Mean Field Games: Numerical Methods

Yves Achdou
LJLL, Université Paris Diderot
with F. Camilli, I. Capuzzo Dolcetta, V. Perez

$$
\begin{cases}\frac{\partial u}{\partial t}-\nu \Delta u+H(x, \nabla u)=\Phi[m] & \text { in }(0, T] \times \mathbb{T} \tag{*}\\ \frac{\partial m}{\partial t}+\nu \Delta m+\operatorname{div}\left(m \frac{\partial H}{\partial p}(x, \nabla u)\right)=0 & \text { in }[0, T) \times \mathbb{T} \\ u(t=0)=\Phi_{0}[m(t=0)] & \\ m(t=T)=m_{\circ} & \end{cases}
$$

where

$$
H(x, p)=\sup _{\gamma \in \mathbb{R}^{d}}(p \cdot \gamma-L(x, \gamma))
$$

Except when mentioned,

$$
\mathbb{T}=(\mathbb{R} / \mathbb{Z})^{d} \quad \text { (periodic problem) }
$$

Most of what follows holds with Neumann or Dirichlet conditions.

Note the special structure of the system

- forward/backward w.r.t. time

Note the special structure of the system

- forward/backward w.r.t. time
- the operator in the Fokker-Planck equation is the adjoint of the linearized version of the operator in the HJB equation

Note the special structure of the system

- forward/backward w.r.t. time
- the operator in the Fokker-Planck equation is the adjoint of the linearized version of the operator in the HJB equation
- coupling: via Φ in the HJB equation and via $\partial_{p} H(x, \nabla u)$ in the Fokker-Planck equation, and possibly via the initial condition

Note the special structure of the system

- forward/backward w.r.t. time
- the operator in the Fokker-Planck equation is the adjoint of the linearized version of the operator in the HJB equation
- coupling: via Φ in the HJB equation and via $\partial_{p} H(x, \nabla u)$ in the Fokker-Planck equation, and possibly via the initial condition

Realistic models may include congestion, i.e. L depends on m, for example

$$
L(x, m, \gamma)=\ell(x)+\left(c_{1}+c_{2} m\right)^{q}|\gamma|^{\beta} .
$$

This induces a stronger coupling between u and m in (*).

A simple case

Framework

- $d=1$
- L is strictly convex

$$
H(x, p)=\sup _{\gamma \in \mathbb{R}}(p \cdot \gamma-L(x, \gamma))
$$

- $\Phi[m](x)=F(m(x))$ and $F=W^{\prime}$ where $W: \mathbb{R} \rightarrow \mathbb{R}$ is a strictly convex function
- $\Phi_{0}[m](x)=F_{0}(m(x))$ and $F_{0}=W_{0}^{\prime}$ where $W_{0}: \mathbb{R} \rightarrow \mathbb{R}$ is a strictly convex function

A simple case

Framework

- $d=1$
- L is strictly convex

$$
H(x, p)=\sup _{\gamma \in \mathbb{R}}(p \cdot \gamma-L(x, \gamma))
$$

- $\Phi[m](x)=F(m(x))$ and $F=W^{\prime}$ where $W: \mathbb{R} \rightarrow \mathbb{R}$ is a strictly convex function
- $\Phi_{0}[m](x)=F_{0}(m(x))$ and $F_{0}=W_{0}^{\prime}$ where $W_{0}: \mathbb{R} \rightarrow \mathbb{R}$ is a strictly convex function
(*) can be found as the optimality conditions of an optimal control problem on a transport equation.

Optimal control problem

Minimize

$$
\begin{aligned}
J(m, \gamma)= & \int_{0}^{T} \int_{\mathbb{T}}(m(t, x) L(x, \gamma(t, x))+W(m(t, x))) d x d t \\
& +\int_{\mathbb{T}} W_{0}(m(x, 0)) d x
\end{aligned}
$$

subject to the constraints

$$
\left\{\begin{aligned}
\frac{\partial m}{\partial t}+\nu \Delta m+\operatorname{div}(m \gamma) & =0, \quad \text { in }(0, T) \times \mathbb{T} \\
m(T, x) & =m_{T}(x) \quad \text { in } \mathbb{T}
\end{aligned}\right.
$$

Optimality conditions

$$
\begin{aligned}
& \delta \gamma \mapsto \delta m \mapsto \delta J \\
& \left\{\begin{array}{rll}
\partial_{t} \delta m+\nu \Delta \delta m+\operatorname{div}(\delta m \gamma) & = & -\operatorname{div}(m \delta \gamma), \quad \text { in }(0, T) \times \mathbb{T}, \\
\delta m(T, x) & = & 0 \quad \text { in } \mathbb{T} .
\end{array}\right.
\end{aligned}
$$

Optimality conditions

$$
\begin{aligned}
& \delta \gamma \mapsto \delta m \mapsto \delta J \\
& \left\{\begin{aligned}
& \partial_{t} \delta m+\nu \Delta \delta m+\operatorname{div}(\delta m \gamma)= \\
& \delta m(T, x)=\operatorname{div}(m \delta \gamma), \quad \text { in }(0, T) \times \mathbb{T}, \\
& \delta
\end{aligned}\right. \\
& \delta J(m, \gamma)=\int_{0}^{T} \int_{\mathbb{T}} \delta m(t, x)(L(x, \gamma(t, x))+F(m(t, x))) \\
& \quad+\int_{0}^{T} \int_{\mathbb{T}} \delta \gamma(t, x) m(t, x) \frac{\partial L}{\partial \gamma}(x, \gamma(t, x))+\int_{\mathbb{T}} \delta m(0, x) F_{0}(m(0, x))
\end{aligned}
$$

Optimality conditions

$$
\begin{aligned}
& \delta \gamma \mapsto \delta m \mapsto \delta J \\
& \left\{\begin{aligned}
& \partial_{t} \delta m+\nu \Delta \delta m+\operatorname{div}(\delta m \gamma)= \\
& \delta m(T, x)=\operatorname{div}(m \delta \gamma), \quad \text { in }(0, T) \times \mathbb{T}, \\
& \delta
\end{aligned}\right. \\
& \delta J(m, \gamma)=\int_{0}^{T} \int_{\mathbb{T}} \delta m(t, x)(L(x, \gamma(t, x))+F(m(t, x))) \\
& \quad+\int_{0}^{T} \int_{\mathbb{T}} \delta \gamma(t, x) m(t, x) \frac{\partial L}{\partial \gamma}(x, \gamma(t, x))+\int_{\mathbb{T}} \delta m(0, x) F_{0}(m(0, x)) .
\end{aligned}
$$

Adjoint problem

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}-\nu \Delta u+\gamma \cdot \nabla u=L(x, \gamma)+F(m) \quad \text { in }(0, T] \times \mathbb{T} \\
u(t=0)=F_{0}\left(\left.m\right|_{t=0}\right)
\end{array}\right.
$$

Variation of J

$$
\begin{aligned}
\delta J(m, \gamma)= & \int_{0}^{T} \int_{\mathbb{T}}-u(t, x)\left(\partial_{t} \delta m+\nu \Delta \delta m+\operatorname{div}(\delta m \gamma)\right) \\
& +\int_{0}^{T} \int_{\mathbb{T}} m(t, x) \delta \gamma(t, x) \frac{\partial L}{\partial \gamma}(x, \gamma(t, x)) \\
= & \int_{0}^{T} \int_{\mathbb{T}} m(t, x)\left(\frac{\partial L}{\partial \gamma}(x, \gamma(t, x))-\nabla u(t, x)\right) \delta \gamma(t, x)
\end{aligned}
$$

Variation of J

$$
\begin{aligned}
\delta J(m, \gamma)= & \int_{0}^{T} \int_{\mathbb{T}}-u(t, x)\left(\partial_{t} \delta m+\nu \Delta \delta m+\operatorname{div}(\delta m \gamma)\right) \\
& +\int_{0}^{T} \int_{\mathbb{T}} m(t, x) \delta \gamma(t, x) \frac{\partial L}{\partial \gamma}(x, \gamma(t, x)) \\
= & \int_{0}^{T} \int_{\mathbb{T}} m(t, x)\left(\frac{\partial L}{\partial \gamma}(x, \gamma(t, x))-\nabla u(t, x)\right) \delta \gamma(t, x)
\end{aligned}
$$

Optimality conditions

- $\nabla u(t, x)=\frac{\partial L}{\partial \gamma}\left(x, \gamma^{*}(t, x)\right)$
- $\gamma^{*}(t, x)$ achieves the max. in $H(x, p)=\sup (p \cdot \gamma-L(x, \gamma))$ and

$$
\gamma^{*}(t, x)=H_{p}(x, \nabla u(t, x))
$$

- \Rightarrow MFG system of PDEs

A discrete scheme when $L(x, \gamma)=f(x)+\ell(\gamma)$

- Assume that ℓ is strictly convex and $\ell(0)=\ell^{\prime}(0)=0$
- Uniform grid: $x_{i}=i h, t_{n}=n \Delta t$

The transport equation for m

- γ is discretized on a staggered grid: $\gamma_{i+1 / 2}^{n} \approx \gamma\left(t_{n}, x_{i}+h / 2\right)$
- upwind scheme (explicit w.r.t γ)

$$
\begin{aligned}
0= & \frac{m_{i}^{n+1}-m_{i}^{n}}{\Delta t}+\nu\left(\Delta_{h} m^{n}\right)_{i} \\
& +\gamma_{i+1 / 2}^{n+1,+} m_{i+1}^{n}-\gamma_{i+1 / 2}^{n+1,-} m_{i}^{n}-\gamma_{i-1 / 2}^{n+1,+} m_{i}^{n}+\gamma_{i-1 / 2}^{n+1,-} m_{i-1}^{n} .
\end{aligned}
$$

The scheme is conservative and preserves positivity: it is L^{1} stable.

