∆t

(

mNT − m̃NT , uNT − ũNT

)

2
+

1

∆t

(

m0 − m̃0, u0 − ũ0
)

2

+E(m,u, ũ) + E(m̃, ũ, u) +

NT−1
∑

n=0

(Φh[mn] − Φh[m̃n],mn − m̃n)
2

=

NT−1
∑

n=0

(an,mn − m̃n)
2

+

NT
∑

n=1

(

bn−1, un − ũn
)

2

where

E(m,u, ũ) =
∑

i,j,n

mn−1

i,j

(

g(xi,j , [Dũ
n]i,j) − g(xi,j , [Du

n]i,j)−
−gq(xi,j , [Du

n]i,j) · ([Dũn]i,j − [Dun]i,j)

)
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One gets

− 1

∆t

(

mNT − m̃NT , uNT − ũNT

)

2
+

1

∆t

(

m0 − m̃0, u0 − ũ0
)

2

+E(m,u, ũ) + E(m̃, ũ, u) +

NT−1
∑

n=0

(Φh[mn] − Φh[m̃n],mn − m̃n)
2

=

NT−1
∑

n=0

(an,mn − m̃n)
2

+

NT
∑

n=1

(

bn−1, un − ũn
)

2

where

E(m,u, ũ) =
∑

i,j,n

mn−1

i,j

(

g(xi,j , [Dũ
n]i,j) − g(xi,j , [Du

n]i,j)−
−gq(xi,j , [Du

n]i,j) · ([Dũn]i,j − [Dun]i,j)

)

Convexity of g ⇒ E(m,u, ũ) ≥ 0 if m ≥ 0

If Φh is monotone, (Φh[mn] − Φh[m̃n],mn − m̃n)2 ≥ 0
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First consequence: uniqueness

If

g is convex

Φh is monotone

(Φh[m] − Φh[m̃],m− m̃)2 ≤ 0 ⇒ Φh[m] = Φh[m̃]

If u0 = Φ0,h[m0] and

(Φ0,h[m] − Φ0,h[m̃],m− m̃)2 ≤ 0 ⇒ Φ0,h[m] = Φ0,h[m̃]

then

the discrete version of the MFG system has a unique solution.
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A convergence result with local coupling
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Assumptions (1/3)

ν > 0

d = 2 (only for example)

periodicity (but everything would work with Neumann
boundary conditions, or suitable Dirichlet conditions)

u|t=0 = u0 and the data u0 and mT are smooth

0 < mT ≤ mT (x) ≤ mT
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Assumptions (2/3)

The Hamiltonian is of the form

H(x,∇u) = H(x) + |∇u|β

where β > 1 and H is a smooth function

The discrete Hamiltonian is of the form g(xi,j , [Dhu]i,j).
The function g : T × R

4 → R is defined by

g(x, q) = H(x) +
(

(q−1 )2 + (q+
2 )2 + (q−3 )2 + (q+

4 )2
)

β
2

where r+ = max(r, 0) and r− = max(−r, 0)
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Assumptions (3/3)

Local coupling: the cost term is

Φ[m](x) = F (m(x))

where F is C1 on R+
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Assumptions (3/3)

Local coupling: the cost term is

Φ[m](x) = F (m(x))

where F is C1 on R+

There exist three constants c1 > 0 and γ > 1 and c2 ≥ 0 s.t.

mF (m) ≥ c1|F (m)|γ − c2 ∀m
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Assumptions (3/3)

Local coupling: the cost term is

Φ[m](x) = F (m(x))

where F is C1 on R+

There exist three constants c1 > 0 and γ > 1 and c2 ≥ 0 s.t.

mF (m) ≥ c1|F (m)|γ − c2 ∀m

There exist three positive constants c3, η1 and η2 < 1 s.t.

F ′(m) ≥ c3 min(mη1 ,m−η2) ∀m
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Convergence

Assume that the MFG system of pdes has a unique smooth
solution (u,m) s.t.

m ≥ m > 0.