Discrete version of J : many possible choices

- Lachapelle, Salomon, Turinici: trapezoidal rule

Discrete version of J : many possible choices

- Lachapelle, Salomon, Turinici: trapezoidal rule
- To preserve the structure of the PDE system, we rather choose:

$$
\begin{aligned}
J_{h} & =h \Delta t \sum_{n} \sum_{i} m_{i}^{n}\left(f\left(x_{i}\right)+\ell\left(\gamma_{i-1 / 2}^{n+1,+}\right)+\ell\left(-\gamma_{i+1 / 2}^{n+1,-}\right)\right) \\
& +h \Delta t \sum_{n} \sum_{i} W\left(m_{i}^{n}\right)+h \sum_{i} W_{0}\left(m_{i}^{n}\right)
\end{aligned}
$$

Discrete version of J : many possible choices

- Lachapelle, Salomon, Turinici: trapezoidal rule
- To preserve the structure of the PDE system, we rather choose:

$$
\begin{aligned}
J_{h} & =h \Delta t \sum_{n} \sum_{i} m_{i}^{n}\left(f\left(x_{i}\right)+\ell\left(\gamma_{i-1 / 2}^{n+1,+}\right)+\ell\left(-\gamma_{i+1 / 2}^{n+1,-}\right)\right) \\
& +h \Delta t \sum_{n} \sum_{i} W\left(m_{i}^{n}\right)+h \sum_{i} W_{0}\left(m_{i}^{n}\right)
\end{aligned}
$$

Adjoint equation

$$
\begin{aligned}
& \frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}-\nu\left(\Delta_{h} u^{n+1}\right)_{i}+\gamma_{i-1 / 2}^{n+1,+} \frac{u_{i}^{n+1}-u_{i-1}^{n+1}}{h}-\gamma_{i+1 / 2}^{n+1,-} \frac{u_{i+1}^{n+1}-u_{i}^{n+1}}{h} \\
& \quad=f\left(x_{i}\right)+\ell\left(\gamma_{i-1 / 2}^{n+1,+}\right)+\ell\left(-\gamma_{i+1 / 2}^{n+1,-}\right)+F\left(m_{i}^{n}\right)
\end{aligned}
$$

Optimality conditions for the discrete problem

$$
\frac{\partial \ell}{\partial \gamma}\left(\gamma_{i+1 / 2}^{n+1, *}\right)=\left(u_{i+1}^{n+1}-u_{i}^{n+1}\right) / h
$$

Kushner-Dupuis numerical Hamiltonian:

$$
g\left(x, p_{1}, p_{2}\right)=-f(x)+\max _{\gamma \in \mathbb{R}}\left(-p_{1}^{-} \gamma+p_{2}^{+} \gamma-\ell(\gamma)\right)
$$

Then

$$
\begin{aligned}
& \gamma_{i+1 / 2}^{n+1, *,-}=-\frac{\partial g}{\partial p_{1}}\left(x_{i},\left(u_{i+1}^{n+1}-u_{i}^{n+1}\right) / h,\left(u_{i}^{n+1}-u_{i-1}^{n+1}\right) / h\right), \\
& \gamma_{i-1 / 2}^{n+1, *,+}=\frac{\partial g}{\partial p_{2}}\left(x_{i},\left(u_{i+1}^{n+1}-u_{i}^{n+1}\right) / h,\left(u_{i}^{n+1}-u_{i-1}^{n+1}\right) / h\right) .
\end{aligned}
$$

$$
\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}-\nu\left(\Delta_{h} u^{n+1}\right)_{i}+g\left(x_{i}, \frac{u_{i+1}^{n+1}-u_{i}^{n+1}}{h}, \frac{u_{i}^{n+1}-u_{i-1}^{n+1}}{h}\right)=F\left(m_{i}^{n}\right)
$$

Direct discretization of (*)

Take $d=2$.

- Let \mathbb{T}_{h} be a uniform grid on the torus with mesh step h, and $x_{i j}$ be a generic point in \mathbb{T}_{h}
- Uniform time grid: $\Delta t=T / N_{T}, t_{n}=n \Delta t$
- The values of u and m at $\left(x_{i, j}, t_{n}\right)$ are approximated by $u_{i, j}^{n}$ and $m_{i, j}^{n}$

Notation

- The discrete Laplace operator:

$$
\left(\Delta_{h} w\right)_{i, j}=\frac{1}{h^{2}}\left(w_{i+1, j}+w_{i-1, j}+w_{i, j+1}+w_{i, j-1}-4 w_{i, j}\right)
$$

- Right-sided finite difference formulas for $\frac{\partial w}{\partial x_{1}}\left(x_{i, j}\right)$ and $\frac{\partial w}{\partial x_{2}}\left(x_{i, j}\right)$

$$
\left(D_{1} w\right)_{i, j}=\frac{w_{i+1, j}-w_{i, j}}{h}, \quad \text { and } \quad\left(D_{2} w\right)_{i, j}=\frac{w_{i, j+1}-w_{i, j}}{h}
$$

- The collection of the 4 first order finite difference formulas at $x_{i, j}$

$$
\left[D_{h} w\right]_{i, j}=\left\{\left(D_{1} w\right)_{i, j},\left(D_{1} w\right)_{i-1, j},\left(D_{2} w\right)_{i, j},\left(D_{2} w\right)_{i, j-1}\right\}
$$

For the Bellman equation, a semi-implicit monotone scheme

$$
\begin{gathered}
\frac{\partial u}{\partial t}-\nu \Delta u+H(x, \nabla u)=\Phi[m] \\
\downarrow \\
\frac{u_{i, j}^{n+1}-u_{i, j}^{n}}{\Delta t}-\nu\left(\Delta_{h} u^{n+1}\right)_{i, j}+g\left(x_{i, j},\left[D_{h} u^{n+1}\right]_{i, j}\right)=\left(\Phi_{h}\left[m^{n}\right]\right)_{i, j}
\end{gathered}
$$

where $\left[D_{h} u\right]_{i, j} \in \mathbb{R}^{4}$ is the collection of the two first order finite difference formulas at $x_{i, j}$ for $\partial_{x} u$ and for $\partial_{y} u$.

$$
\begin{aligned}
& g\left(x_{i, j},\left[D_{h} u^{n+1}\right]_{i, j}\right) \\
= & g\left(x_{i, j},\left(D_{1} u^{n+1}\right)_{i, j},\left(D_{1} u^{n+1}\right)_{i-1, j},\left(D_{2} u^{n+1}\right)_{i, j},\left(D_{2} u^{n+1}\right)_{i, j-1}\right)
\end{aligned}
$$

Assumptions on the discrete Hamiltonian g

$$
\left(q_{1}, q_{2}, q_{3}, q_{4}\right) \rightarrow g\left(x, q_{1}, q_{2}, q_{3}, q_{4}\right) .
$$

- Monotonicity:
- g is nonincreasing with respect to q_{1} and q_{3}
- g is nondecreasing with respect to to q_{2} and q_{4}

Assumptions on the discrete Hamiltonian g

$$
\left(q_{1}, q_{2}, q_{3}, q_{4}\right) \rightarrow g\left(x, q_{1}, q_{2}, q_{3}, q_{4}\right) .
$$