Let uh (resp. mh) be the piecewise trilinear function in
C([0, T ] × T) obtained by interpolating the values un

i,j (resp
mn

i,j) at the nodes of the space-time grid.

lim
h,∆t→0

(

‖u− uh‖Lβ(0,T ;W 1,β(T)) + ‖m−mh‖L2−η2 ((0,T )×T)

)

= 0
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Main steps of the proof

1 Obtain a priori bounds on the solution of the discrete
problem, in particular on ‖F (mh)‖Lγ((0,T )×T)
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Main steps of the proof

1 Obtain a priori bounds on the solution of the discrete
problem, in particular on ‖F (mh)‖Lγ((0,T )×T)

2 Plug the solution of the system of pdes into the numerical
scheme, take advantage of the stability of the scheme and
prove that
‖∇u−∇uh‖Lβ((0,T )×T) and ‖m−mh‖L2−η2 ((0,T )×T)

converge to 0
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Main steps of the proof

1 Obtain a priori bounds on the solution of the discrete
problem, in particular on ‖F (mh)‖Lγ((0,T )×T)

2 Plug the solution of the system of pdes into the numerical
scheme, take advantage of the stability of the scheme and
prove that
‖∇u−∇uh‖Lβ((0,T )×T) and ‖m−mh‖L2−η2 ((0,T )×T)

converge to 0

3 To get the full convergence for u, one has to pass to the
limit in the Bellman equation. To pass to the limit in the
term F (mh), use the equiintegrability of F (mh) and
Vitali’s theorem

Y. Achdou Dauphine



A convergence result with nonlocal coupling
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Assumptions

Same assumptions on H and g

Φ is non local, smoothing and monotone:

(Φ(m1) − Φ(m2),m1 −m2) ≤ 0 ⇒ m1 = m2

The discrete cost operator Φh continuously maps K to a set
of grid functions bounded in the discrete Lipschitz norm

The discrete cost operator Φh is monotone

Consistency: for all probability density m and discrete
probability density m′,

∥

∥Φ[m] − Φh[m′]
∥

∥

L∞(Th)
≤ ω

(

‖m−m′
h‖L1(T)

)

where m′
h is a bilinear interpolation of m′
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Convergence

When h and ∆t tend to 0,

(uh) converges to u

uniformly and in Lmax(β,2)(0, T ;W 1,max(β,2)(T))

If β ≥ 2, (mh) converges to m

in C0([0, T ];L2(T)) ∩ L2(0, T ;H1(T))

If 1 < β < 2, (mh) converges to m

in L2((0, T ) × T)
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Solvers for the discrete systems
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Due to the forward-backward structure, marching in
time is not possible. One has to solve the system for u and
m as a whole. This leads to large systems of nonlinear
equations with ∼ 2N d+1 unknowns.
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Due to the forward-backward structure, marching in
time is not possible. One has to solve the system for u and
m as a whole. This leads to large systems of nonlinear
equations with ∼ 2N d+1 unknowns.

Our choice: Newton methods

linearized discrete MFG systems : well-posed if m > 0,
which is not sure. Hence, breakdowns of the Newton
method may occur

Careful initial guess avoids breakdown

Initial guesses: continuation method, by decreasing
ν progressively

In practice, can be applied even if Φ is not monotone

Y. Achdou Dauphine



Solvers for linearized discrete MFG systems

Due to the forward-backward structure, marching in time
is not possible

Preconditioned iterative method for the whole system in
(u,m)

A good understanding of the PDE system and multigrid
lead to solvers with optimal linear complexity

We have developed several optimal solvers based on
multigrid methods
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A possible strategy for solving the linearized
discrete MFG systems

1 Eliminate u by solving a linearized HJB equation
(marching in time)
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A possible strategy for solving the linearized
discrete MFG systems

1 Eliminate u by solving a linearized HJB equation
(marching in time)

2 This yields a nonlocal eq. for m
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A possible strategy for solving the linearized
discrete MFG systems

1 Eliminate u by solving a linearized HJB equation
(marching in time)

2 This yields a nonlocal eq. for m

3 Solve the resulting system by a preconditioned iterative
method: applying the preconditioner consists of
solving a backward Fokker-Planck equation
(marching in time)
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A possible strategy for solving the linearized
discrete MFG systems

1 Eliminate u by solving a linearized HJB equation
(marching in time)

2 This yields a nonlocal eq. for m

3 Solve the resulting system by a preconditioned iterative
method: applying the preconditioner consists of
solving a backward Fokker-Planck equation
(marching in time)

4 Plug m back in the HJB equation and solve marching in
time

Y. Achdou Dauphine



PDE interpretation of the preconditioned
operator

The preconditioned operator is of the form I −K where

K(n) = (linear-FPm)−1◦div (mHpp(Du)D·)◦(linear-HJBu)−1
(

Φ′(m)n
)

.

If ν > 0 and if m and u are smooth, K is a compact operator
in L2.
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PDE interpretation of the preconditioned
operator

The preconditioned operator is of the form I −K where

K(n) = (linear-FPm)−1◦div (mHpp(Du)D·)◦(linear-HJBu)−1
(

Φ′(m)n
)

.

If ν > 0 and if m and u are smooth, K is a compact operator
in L2.

Thus, the convergence of a (bi)conjugate gradient like method
should not depend on h and ∆t.
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Table: solving the linearized MFG system: average (on the Newton
loop) number of iterations of BiCGstab to decrease the residual by a
factor 10−3

grid 32 × 32× 32 64× 64 × 64 128× 128× 128

ν = 0.6 1 1 1
ν = 0.36 1.75 1.75 1.8
ν = 0.2 2 2 2
ν = 0.12 3 3 3
ν = 0.046 4.9 5.1 5.1

Multigrid methods can be used for solving the linearized HJ
and FP eqs ⇒ optimal complexity.
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Second strategy for solving the linear systems
when Φ is strictly monotone

The idea is to apply directly a multigrid method to the full
system of pdes.
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Second strategy for solving the linear systems
when Φ is strictly monotone

The idea is to apply directly a multigrid method to the full
system of pdes.
The multigrid method must be special:
indeed, eliminating m from the linearized HJB equation, (this is
possible since Φ is strictly monotone), we get a degenerate
elliptic pde, with the operator

div

(

m
∂2H(Du)

∂p2
D·
)

−(linear- FP)◦((Φ′(m))−1·)◦(linear- HJB).
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Second strategy for solving the linear systems
when Φ is strictly monotone

The idea is to apply directly a multigrid method to the full
system of pdes.
The multigrid method must be special:
indeed, eliminating m from the linearized HJB equation, (this is
possible since Φ is strictly monotone), we get a degenerate
elliptic pde, with the operator

div

(

m
∂2H(Du)

∂p2
D·
)

−(linear- FP)◦((Φ′(m))−1·)◦(linear- HJB).

Operator: order 4 w.r.t. x and 2 w.r.t. t.

Principal part: (Φ′(m))−1

(

− ∂2

∂t2
+ ν2∆2

)

.
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Hence, when ν is large enough, we use a multigrid method
with a hierarchy of grids obtained by coarsening the grids
only in the x variable.

Table: average (on the Newton loop) number of iterations of the
BiCGstab method to decrease the residual by a factor 10−3

ν\ grid 32 × 32× 32 64× 64 × 64 128× 128× 128

0.6 1.75 1.5 1.25
0.36 2.2 2 2
0.2 4.9 3.5 2.9
0.12 14.4 11.4 6.8
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Some numerical results
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A. Exit from a hall with obstacles

∂u

∂t
+ ν∆u−H(x,m,∇u) = −F (m), in (0, T ) × Ω

∂m

∂t
− ν∆m− div

(

m
∂H

∂p
(·,m,∇u)

)

= 0, in (0, T ) × Ω

∂u

∂n
=
∂m

∂n
= 0 on walls

u = k, m = 0 at exits
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A. Exit from a hall with obstacles

∂u

∂t
+ ν∆u−H(x,m,∇u) = −F (m), in (0, T ) × Ω

∂m

∂t
− ν∆m− div

(

m
∂H

∂p
(·,m,∇u)

)

= 0, in (0, T ) × Ω

∂u

∂n
=
∂m

∂n
= 0 on walls

u = k, m = 0 at exits

Congestion

H(x,m, p) = H(x) +
|p|β

(c0 + c1m)γ

with c0 > 0, c1 ≥ 0, β > 1 and 0 ≤ γ < 4(β − 1)/β. Existence
and uniqueness was proven by P-L. Lions, and hold in the
discrete case.