- Monotonicity:
- g is nonincreasing with respect to q_{1} and q_{3}
- g is nondecreasing with respect to to q_{2} and q_{4}
- Consistency:

$$
g\left(x, q_{1}, q_{1}, q_{3}, q_{3}\right)=H(x, q), \quad \forall x \in \mathbb{T}, \forall q=\left(q_{1}, q_{3}\right) \in \mathbb{R}^{2}
$$

Assumptions on the discrete Hamiltonian g

$$
\left(q_{1}, q_{2}, q_{3}, q_{4}\right) \rightarrow g\left(x, q_{1}, q_{2}, q_{3}, q_{4}\right) .
$$

- Monotonicity:
- g is nonincreasing with respect to q_{1} and q_{3}
- g is nondecreasing with respect to to q_{2} and q_{4}
- Consistency:

$$
g\left(x, q_{1}, q_{1}, q_{3}, q_{3}\right)=H(x, q), \quad \forall x \in \mathbb{T}, \forall q=\left(q_{1}, q_{3}\right) \in \mathbb{R}^{2}
$$

- Differentiability: g is of class \mathcal{C}^{1}

Assumptions on the discrete Hamiltonian g

$$
\left(q_{1}, q_{2}, q_{3}, q_{4}\right) \rightarrow g\left(x, q_{1}, q_{2}, q_{3}, q_{4}\right) .
$$

- Monotonicity:
- g is nonincreasing with respect to q_{1} and q_{3}
- g is nondecreasing with respect to to q_{2} and q_{4}
- Consistency:

$$
g\left(x, q_{1}, q_{1}, q_{3}, q_{3}\right)=H(x, q), \quad \forall x \in \mathbb{T}, \forall q=\left(q_{1}, q_{3}\right) \in \mathbb{R}^{2}
$$

- Differentiability: g is of class \mathcal{C}^{1}
- Convexity (for uniqueness and stability):

$$
\left(q_{1}, q_{2}, q_{3}, q_{4}\right) \rightarrow g\left(x, q_{1}, q_{2}, q_{3}, q_{4}\right) \text { is convex }
$$

Coupling

- Local operator: if $\Phi[m](x)=F(m(x))$, take

$$
\left(\Phi_{h}[m]\right)_{i, j}=F\left(m_{i, j}\right)
$$

Coupling

- Local operator: if $\Phi[m](x)=F(m(x))$, take

$$
\left(\Phi_{h}[m]\right)_{i, j}=F\left(m_{i, j}\right)
$$

- If Φ is a nonlocal operator, choose a consistent discrete approximation. For example, if it is possible,

$$
\left(\Phi_{h}[m]\right)_{i, j}=\Phi\left[m_{h}\right]\left(x_{i, j}\right),
$$

calling m_{h} the piecewise constant function on \mathbb{T} taking the value $m_{i, j}$ in the square $\left|x-x_{i, j}\right|_{\infty} \leq h / 2$

Coupling

- Local operator: if $\Phi[m](x)=F(m(x))$, take

$$
\left(\Phi_{h}[m]\right)_{i, j}=F\left(m_{i, j}\right)
$$

- If Φ is a nonlocal operator, choose a consistent discrete approximation. For example, if it is possible,

$$
\left(\Phi_{h}[m]\right)_{i, j}=\Phi\left[m_{h}\right]\left(x_{i, j}\right)
$$

calling m_{h} the piecewise constant function on \mathbb{T} taking the value $m_{i, j}$ in the square $\left|x-x_{i, j}\right|_{\infty} \leq h / 2$

- For uniqueness and stability, the following assumption will be useful:

$$
\left(\Phi_{h}[m]-\Phi_{h}[\tilde{m}], m-\tilde{m}\right)_{2} \leq 0 \quad \Rightarrow \quad \Phi_{h}[m]=\Phi_{h}[\tilde{m}]
$$

Coupling

- Local operator: if $\Phi[m](x)=F(m(x))$, take

$$
\left(\Phi_{h}[m]\right)_{i, j}=F\left(m_{i, j}\right)
$$

- If Φ is a nonlocal operator, choose a consistent discrete approximation. For example, if it is possible,

$$
\left(\Phi_{h}[m]\right)_{i, j}=\Phi\left[m_{h}\right]\left(x_{i, j}\right)
$$

calling m_{h} the piecewise constant function on \mathbb{T} taking the value $m_{i, j}$ in the square $\left|x-x_{i, j}\right|_{\infty} \leq h / 2$

- For uniqueness and stability, the following assumption will be useful:

$$
\left(\Phi_{h}[m]-\Phi_{h}[\tilde{m}], m-\tilde{m}\right)_{2} \leq 0 \quad \Rightarrow \quad \Phi_{h}[m]=\Phi_{h}[\tilde{m}]
$$

- Same thing for $\Phi_{0, h}$

The approximation of the Fokker-Planck equation

$$
\frac{\partial m}{\partial t}+\nu \Delta m+\operatorname{div}\left(m \frac{\partial H}{\partial p}(x, \nabla v)\right)=0 .
$$

It is chosen so that

- each time step leads to a linear system for m with a matrix
- whose diagonal coefficients are negative
- whose off-diagonal coefficients are nonnegative in order to hopefully get a discrete maximum principle

The approximation of the Fokker-Planck equation

$$
\frac{\partial m}{\partial t}+\nu \Delta m+\operatorname{div}\left(m \frac{\partial H}{\partial p}(x, \nabla v)\right)=0
$$

It is chosen so that

- each time step leads to a linear system for m with a matrix
- whose diagonal coefficients are negative
- whose off-diagonal coefficients are nonnegative in order to hopefully get a discrete maximum principle
- The argument for uniqueness should hold in the discrete case, so the discrete Hamiltonian g should be used for (\dagger) as well

Principle

Discretize $\quad-\int_{\mathbb{T}} \operatorname{div}\left(m \frac{\partial H}{\partial p}(x, \nabla u)\right) w$

Principle

Discretize $\quad-\int_{\mathbb{T}} \operatorname{div}\left(m \frac{\partial H}{\partial p}(x, \nabla u)\right) w=\int_{\mathbb{T}} m \frac{\partial H}{\partial p}(x, \nabla u) \cdot \nabla w$

Principle

$$
\begin{aligned}
& \text { Discretize } \quad-\int_{\mathbb{T}} \operatorname{div}\left(m \frac{\partial H}{\partial p}(x, \nabla u)\right) w=\int_{\mathbb{T}} m \frac{\partial H}{\partial p}(x, \nabla u) \cdot \nabla w \\
& \text { by } \\
& \qquad h^{2} \sum_{i, j} m_{i, j} \nabla_{q} g\left(x_{i, j},\left[D_{h} u\right]_{i, j}\right) \cdot\left[D_{h} w\right]_{i, j}
\end{aligned}
$$

Principle

$$
\begin{aligned}
& \text { Discretize } \quad-\int_{\mathbb{T}} \operatorname{div}\left(m \frac{\partial H}{\partial p}(x, \nabla u)\right) w=\int_{\mathbb{T}} m \frac{\partial H}{\partial p}(x, \nabla u) \cdot \nabla w \\
& \text { by } \quad-h^{2} \sum_{i, j} \mathcal{T}_{i, j}(u, m) w_{i, j} \equiv h^{2} \sum_{i, j} m_{i, j} \nabla_{q} g\left(x_{i, j},\left[D_{h} u\right]_{i, j}\right) \cdot\left[D_{h} w\right]_{i, j}
\end{aligned}
$$

Discrete version of $\operatorname{div}\left(m H_{p}(x, \nabla u)\right)$:

$$
\begin{aligned}
& \mathcal{T}_{i, j}(u, m) \\
& =\frac{1}{h}\binom{\binom{m_{i, j} \frac{\partial g}{\partial q_{1}}\left(x_{i, j},\left[D_{h} u\right]_{i, j}\right)-m_{i-1, j} \frac{\partial g}{\partial q_{1}}\left(x_{i-1, j},\left[D_{h} u\right]_{i-1, j}\right)}{+m_{i+1, j} \frac{\partial g}{\partial q_{2}}\left(x_{i+1, j},\left[D_{h} u\right]_{i+1, j}\right)-m_{i, j} \frac{\partial g}{\partial q_{2}}\left(x_{i, j},\left[D_{h} u\right]_{i, j}\right)}}{+\binom{m_{i, j} \frac{\partial g}{\partial q_{3}}\left(x_{i, j},\left[D_{h} u\right]_{i, j}\right)-m_{i, j-1} \frac{\partial g}{\partial q_{3}}\left(x_{i, j-1},\left[D_{h} u\right]_{i, j-1}\right)}{+m_{i, j+1} \frac{\partial g}{\partial q_{4}}\left(x_{i, j+1},\left[D_{h} u\right]_{i, j+1}\right)-m_{i, j} \frac{\partial g}{\partial q_{4}}\left(x_{i, j},\left[D_{h} u\right]_{i, j}\right)}}
\end{aligned}
$$

Semi-implicit scheme

$$
\left\{\begin{array}{l}
\frac{u_{i, j}^{n+1}-u_{i, j}^{n}}{\Delta t}-\nu\left(\Delta_{h} u^{n+1}\right)_{i, j}+g\left(x_{i, j},\left[D_{h} u^{n+1}\right]_{i, j}\right)=\left(\Phi_{h}\left[m^{n}\right]\right)_{i, j} \\
\frac{m_{i, j}^{n+1}-m_{i, j}^{n}}{\Delta t}+\nu\left(\Delta_{h} m^{n}\right)_{i, j}+\mathcal{T}_{i, j}\left(u^{n+1}, m^{n}\right)=0
\end{array}\right.
$$

The operator $m \mapsto \nu\left(\Delta_{h} m\right)_{i, j}+\mathcal{T}_{i, j}(u, m)$ is the adjoint of the linearized version of $u \mapsto \nu\left(\Delta_{h} u\right)_{i, j}-g\left(x_{i, j},\left[D_{h} u\right]_{i, j}\right)$.

The discrete MFG system has the same structure as the continuous one.

Semi-implicit scheme

$$
\left\{\begin{array}{l}
\frac{u_{i, j}^{n+1}-u_{i, j}^{n}}{\Delta t}-\nu\left(\Delta_{h} u^{n+1}\right)_{i, j}+g\left(x_{i, j},\left[D_{h} u^{n+1}\right]_{i, j}\right)=\left(\Phi_{h}\left[m^{n}\right]\right)_{i, j} \\
\frac{m_{i, j}^{n+1}-m_{i, j}^{n}}{\Delta t}+\nu\left(\Delta_{h} m^{n}\right)_{i, j}+\mathcal{T}_{i, j}\left(u^{n+1}, m^{n}\right)=0
\end{array}\right.
$$

Well known discrete Hamiltonians g can be chosen.

For example, if the Hamiltonian is of the form $H(x, \nabla u)=\psi(x,|\nabla u|)$, a possible choice is the upwind scheme:

$$
g\left(x, q_{1}, q_{2}, q_{3}, q_{4}\right)=\psi\left(x, \sqrt{\left(q_{1}^{-}\right)^{2}+\left(q_{2}^{+}\right)^{2}+\left(q_{3}^{-}\right)^{2}+\left(q_{4}^{+}\right)^{2}}\right) .
$$

Existence and bounds

Define the set of discrete probability densities

$$
\mathcal{K}=\left\{\left(m_{i, j}\right)_{0 \leq i, j<N}: h^{2} \sum_{i, j} m_{i, j}=1, m_{i, j} \geq 0\right\}
$$

If

- g is of class \mathcal{C}^{1}, and monotone w.r.t. q
- Φ_{h} and $\Phi_{0, h}$ are continuous operators on \mathcal{K} then the discrete problem has a solution such that $m^{n} \in \mathcal{K}, \forall n$.

Existence and bounds

Define the set of discrete probability densities

$$
\mathcal{K}=\left\{\left(m_{i, j}\right)_{0 \leq i, j<N}: h^{2} \sum_{i, j} m_{i, j}=1, m_{i, j} \geq 0\right\}
$$

If

- g is of class \mathcal{C}^{1}, and monotone w.r.t. q
- Φ_{h} and $\Phi_{0, h}$ are continuous operators on \mathcal{K} then the discrete problem has a solution such that $m^{n} \in \mathcal{K}, \forall n$.

Discrete Lipschitz estimates on u can be obtained if Φ_{h} is a suitable approximation of a nonlocal smoothing operator and if g satisfies additional properties, for example

$$
\left|\frac{\partial g}{\partial x}\left(x,\left(q_{1}, q_{2}, q_{3}, q_{4}\right)\right)\right| \leq C\left(1+\left|q_{1}\right|+\left|q_{2}\right|+\left|q_{3}\right|+\left|q_{4}\right|\right)
$$

Strategy of proof

- Brouwer fixed point theorem in $\mathcal{K}^{N_{T}}$ taking advantage of the structure of the system
- estimates on u uniform w.r.t m, but possibly depending on h and Δt (using the monotonicity of g)
- if Φ is a nonlocal smoothing operator, discrete Lipchitz bounds on $\Phi_{h}[m]$ yield estimates on the discrete Lipschitz norm of u, uniform in m, h and Δt

A key identity for uniqueness and stability

A perturbed system

$$
\left\{\begin{array}{l}
\frac{\tilde{u}_{i, j}^{n+1}-\tilde{u}_{i, j}^{n}}{\Delta t}-\nu\left(\Delta_{h} \tilde{u}^{n+1}\right)_{i, j}+g\left(x_{i, j},\left[D_{h} \tilde{u}^{n+1}\right]_{i, j}\right)=\left(\Phi_{h}\left[\tilde{m}^{n}\right]\right)_{i, j}+a_{i, j}^{n} \\
\frac{\tilde{m}_{i, j}^{n+1}-\tilde{m}_{i, j}^{n}}{\Delta t}+\nu\left(\Delta_{h} \tilde{m}^{n}\right)_{i, j}+\mathcal{T}_{i, j}\left(\tilde{u}^{n+1}, \tilde{m}^{n}\right)=b_{i, j}^{n}
\end{array}\right.
$$

- Multiply the 2 discrete HJB equations by $m_{i, j}^{n}-\tilde{m}_{i, j}^{n}$, sum on n, i, j, and subtract the results
- Multiply the 2 discrete FP equations by $u_{i, j}^{n+1}-\tilde{u}_{i, j}^{n+1}$, sum on n, i, j, and subtract the results
- Add the 2 resulting identities

One gets

$$
\begin{aligned}
& -\frac{1}{\Delta t}\left(m^{N_{T}}-\tilde{m}^{N_{T}}, u^{N_{T}}-\tilde{u}^{N_{T}}\right)_{2}+\frac{1}{\Delta t}\left(m^{0}-\tilde{m}^{0}, u^{0}-\tilde{u}^{0}\right)_{2} \\
& +\mathcal{E}(m, u, \tilde{u})+\mathcal{E}(\tilde{m}, \tilde{u}, u)+\sum_{n=0}^{N_{T}-1}\left(\Phi_{h}\left[m^{n}\right]-\Phi_{h}\left[\tilde{m}^{n}\right], m^{n}-\tilde{m}^{n}\right)_{2} \\
= & \sum_{n=0}^{N_{T}-1}\left(a^{n}, m^{n}-\tilde{m}^{n}\right)_{2}+\sum_{n=1}^{N_{T}}\left(b^{n-1}, u^{n}-\tilde{u}^{n}\right)_{2}
\end{aligned}
$$

where

$$
\mathcal{E}(m, u, \tilde{u})=\sum_{i, j, n} m_{i, j}^{n-1}\binom{g\left(x_{i, j},\left[D \tilde{u}^{n}\right]_{i, j}\right)-g\left(x_{i, j},\left[D u^{n}\right]_{i, j}\right)-}{-g_{q}\left(x_{i, j},\left[D u^{n}\right]_{i, j}\right) \cdot\left(\left[D \tilde{u}^{n}\right]_{i, j}-\left[D u^{n}\right]_{i, j}\right)}
$$

One gets

$$
\begin{aligned}
& -\frac{1}{\Delta t}\left(m^{N_{T}}-\tilde{m}^{N_{T}}, u^{N_{T}}-\tilde{u}^{N_{T}}\right)_{2}+\frac{1}{\Delta t}\left(m^{0}-\tilde{m}^{0}, u^{0}-\tilde{u}^{0}\right)_{2} \\
& +\mathcal{E}(m, u, \tilde{u})+\mathcal{E}(\tilde{m}, \tilde{u}, u)+\sum_{n=0}^{N_{T}-1}\left(\Phi_{h}\left[m^{n}\right]-\Phi_{h}\left[\tilde{m}^{n}\right], m^{n}-\tilde{m}^{n}\right)_{2} \\
= & \sum_{n=0}^{N_{T}-1}\left(a^{n}, m^{n}-\tilde{m}^{n}\right)_{2}+\sum_{n=1}^{N_{T}}\left(b^{n-1}, u^{n}-\tilde{u}^{n}\right)_{2}
\end{aligned}
$$

where

$$
\mathcal{E}(m, u, \tilde{u})=\sum_{i, j, n} m_{i, j}^{n-1}\binom{g\left(x_{i, j},\left[D \tilde{u}^{n}\right]_{i, j}\right)-g\left(x_{i, j},\left[D u^{n}\right]_{i, j}\right)-}{-g_{q}\left(x_{i, j},\left[D u^{n}\right]_{i, j}\right) \cdot\left(\left[D \tilde{u}^{n}\right]_{i, j}-\left[D u^{n}\right]_{i, j}\right)}
$$