The function H(x) may model the panic in the hall.Y. Achdou Dauphine



A. Exit from a hall with obstacles

T = 6

ν = 0.015

u(t = T ) = 0

F (m) = m

Hamiltonian

H(x,m, p) = −0.1 +
|p|2

(1 + 4m)1.5

exitexit
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Evolution of the density

t=0
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Evolution of the density

t=0 t=0.15 t=0.30

t=0.6 t=3 t=4.5
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Velocity

t=0.6
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Same thing without congestion : H(x, p) = −0.1 + |p|2

t=0
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B. Two populations

∂u1

∂t
+ ν∆u1 −H1(t, x,m1 +m2,∇u1) = −F1(m1,m2)

∂m1

∂t
− ν∆m1 − div

(

m1
∂H1

∂p
(t, x,m1 +m2,∇u1)

)

= 0

∂u2

∂t
+ ν∆u2 −H2(t, x,m1 +m2,∇u2) = −F2(m1,m2)

∂m2

∂t
− ν∆m2 − div

(

m2
∂H2

∂p
(t, x,m1 +m2,∇u2)

)

= 0

∂u1

∂n
=
∂u2

∂n
= 0

∂m1

∂n
=
∂m2

∂n
= 0
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A model for segregation proposed by M. Bardi

The Hamiltonians are uniform in space and the same for
the two populations

Hi(x,mi,mj , p) = 0.1|p|2
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A model for segregation proposed by M. Bardi

The Hamiltonians are uniform in space and the same for
the two populations

Hi(x,mi,mj , p) = 0.1|p|2

Xenophobia

The cost operators F1(m1,m2) and F2(m1,m2) are given by

Fi(mi,mj) = 5mi

(

mi

mi +mj
− 0.45

)

−

+ (mi +mj − 4)+
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Evolution of the densities
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ν = 0.015

m1(·, t = 0) = 0.75 + 1[0,0.25], m2(·, t = 0) = 0.75 + 1[0.75,1],
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A stiffer coupling term

Fi(mi,mj) = 5

(

mi

mi +mj
− 0.45

)

−

+ (mi +mj − 4)+
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Evolution of the densities
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ν = 0.2

m1(·, t = 0) = 0.75 + 1[0,0.25], m2(·, t = 0) = 0.75 + 1[0.75,1],
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Evolution of the densities

t=0

 0

 0.5

 1

 1.5

 2

 2.5
t=0.4

 0

 0.5

 1

 1.5

 2

 2.5
t=1

 0

 0.5

 1

 1.5

 2

 2.5
t=2

 0

 0.5

 1

 1.5

 2

 2.5
t=3

 0

 0.5

 1

 1.5

 2

 2.5

t=0

 0

 0.5

 1

 1.5

 2

 2.5
t=0.4

 0

 0.5

 1

 1.5

 2

 2.5
t=1

 0

 0.5

 1

 1.5

 2

 2.5
t=2

 0

 0.5

 1

 1.5

 2

 2.5
t=3

 0

 0.5

 1

 1.5

 2

 2.5

ν = 0.1

m1(·, t = 0) = 0.75 + 1[0,0.25], m2(·, t = 0) = 0.75 + 1[0.75,1],
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Evolution of the densities
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ν = 0.025

m1(·, t = 0) = 0.75 + 1[0,0.25], m2(·, t = 0) = 0.75 + 1[0.75,1],
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Who will reach the goal?

F1(m1,m2) = m1 +m2, F2(m1,m2) = 20m1 +m2

Ω = (0, 1)2\ ([0.4, 0.6] × [0, 0.55])

T = 4, ν = 0.125

u1(t = T ) = u2(t = T ) = 0

Same Hamiltonian for the two
populations:

H1(x,m, p) = H2(x,m, p) = H(x) + 0.1
|p|2

(1 + 4m)1.3

H(x) = −10 × 1x/∈([0.6,1]×[0,0.2])
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Evolution of the densities (bottom: the xenophobic
pop.; top: the other pop.)
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Evolution of the densities (bottom: the xenophobic
pop.; top: the other pop.)

t=0 t=0.2 t=0.4 t=0.8 t=1.2 t=2 t=2.8

t=0 t=0.2 t=0.4 t=0.8 t=1.2 t=2 t=2.8
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Evolution of the velocities (bottom: the xenophobic
pop.; top: the other pop.)

t=0.2 t=0.4 t=1.2 t=2.4

t=0.2 t=0.4 t=1.2 t=2.4
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Two populations cross each other

F1(m1,m2) = m1 +m2, F2(m1,m2) = 20m1 +m2.