- Convexity of $g \Rightarrow \mathcal{E}(m, u, \tilde{u}) \geq 0$ if $m \geq 0$
- If Φ_{h} is monotone, $\left(\Phi_{h}\left[m^{n}\right]-\Phi_{h}\left[\tilde{m}^{n}\right], m^{n}-\tilde{m}^{n}\right)_{2} \geq 0$

First consequence: uniqueness

If

- g is convex
- Φ_{h} is monotone

$$
\left(\Phi_{h}[m]-\Phi_{h}[\tilde{m}], m-\tilde{m}\right)_{2} \leq 0 \quad \Rightarrow \quad \Phi_{h}[m]=\Phi_{h}[\tilde{m}]
$$

- If $u^{0}=\Phi_{0, h}\left[m^{0}\right]$ and

$$
\left(\Phi_{0, h}[m]-\Phi_{0, h}[\tilde{m}], m-\tilde{m}\right)_{2} \leq 0 \quad \Rightarrow \quad \Phi_{0, h}[m]=\Phi_{0, h}[\tilde{m}]
$$

then
the discrete version of the MFG system has a unique solution.

A convergence result with local coupling

Assumptions (1/3)

- $\nu>0$
- $d=2$ (only for example)
- periodicity (but everything would work with Neumann boundary conditions, or suitable Dirichlet conditions)
- $\left.u\right|_{t=0}=u_{0}$ and the data u_{0} and m_{T} are smooth
-

$$
0<\underline{\mathrm{m}}_{T} \leq m_{T}(x) \leq \bar{m}_{T}
$$

Assumptions (2/3)

- The Hamiltonian is of the form

$$
H(x, \nabla u)=\mathcal{H}(x)+|\nabla u|^{\beta}
$$

where $\beta>1$ and \mathcal{H} is a smooth function

- The discrete Hamiltonian is of the form $g\left(x_{i, j},\left[D_{h} u\right]_{i, j}\right)$. The function $g: \mathbb{T} \times \mathbb{R}^{4} \rightarrow \mathbb{R}$ is defined by

$$
g(x, q)=\mathcal{H}(x)+\left(\left(q_{1}^{-}\right)^{2}+\left(q_{2}^{+}\right)^{2}+\left(q_{3}^{-}\right)^{2}+\left(q_{4}^{+}\right)^{2}\right)^{\frac{\beta}{2}}
$$

where $r^{+}=\max (r, 0)$ and $r^{-}=\max (-r, 0)$

Assumptions (3/3)

- Local coupling: the cost term is

$$
\Phi[m](x)=F(m(x))
$$

where F is \mathcal{C}^{1} on \mathbb{R}_{+}

Assumptions (3/3)

- Local coupling: the cost term is

$$
\Phi[m](x)=F(m(x))
$$

where F is \mathcal{C}^{1} on \mathbb{R}_{+}

- There exist three constants $c_{1}>0$ and $\gamma>1$ and $c_{2} \geq 0$ s.t.

$$
m F(m) \geq c_{1}|F(m)|^{\gamma}-c_{2} \quad \forall m
$$

Assumptions (3/3)

- Local coupling: the cost term is

$$
\Phi[m](x)=F(m(x))
$$

where F is \mathcal{C}^{1} on \mathbb{R}_{+}

- There exist three constants $c_{1}>0$ and $\gamma>1$ and $c_{2} \geq 0$ s.t.

$$
m F(m) \geq c_{1}|F(m)|^{\gamma}-c_{2} \quad \forall m
$$

- There exist three positive constants c_{3}, η_{1} and $\eta_{2}<1$ s.t.

$$
F^{\prime}(m) \geq c_{3} \min \left(m^{\eta_{1}}, m^{-\eta_{2}}\right) \quad \forall m
$$

Convergence

Assume that the MFG system of pdes has a unique smooth solution (u, m) s.t.

$$
m \geq \underline{m}>0
$$

Let u_{h} (resp. m_{h}) be the piecewise trilinear function in $\mathcal{C}([0, T] \times \mathbb{T})$ obtained by interpolating the values $u_{i, j}^{n}$ (resp $\left.m_{i, j}^{n}\right)$ at the nodes of the space-time grid.

$$
\lim _{h, \Delta t \rightarrow 0}\left(\left\|u-u_{h}\right\|_{L^{\beta}\left(0, T ; W^{1, \beta}(\mathbb{T})\right)}+\left\|m-m_{h}\right\|_{L^{2-\eta_{2}}((0, T) \times \mathbb{T})}\right)=0
$$

Main steps of the proof

(1) Obtain a priori bounds on the solution of the discrete problem, in particular on $\left\|F\left(m_{h}\right)\right\|_{L^{\gamma}((0, T) \times \mathbb{T})}$

Main steps of the proof

(1) Obtain a priori bounds on the solution of the discrete problem, in particular on $\left\|F\left(m_{h}\right)\right\|_{L^{\gamma}((0, T) \times \mathbb{T})}$
(2) Plug the solution of the system of pdes into the numerical scheme, take advantage of the stability of the scheme and prove that
$\left\|\nabla u-\nabla u_{h}\right\|_{L^{\beta}((0, T) \times \mathbb{T})}$ and $\left\|m-m_{h}\right\|_{L^{2-\eta_{2}}((0, T) \times \mathbb{T})}$
converge to 0

Main steps of the proof

(1) Obtain a priori bounds on the solution of the discrete problem, in particular on $\left\|F\left(m_{h}\right)\right\|_{L^{\gamma}((0, T) \times \mathbb{T})}$
(2) Plug the solution of the system of pdes into the numerical scheme, take advantage of the stability of the scheme and prove that
$\left\|\nabla u-\nabla u_{h}\right\|_{L^{\beta}((0, T) \times \mathbb{T})}$ and $\left\|m-m_{h}\right\|_{L^{2-\eta_{2}}((0, T) \times \mathbb{T})}$ converge to 0
(3) To get the full convergence for u, one has to pass to the limit in the Bellman equation. To pass to the limit in the term $F\left(m_{h}\right)$, use the equiintegrability of $F\left(m_{h}\right)$ and Vitali's theorem

A convergence result with nonlocal coupling

Assumptions

- Same assumptions on H and g
- Φ is non local, smoothing and monotone:

$$
\left(\Phi\left(m_{1}\right)-\Phi\left(m_{2}\right), m_{1}-m_{2}\right) \leq 0 \quad \Rightarrow \quad m_{1}=m_{2}
$$

- The discrete cost operator Φ_{h} continuously maps \mathcal{K} to a set of grid functions bounded in the discrete Lipschitz norm
- The discrete cost operator Φ_{h} is monotone
- Consistency: for all probability density m and discrete probability density m^{\prime},

$$
\left\|\Phi[m]-\Phi_{h}\left[m^{\prime}\right]\right\|_{L^{\infty}\left(\mathbb{T}_{h}\right)} \leq \omega\left(\left\|m-m_{h}^{\prime}\right\|_{L^{1}(\mathbb{T})}\right)
$$

where m_{h}^{\prime} is a bilinear interpolation of m^{\prime}

Convergence

When h and Δt tend to 0 ,

- $\left(u_{h}\right)$ converges to u
uniformly and in $L^{\max (\beta, 2)}\left(0, T ; W^{1, \max (\beta, 2)}(\mathbb{T})\right)$
- If $\beta \geq 2,\left(m_{h}\right)$ converges to m

$$
\text { in } C^{0}\left([0, T] ; L^{2}(\mathbb{T})\right) \cap L^{2}\left(0, T ; H^{1}(\mathbb{T})\right)
$$

- If $1<\beta<2,\left(m_{h}\right)$ converges to m

$$
\text { in } L^{2}((0, T) \times \mathbb{T})
$$

Solvers for the discrete systems

Due to the forward-backward structure, marching in time is not possible. One has to solve the system for u and m as a whole. This leads to large systems of nonlinear equations with $\sim 2 N^{d+1}$ unknowns.

Due to the forward-backward structure, marching in time is not possible. One has to solve the system for u and m as a whole. This leads to large systems of nonlinear equations with $\sim 2 N^{d+1}$ unknowns.

Our choice: Newton methods

- linearized discrete MFG systems : well-posed if $m>0$, which is not sure. Hence, breakdowns of the Newton method may occur
- Careful initial guess avoids breakdown
- Initial guesses: continuation method, by decreasing ν progressively
- In practice, can be applied even if Φ is not monotone

Solvers for linearized discrete MFG systems

- Due to the forward-backward structure, marching in time is not possible
- Preconditioned iterative method for the whole system in (u, m)
- A good understanding of the PDE system and multigrid lead to solvers with optimal linear complexity
- We have developed several optimal solvers based on multigrid methods

A possible strategy for solving the linearized discrete MFG systems

(1) Eliminate u by solving a linearized HJB equation (marching in time)

A possible strategy for solving the linearized discrete MFG systems

(1) Eliminate u by solving a linearized HJB equation (marching in time)
(2) This yields a nonlocal eq. for m

A possible strategy for solving the linearized discrete MFG systems

(1) Eliminate u by solving a linearized HJB equation (marching in time)
(2) This yields a nonlocal eq. for m
(3) Solve the resulting system by a preconditioned iterative method: applying the preconditioner consists of solving a backward Fokker-Planck equation (marching in time)

A possible strategy for solving the linearized discrete MFG systems

(1) Eliminate u by solving a linearized HJB equation (marching in time)
(2) This yields a nonlocal eq. for m
(3) Solve the resulting system by a preconditioned iterative method: applying the preconditioner consists of solving a backward Fokker-Planck equation (marching in time)
(4) Plug m back in the HJB equation and solve marching in time

PDE interpretation of the preconditioned operator

The preconditioned operator is of the form $I-K$ where
$K(n)=\left(\text { linear- } \mathrm{FP}_{m}\right)^{-1} \circ \operatorname{div}\left(m H_{p p}(D u) D \cdot\right) \circ\left(\text { linear- } \mathrm{HJB}_{u}\right)^{-1}\left(\Phi^{\prime}(m) n\right)$
If $\nu>0$ and if m and u are smooth, K is a compact operator in L^{2}.

PDE interpretation of the preconditioned operator

The preconditioned operator is of the form $I-K$ where
$K(n)=\left(\text { linear- } \mathrm{FP}_{m}\right)^{-1} \circ \operatorname{div}\left(m H_{p p}(D u) D \cdot\right) \circ\left(\text { linear- } \mathrm{HJB}_{u}\right)^{-1}\left(\Phi^{\prime}(m) n\right)$
If $\nu>0$ and if m and u are smooth, K is a compact operator in L^{2}.

Thus, the convergence of a (bi)conjugate gradient like method should not depend on h and Δt.

Table: solving the linearized MFG system: average (on the Newton loop) number of iterations of BiCGstab to decrease the residual by a factor 10^{-3}

grid	$32 \times 32 \times 32$	$64 \times 64 \times 64$	$128 \times 128 \times 128$
$\nu=0.6$	1	1	1
$\nu=0.36$	1.75	1.75	1.8
$\nu=0.2$	2	2	2
$\nu=0.12$	3	3	3
$\nu=0.046$	4.9	5.1	5.1

Multigrid methods can be used for solving the linearized HJ and FP eqs \Rightarrow optimal complexity.

Second strategy for solving the linear systems when Φ is strictly monotone

The idea is to apply directly a multigrid method to the full system of pdes.

Second strategy for solving the linear systems when Φ is strictly monotone

The idea is to apply directly a multigrid method to the full system of pdes.
The multigrid method must be special: indeed, eliminating m from the linearized HJB equation, (this is possible since Φ is strictly monotone), we get a degenerate elliptic pde, with the operator
$\operatorname{div}\left(m \frac{\partial^{2} H(D u)}{\partial p^{2}} D.\right)-($ linear- FP $) \circ\left(\left(\Phi^{\prime}(m)\right)^{-1} \cdot\right) \circ($ linear- HJB $)$.

Second strategy for solving the linear systems when Φ is strictly monotone

The idea is to apply directly a multigrid method to the full system of pdes.
The multigrid method must be special: indeed, eliminating m from the linearized HJB equation, (this is possible since Φ is strictly monotone), we get a degenerate elliptic pde, with the operator
$\operatorname{div}\left(m \frac{\partial^{2} H(D u)}{\partial p^{2}} D.\right)-($ linear- FP $) \circ\left(\left(\Phi^{\prime}(m)\right)^{-1} \cdot\right) \circ($ linear- HJB $)$.
Operator: order 4 w.r.t. x and 2 w.r.t. t.

Principal part:

$$
\left(\Phi^{\prime}(m)\right)^{-1}\left(-\frac{\partial^{2}}{\partial t^{2}}+\nu^{2} \Delta^{2}\right)
$$

Hence, when ν is large enough, we use a multigrid method with a hierarchy of grids obtained by coarsening the grids only in the x variable.

Table: average (on the Newton loop) number of iterations of the BiCGstab method to decrease the residual by a factor 10^{-3}

$\nu \backslash$ grid	$32 \times 32 \times 32$	$64 \times 64 \times 64$	$128 \times 128 \times 128$
0.6	1.75	1.5	1.25
0.36	2.2	2	2
0.2	4.9	3.5	2.9
0.12	14.4	11.4	6.8

Some numerical results

A. Exit from a hall with obstacles

$$
\begin{array}{rc}
\frac{\partial u}{\partial t}+\nu \Delta u-H(x, m, \nabla u)=-F(m), & \text { in }(0, T) \times \Omega \\
\frac{\partial m}{\partial t}-\nu \Delta m-\operatorname{div}\left(m \frac{\partial H}{\partial p}(\cdot, m, \nabla u)\right)=0, & \text { in }(0, T) \times \Omega \\
\frac{\partial u}{\partial n}=\frac{\partial m}{\partial n}=0 & \text { on walls } \\
u=k, \quad m=0 & \text { at exits }
\end{array}
$$

A. Exit from a hall with obstacles

$$
\begin{array}{rc}
\frac{\partial u}{\partial t}+\nu \Delta u-H(x, m, \nabla u)=-F(m), & \text { in }(0, T) \times \Omega \\
\frac{\partial m}{\partial t}-\nu \Delta m-\operatorname{div}\left(m \frac{\partial H}{\partial p}(\cdot, m, \nabla u)\right)=0, & \text { in }(0, T) \times \Omega \\
\frac{\partial u}{\partial n}=\frac{\partial m}{\partial n}=0 & \text { on walls } \\
u=k, \quad m=0 & \text { at exits }
\end{array}
$$

Congestion

$$
H(x, m, p)=\mathcal{H}(x)+\frac{|p|^{\beta}}{\left(c_{0}+c_{1} m\right)^{\gamma}}
$$

with $c_{0}>0, c_{1} \geq 0, \beta>1$ and $0 \leq \gamma<4(\beta-1) / \beta$. Existence and uniqueness was proven by P-L. Lions, and hold in the discrete case.

A. Exit from a hall with obstacles

- $T=6$
- $\nu=0.015$
- $u(t=T)=0$
- $F(m)=m$
- Hamiltonian

$$
H(x, m, p)=-0.1+\frac{|p|^{2}}{(1+4 m)^{1.5}}
$$

Evolution of the density

Evolution of the density

Velocity

$$
t=0.6
$$

Same thing without congestion : $H(x, p)=-0.1+|p|^{2}$

B. Two populations

$$
\begin{array}{r}
\frac{\partial u_{1}}{\partial t}+\nu \Delta u_{1}-H_{1}\left(t, x, m_{1}+m_{2}, \nabla u_{1}\right)=-F_{1}\left(m_{1}, m_{2}\right) \\
\frac{\partial m_{1}}{\partial t}-\nu \Delta m_{1}-\operatorname{div}\left(m_{1} \frac{\partial H_{1}}{\partial p}\left(t, x, m_{1}+m_{2}, \nabla u_{1}\right)\right)=0 \\
\frac{\partial u_{2}}{\partial t}+\nu \Delta u_{2}-H_{2}\left(t, x, m_{1}+m_{2}, \nabla u_{2}\right)=-F_{2}\left(m_{1}, m_{2}\right) \\
\frac{\partial m_{2}}{\partial t}-\nu \Delta m_{2}-\operatorname{div}\left(m_{2} \frac{\partial H_{2}}{\partial p}\left(t, x, m_{1}+m_{2}, \nabla u_{2}\right)\right)=0 \\
\frac{\partial u_{1}}{\partial n}=\frac{\partial u_{2}}{\partial n}=0 \\
\frac{\partial m_{1}}{\partial n}=\frac{\partial m_{2}}{\partial n}=0
\end{array}
$$