Ω = (0, 1)2

T = 4, ν = 0.015

u1(t = T ) = u2(t = T ) = 0

Hamiltonians:

pop1

pop 2

Hi(x,m, p) = Hi(x) + 0.1
|p|2

(1 + 4m)1.3

H1(x) = −10 × 1x/∈([0.7,1]×[0,0.2])

H2(x) = −10 × 1x/∈([0.7,1]×[0.8,1])

The two populations pay the same cost for moving and have the
same sensitivity to congestion effects, but they aim at different
corners
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Finally, at time t = 0, the densities of the two populations
are given by

m1(x, t = 0) = 4 × 1[0,0.2]×[0.4,0.9](x)

m2(x, t = 0) = 4 × 1[0,0.2]×[0.1,0.6](x)

pop1

pop 2
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Evolution of the densities (bottom: the xenophobic
pop.; top: the other pop.)

t=0 t=0.2 t=0.4 t=0.8 t=1.2 t=2 t=2.8 t=3.4

t=0 t=0.2 t=0.4 t=0.8 t=1.2 t=2 t=2.8 t=3.4
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Evolution of the velocities (bottom: the xenophobic
pop.; top: the other pop.)

t=0.2 t=0.4 t=1.2 t=2.4

t=0.2 t=0.4 t=1.2 t=2.4
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C. Long time behavior (a single population)

ν = 1, T = 1, m(T ) = 1

H(x, p) = sin(2πx2) + sin(2πx1) + cos(4πx1) + |p|2,
F (x,m) = m2, F0(x,m) = m2 + cos(πx1) cos(πx2).

       2
     1.8
     1.6
     1.4
     1.2
       1
     0.8
     0.6
     0.4
     0.2
3.89e-16
    -0.2
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The potential H(x, 0) = sin(2πx2) + sin(2πx1) + cos(4πx1).
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Evolution of m(top) and u(bottom)

Snapshots at t = (0, 4, 8, 100, 180, 190, 196, 200)/200
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Comparison with the solution of the infinite horizon
MFG system

The solution around t = T/2 is very close to the solution of the
infinite horizon MFG system
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The infinite horizon MFG system

Find (u,m, λ ∈ R) such that



























− ν∆u+H(x,∇u) + λ = F (m),

− ν∆m− div

(

m
∂H

∂p
(x,∇u)

)

= 0,

∫

T

udx = 0,

∫

T

mdx = 1, and m > 0 in T.
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Quadratic Hamiltonian

The Hamiltonian is of the form H(x, p) = |p|2 + g(x).

The infinite horizon MFG system is equivalent to a generalized
Hartree equation:

−ν2∆φ− gφ+ φF (φ2) = λφ, in T, and

∫

T

φ2 = 1

where φ(x) = φ0 exp (−u(x)/ν) and m = φ2.
The constant φ0 is fixed by the equation

∫

T
log(φ/φ0) = 0.

As a consequence, m can be written as a function of u.
This gives a way to test the accuracy of the scheme.
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Order of the scheme
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Same test except

ν = 0.01, ∆t = 1/200.
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Evolution of m(top) and u(bottom)

Snapshots at t = (0, 4, 8, 100, 180, 190, 196, 200)/200
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The solution of the infinite horizon problem
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ν = 0.01, left: u, right m.
Note that the supports of ∇u and of m tend to be disjoint as

ν → 0.
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D. Deterministic infinite horizon MFG with
nonlocal coupling

"u.gp" "m.gp"

ν = 0.001,
H(x, p) = sin(2πx2) + sin(2πx1) + cos(4πx1) + |p|2,

V [m] = (1 − ∆)−1(1 − ∆)−1m
left: u, right m.
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E. Optimal planning with MFG











∂u

∂t
− ν∆u+H(x,∇u) = F (m(x)) in (0, T ) × T,

∂m

∂t
+ ν∆m+ div

(

m
∂H

∂p
(x,∇u)

)

= 0 in (0, T ) × T,

with the initial and terminal conditions

m(0, x) = m0(x), m(T, x) = mT (x), in T,

and

m ≥ 0,

∫

T

m(t, x)dx = 1.
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Existence results (P-L. Lions)

Ok if ν = 0, if H coercive, if F is a strictly increasing
function and if m0 and mT are smooth positive functions.
Principle of the (difficult) proof: eliminate m from the
Bellman equation and get a boundary value problem for u
with a strictly elliptic quasilinear second order PDE, and
nonlinear boundary conditions
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Bellman equation and get a boundary value problem for u
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nonlinear boundary conditions
OK if ν = 0, if F = 0 (optimal transport) and if m0 and
mT are smooth positive functions

Y. Achdou Dauphine



Existence results (P-L. Lions)
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OK if ν = 0, if F = 0 (optimal transport) and if m0 and
mT are smooth positive functions
Ok if ν > 0 and if H(p) = c|p|2, if F is a smooth and
bounded function and if m0 and mT are smooth positive
functions. Principle of the proof: use a clever change of
unknowns: φ = exp(−u) and χ = m/φ
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1+|p|2
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Existence results (P-L. Lions)

Ok if ν = 0, if H coercive, if F is a strictly increasing
function and if m0 and mT are smooth positive functions.
Principle of the (difficult) proof: eliminate m from the
Bellman equation and get a boundary value problem for u
with a strictly elliptic quasilinear second order PDE, and
nonlinear boundary conditions
OK if ν = 0, if F = 0 (optimal transport) and if m0 and
mT are smooth positive functions
Ok if ν > 0 and if H(p) = c|p|2, if F is a smooth and
bounded function and if m0 and mT are smooth positive
functions. Principle of the proof: use a clever change of
unknowns: φ = exp(−u) and χ = m/φ
Still Ok if ν > 0 and if ‖D2H(p) − cId‖ ≤ C 1√

1+|p|2

If ν > 0 and more general Hamiltonians ?
Non-existence if H is sublinear, m0 6= mT and T small
enough
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Optimal control (on PDEs) approach

Assumption:

F = W ′ where W : R → R is a strictly convex function
H(x, p) = sup

γ∈Rd

(p · γ − L(x, γ))

L is strictly convex, lim
|γ|→∞

inf
x
L(x, γ)/|γ| = +∞
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Optimal control (on PDEs) approach

Assumption:

F = W ′ where W : R → R is a strictly convex function
H(x, p) = sup

γ∈Rd

(p · γ − L(x, γ))

L is strictly convex, lim
|γ|→∞

inf
x
L(x, γ)/|γ| = +∞

A weak form of the MFG system can be found by considering
the problem of optimal control on PDE:

minimize (m, γ) →
∫ T

0

∫

T

m(t, x)L(x, γ(t, x)) +W (m(t, x))

subject to the constraints







∂tm+ ν∆m+ div(mγ) = 0, in (0, T ) × T,
m(T, x) = mT (x) in T,
m(0, x) = m0(x) in T.
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Convex programming and Fenchel-Rockafeller
duality theorem

It is possible to make the constraints linear by the change of
variables z = mγ
→ optimization problem with a convex cost and linear
constraints.

There exists a saddle point of the primal-dual problem, and
writing the optimality conditions:

In the continuous setting, not easy to recover the system of
pdes

Discrete problem: same program, but it is possible to prove
that m > 0 ⇒ existence and uniqueness for the discrete pb.

Y. Achdou Dauphine



A penalized scheme







































uε,n+1
i,j − uε,n

i,j

∆t
− ν(∆hu

ε,n+1)i,j + g(xi,j , [Dhu
ε,n+1]i,j) = F (mε,n

i,j )

mε,n+1
i,j −mε,n

i,j

∆t
+ ν(∆hm

ε,n)i,j + Ti,j(u
ε,n+1,mε,n) = 0

mε,n ∈ K

with the final time and initial time conditions

uε,0
i,j =

1

ε
(mε,0

i,j − (m0)i,j), mε,NT

i,j = (mT )i,j, ∀i, j

Convergence As ε→ 0, mε → m solution of the discrete MFG
system.
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T = 1, ν = 1, F (m) = m2, H(p) = sin(2πx2) + sin(2πx1) + cos(4πx1) + |p|2

Snapshots at t = (0, 4, 8, 100, 180, 190, 196, 200)/200
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T = 0.01, ν = 0.1, H(p) = sin(2πx2) + sin(2πx1) + cos(4πx1) + |p|3

Snapshots at t = (0, 4, 8, 100, 180, 190, 196, 200)/200
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