A model for segregation proposed by M. Bardi

- The Hamiltonians are uniform in space and the same for the two populations

$$
H_{i}\left(x, m_{i}, m_{j}, p\right)=0.1|p|^{2}
$$

A model for segregation proposed by M. Bardi

- The Hamiltonians are uniform in space and the same for the two populations

$$
H_{i}\left(x, m_{i}, m_{j}, p\right)=0.1|p|^{2}
$$

Xenophobia

The cost operators $F_{1}\left(m_{1}, m_{2}\right)$ and $F_{2}\left(m_{1}, m_{2}\right)$ are given by

$$
F_{i}\left(m_{i}, m_{j}\right)=5 m_{i}\left(\frac{m_{i}}{m_{i}+m_{j}}-0.45\right)_{-}+\left(m_{i}+m_{j}-4\right)_{+}
$$

Evolution of the densities

$$
\begin{aligned}
& \nu=0.015 \\
& m_{1}(\cdot, t=0)=0.75+1_{[0,0.25]}, \quad m_{2}(\cdot, t=0)=0.75+1_{[0.75,1]}
\end{aligned}
$$

A stiffer coupling term

$$
F_{i}\left(m_{i}, m_{j}\right)=5\left(\frac{m_{i}}{m_{i}+m_{j}}-0.45\right)_{-}+\left(m_{i}+m_{j}-4\right)_{+}
$$

Evolution of the densities

$$
\begin{aligned}
& \nu=0.2 \\
& m_{1}(\cdot, t=0)=0.75+1_{[0,0.25]}, \quad m_{2}(\cdot, t=0)=0.75+1_{[0.75,1]}
\end{aligned}
$$

Evolution of the densities

$$
\begin{aligned}
& \nu=0.1 \\
& m_{1}(\cdot, t=0)=0.75+1_{[0,0.25]}, \quad m_{2}(\cdot, t=0)=0.75+1_{[0.75,1]}
\end{aligned}
$$

Evolution of the densities

$$
\begin{aligned}
& { }^{t=0}{ }^{3.5}{ }^{3.5}
\end{aligned}
$$

$$
\begin{aligned}
& \nu=0.025 \\
& m_{1}(\cdot, t=0)=0.75+1_{[0,0.25]}, \quad m_{2}(\cdot, t=0)=0.75+1_{[0.75,1]}
\end{aligned}
$$

Who will reach the goal?

$$
F_{1}\left(m_{1}, m_{2}\right)=m_{1}+m_{2}, \quad F_{2}\left(m_{1}, m_{2}\right)=20 m_{1}+m_{2}
$$

- $\Omega=(0,1)^{2} \backslash([0.4,0.6] \times[0,0.55])$
- $T=4, \nu=0.125$
- $u_{1}(t=T)=u_{2}(t=T)=0$
- Same Hamiltonian for the two populations:

$$
\begin{aligned}
H_{1}(x, m, p)=H_{2}(x, m, p) & =\mathcal{H}(x)+0.1 \frac{|p|^{2}}{(1+4 m)^{1.3}} \\
\mathcal{H}(x) & =-10 \times 1_{x \notin([0.6,1] \times[0,0.2])}
\end{aligned}
$$

Evolution of the densities (bottom: the xenophobic pop.; top: the other pop.)

Evolution of the densities (bottom: the xenophobic pop.; top: the other pop.)

Evolution of the velocities (bottom: the xenophobic pop.; top: the other pop.)

Two populations cross each other

$$
F_{1}\left(m_{1}, m_{2}\right)=m_{1}+m_{2}, \quad F_{2}\left(m_{1}, m_{2}\right)=20 m_{1}+m_{2} .
$$

- $\Omega=(0,1)^{2}$
- $T=4, \nu=0.015$
- $u_{1}(t=T)=u_{2}(t=T)=0$

- Hamiltonians:

$$
\begin{aligned}
H_{i}(x, m, p) & =\mathcal{H}_{i}(x)+0.1 \frac{|p|^{2}}{(1+4 m)^{1.3}} \\
\mathcal{H}_{1}(x) & =-10 \times 1_{x \notin([0.7,1] \times[0,0.2])} \\
\mathcal{H}_{2}(x) & =-10 \times 1_{x \notin([0.7,1] \times[0.8,1])}
\end{aligned}
$$

The two populations pay the same cost for moving and have the same sensitivity to congestion effects, but they aim at different corners

- Finally, at time $t=0$, the densities of the two populations are given by

$$
\begin{aligned}
& m_{1}(x, t=0)=4 \times 1_{[0,0.2] \times[0.4,0.9]}(x) \\
& m_{2}(x, t=0)=4 \times 1_{[0,0.2] \times[0.1,0.6]}(x)
\end{aligned}
$$

Evolution of the densities (bottom: the xenophobic pop.; top: the other pop.)

Evolution of the velocities (bottom: the xenophobic pop.; top: the other pop.)

Y. Achdou

Dauphine

C. Long time behavior (a single population)

$$
\begin{aligned}
& \nu=1, \quad T=1, \quad m(T)=1 \\
& H(x, p)=\sin \left(2 \pi x_{2}\right)+\sin \left(2 \pi x_{1}\right)+\cos \left(4 \pi x_{1}\right)+|p|^{2} \\
& F(x, m)=m^{2}, \quad F_{0}(x, m)=m^{2}+\cos \left(\pi x_{1}\right) \cos \left(\pi x_{2}\right)
\end{aligned}
$$

The potential $H(x, 0)=\sin \left(2 \pi x_{2}\right)+\sin \left(2 \pi x_{1}\right)+\cos \left(4 \pi x_{1}\right)$.

Evolution of m (top) and u (bottom)

Snapshots at $t=(0,4,8,100,180,190,196,200) / 200$

Comparison with the solution of the infinite horizon MFG system

The solution around $t=T / 2$ is very close to the solution of the infinite horizon MFG system

The infinite horizon MFG system

Find $(u, m, \lambda \in \mathbb{R})$ such that

$$
\left\{\begin{array}{l}
-\nu \Delta u+H(x, \nabla u)+\lambda=F(m), \\
-\nu \Delta m-\operatorname{div}\left(m \frac{\partial H}{\partial p}(x, \nabla u)\right)=0, \\
\int_{\mathbb{T}} u d x=0, \quad \int_{\mathbb{T}} m d x=1, \quad \text { and } \quad m>0 \quad \text { in } \mathbb{T} .
\end{array}\right.
$$

Quadratic Hamiltonian

The Hamiltonian is of the form $H(x, p)=|p|^{2}+g(x)$.
The infinite horizon MFG system is equivalent to a generalized Hartree equation:

$$
-\nu^{2} \Delta \phi-g \phi+\phi F\left(\phi^{2}\right)=\lambda \phi, \quad \text { in } \mathbb{T}, \quad \text { and } \quad \int_{\mathbb{T}} \phi^{2}=1
$$

where $\phi(x)=\phi_{0} \exp (-u(x) / \nu)$ and $m=\phi^{2}$.
The constant ϕ_{0} is fixed by the equation $\int_{\mathbb{T}} \log \left(\phi / \phi_{0}\right)=0$.
As a consequence, m can be written as a function of u. This gives a way to test the accuracy of the scheme.

Order of the scheme

Err vs. h

Same test except

$$
\nu=0.01, \quad \Delta t=1 / 200 .
$$

Evolution of m (top) and u (bottom)

Snapshots at $t=(0,4,8,100,180,190,196,200) / 200$

$$
\nu=0.01, \quad \text { left: } u, \quad \text { right } m .
$$

Note that the supports of ∇u and of m tend to be disjoint as $\nu \rightarrow 0$.

D. Deterministic infinite horizon MFG with nonlocal coupling

\qquad

$$
\begin{gathered}
\nu=0.001 \\
H(x, p)=\sin \left(2 \pi x_{2}\right)+\sin \left(2 \pi x_{1}\right)+\cos \left(4 \pi x_{1}\right)+|p|^{2} \\
V[m]=(1-\Delta)^{-1}(1-\Delta)^{-1} m \\
\text { left: } u, \text { right } m .
\end{gathered}
$$

E. Optimal planning with MFG

$$
\begin{cases}\frac{\partial u}{\partial t}-\nu \Delta u+H(x, \nabla u)=F(m(x)) & \text { in }(0, T) \times \mathbb{T} \\ \frac{\partial m}{\partial t}+\nu \Delta m+\operatorname{div}\left(m \frac{\partial H}{\partial p}(x, \nabla u)\right)=0 & \text { in }(0, T) \times \mathbb{T}\end{cases}
$$

with the initial and terminal conditions

$$
m(0, x)=m_{0}(x), \quad m(T, x)=m_{T}(x), \quad \text { in } \mathbb{T},
$$

and

$$
m \geq 0, \quad \int_{\mathbb{T}} m(t, x) d x=1
$$

Existence results (P-L. Lions)

- Ok if $\nu=0$, if H coercive, if F is a strictly increasing function and if m_{0} and m_{T} are smooth positive functions. Principle of the (difficult) proof: eliminate m from the Bellman equation and get a boundary value problem for u with a strictly elliptic quasilinear second order PDE, and nonlinear boundary conditions

Existence results (P-L. Lions)

- Ok if $\nu=0$, if H coercive, if F is a strictly increasing function and if m_{0} and m_{T} are smooth positive functions. Principle of the (difficult) proof: eliminate m from the Bellman equation and get a boundary value problem for u with a strictly elliptic quasilinear second order PDE, and nonlinear boundary conditions
- OK if $\nu=0$, if $F=0$ (optimal transport) and if m_{0} and m_{T} are smooth positive functions

Existence results (P-L. Lions)

- Ok if $\nu=0$, if H coercive, if F is a strictly increasing function and if m_{0} and m_{T} are smooth positive functions. Principle of the (difficult) proof: eliminate m from the Bellman equation and get a boundary value problem for u with a strictly elliptic quasilinear second order PDE, and nonlinear boundary conditions
- OK if $\nu=0$, if $F=0$ (optimal transport) and if m_{0} and m_{T} are smooth positive functions
- Ok if $\nu>0$ and if $H(p)=c|p|^{2}$, if F is a smooth and bounded function and if m_{0} and m_{T} are smooth positive functions. Principle of the proof: use a clever change of unknowns: $\phi=\exp (-u)$ and $\chi=m / \phi$

Existence results (P-L. Lions)

- Ok if $\nu=0$, if H coercive, if F is a strictly increasing function and if m_{0} and m_{T} are smooth positive functions. Principle of the (difficult) proof: eliminate m from the Bellman equation and get a boundary value problem for u with a strictly elliptic quasilinear second order PDE, and nonlinear boundary conditions
- OK if $\nu=0$, if $F=0$ (optimal transport) and if m_{0} and m_{T} are smooth positive functions
- Ok if $\nu>0$ and if $H(p)=c|p|^{2}$, if F is a smooth and bounded function and if m_{0} and m_{T} are smooth positive functions. Principle of the proof: use a clever change of unknowns: $\phi=\exp (-u)$ and $\chi=m / \phi$
- Still Ok if $\nu>0$ and if $\left\|D^{2} H(p)-c I_{d}\right\| \leq C \frac{1}{\sqrt{1+|p|^{2}}}$

Existence results (P-L. Lions)

- Ok if $\nu=0$, if H coercive, if F is a strictly increasing function and if m_{0} and m_{T} are smooth positive functions. Principle of the (difficult) proof: eliminate m from the Bellman equation and get a boundary value problem for u with a strictly elliptic quasilinear second order PDE, and nonlinear boundary conditions
- OK if $\nu=0$, if $F=0$ (optimal transport) and if m_{0} and m_{T} are smooth positive functions
- Ok if $\nu>0$ and if $H(p)=c|p|^{2}$, if F is a smooth and bounded function and if m_{0} and m_{T} are smooth positive functions. Principle of the proof: use a clever change of unknowns: $\phi=\exp (-u)$ and $\chi=m / \phi$
- Still Ok if $\nu>0$ and if $\left\|D^{2} H(p)-c I_{d}\right\| \leq C \frac{1}{\sqrt{1+|p|^{2}}}$
- If $\nu>0$ and more general Hamiltonians?

Existence results (P-L. Lions)

- Ok if $\nu=0$, if H coercive, if F is a strictly increasing function and if m_{0} and m_{T} are smooth positive functions. Principle of the (difficult) proof: eliminate m from the Bellman equation and get a boundary value problem for u with a strictly elliptic quasilinear second order PDE, and nonlinear boundary conditions
- OK if $\nu=0$, if $F=0$ (optimal transport) and if m_{0} and m_{T} are smooth positive functions
- Ok if $\nu>0$ and if $H(p)=c|p|^{2}$, if F is a smooth and bounded function and if m_{0} and m_{T} are smooth positive functions. Principle of the proof: use a clever change of unknowns: $\phi=\exp (-u)$ and $\chi=m / \phi$
- Still Ok if $\nu>0$ and if $\left\|D^{2} H(p)-c I_{d}\right\| \leq C \frac{1}{\sqrt{1+|p|^{2}}}$
- If $\nu>0$ and more general Hamiltonians?
- Non-existence if H is sublinear, $m_{0} \neq m_{T}$ and T small enough

Optimal control (on PDEs) approach

Assumption:

- $F=W^{\prime}$ where $W: \mathbb{R} \rightarrow \mathbb{R}$ is a strictly convex function
- $H(x, p)=\sup (p \cdot \gamma-L(x, \gamma))$

$$
\gamma \in \mathbb{R}^{d}
$$

- L is strictly convex, $\lim _{|\gamma| \rightarrow \infty} \inf _{x} L(x, \gamma) /|\gamma|=+\infty$

Optimal control (on PDEs) approach

Assumption:

- $F=W^{\prime}$ where $W: \mathbb{R} \rightarrow \mathbb{R}$ is a strictly convex function
- $H(x, p)=\sup (p \cdot \gamma-L(x, \gamma))$

$$
\gamma \in \mathbb{R}^{d}
$$

- L is strictly convex, $\lim _{|\gamma| \rightarrow \infty} \inf _{x} L(x, \gamma) /|\gamma|=+\infty$

A weak form of the MFG system can be found by considering the problem of optimal control on PDE:
minimize $\quad(m, \gamma) \rightarrow \int_{0}^{T} \int_{\mathbb{T}} m(t, x) L(x, \gamma(t, x))+W(m(t, x))$ subject to the constraints

$$
\left\{\begin{aligned}
\partial_{t} m+\nu \Delta m+\operatorname{div}(m \gamma) & =0, \quad \text { in }(0, T) \times \mathbb{T}, \\
m(T, x) & =m_{T}(x) \text { in } \mathbb{T}, \\
m(0, x) & =m_{0}(x) \text { in } \mathbb{T} .
\end{aligned}\right.
$$

Convex programming and Fenchel-Rockafeller duality theorem

It is possible to make the constraints linear by the change of variables $z=m \gamma$
\rightarrow optimization problem with a convex cost and linear constraints.

There exists a saddle point of the primal-dual problem, and writing the optimality conditions:

- In the continuous setting, not easy to recover the system of pdes
- Discrete problem: same program, but it is possible to prove that $m>0 \Rightarrow$ existence and uniqueness for the discrete pb .

A penalized scheme

$$
\left\{\begin{array}{l}
\frac{u_{i, j}^{\epsilon, n+1}-u_{i, j}^{\epsilon, n}}{\Delta t}-\nu\left(\Delta_{h} u^{\epsilon, n+1}\right)_{i, j}+g\left(x_{i, j},\left[D_{h} u^{\epsilon, n+1}\right]_{i, j}\right)=F\left(m_{i, j}^{\epsilon, n}\right) \\
\frac{m_{i, j}^{\epsilon, n+1}-m_{i, j}^{\epsilon, n}}{\Delta t}+\nu\left(\Delta_{h} m^{\epsilon, n}\right)_{i, j}+\mathcal{T}_{i, j}\left(u^{\epsilon, n+1}, m^{\epsilon, n}\right)=0 \\
m^{\epsilon, n} \in \mathcal{K}
\end{array}\right.
$$

with the final time and initial time conditions

$$
u_{i, j}^{\epsilon, 0}=\frac{1}{\epsilon}\left(m_{i, j}^{\epsilon, 0}-\left(m_{0}\right)_{i, j}\right), \quad m_{i, j}^{\epsilon, N_{T}}=\left(m_{T}\right)_{i, j}, \quad \forall i, j
$$

Convergence As $\epsilon \rightarrow 0, m^{\epsilon} \rightarrow m$ solution of the discrete MFG system.

$$
T=1, \nu=1, F(m)=m^{2}, H(p)=\sin \left(2 \pi x_{2}\right)+\sin \left(2 \pi x_{1}\right)+\cos \left(4 \pi x_{1}\right)+|p|^{2}
$$

Snapshots at $t=(0,4,8,100,180,190,196,200) / 200$

$$
T=0.01, \nu=0.1, H(p)=\sin \left(2 \pi x_{2}\right)+\sin \left(2 \pi x_{1}\right)+\cos \left(4 \pi x_{1}\right)+|p|^{3}
$$

Snapshots at $t=(0,4,8,100,180,190,196,200) / 200$

