Mean Field Games: Numerical Methods

Yves Achdou

LJLL, Université Paris Diderot

with F. Camilli, I. Capuzzo Dolcetta, V. Perez

$$\begin{cases} \frac{\partial u}{\partial t} - \nu \Delta u + H(x, \nabla u) = \Phi[m] & \text{in } (0, T] \times \mathbb{T} \\ \frac{\partial m}{\partial t} + \nu \Delta m + \operatorname{div} \left(m \frac{\partial H}{\partial p}(x, \nabla u) \right) = 0 & \text{in } [0, T) \times \mathbb{T} \\ u(t = 0) = \Phi_0[m(t = 0)] \\ m(t = T) = m_{\circ} \end{cases}$$
(*)

where

$$H(x,p) = \sup_{\gamma \in \mathbb{R}^d} \left(p \cdot \gamma - L(x,\gamma) \right).$$

Except when mentioned,

$$\mathbb{T} = (\mathbb{R}/\mathbb{Z})^d$$
 (periodic problem).

Most of what follows holds with Neumann or Dirichlet conditions.

• forward/backward w.r.t. time

- forward/backward w.r.t. time
- the operator in the Fokker-Planck equation is the adjoint of the linearized version of the operator in the HJB equation

- ${\circ}$ forward/backward w.r.t. time
- the operator in the Fokker-Planck equation is the adjoint of the linearized version of the operator in the HJB equation
- coupling: via Φ in the HJB equation and via $\partial_p H(x, \nabla u)$ in the Fokker-Planck equation, and possibly via the initial condition

- forward/backward w.r.t. time
- the operator in the Fokker-Planck equation is the adjoint of the linearized version of the operator in the HJB equation
- coupling: via Φ in the HJB equation and via $\partial_p H(x, \nabla u)$ in the Fokker-Planck equation, and possibly via the initial condition

Realistic models may include **congestion**, i.e. L depends on m, for example

$$L(x, m, \gamma) = \ell(x) + (c_1 + c_2 m)^q |\gamma|^{\beta}.$$

This induces a stronger coupling between u and m in (*).

A simple case

Framework

- d = 1
- ${\ \circ \ } L$ is strictly convex

$$H(x,p) = \sup_{\gamma \in \mathbb{R}} \left(p \cdot \gamma - L(x,\gamma) \right)$$

- $\Phi[m](x) = F(m(x))$ and F = W' where $W : \mathbb{R} \to \mathbb{R}$ is a strictly convex function
- $\Phi_0[m](x) = F_0(m(x))$ and $F_0 = W'_0$ where $W_0 : \mathbb{R} \to \mathbb{R}$ is a strictly convex function

A simple case

Framework

- d = 1
- ${\ \circ \ } L$ is strictly convex

$$H(x,p) = \sup_{\gamma \in \mathbb{R}} \left(p \cdot \gamma - L(x,\gamma) \right)$$

- $\Phi[m](x) = F(m(x))$ and F = W' where $W : \mathbb{R} \to \mathbb{R}$ is a strictly convex function
- $\Phi_0[m](x) = F_0(m(x))$ and $F_0 = W'_0$ where $W_0 : \mathbb{R} \to \mathbb{R}$ is a strictly convex function

(*) can be found as the optimality conditions of an optimal control problem on a transport equation.

Optimal control problem

Minimize

$$\begin{split} J(m,\gamma) = &\int_0^T \int_{\mathbb{T}} \Bigl(m(t,x) L(x,\gamma(t,x)) + W(m(t,x)) \Bigr) dx dt \\ &+ \int_{\mathbb{T}} W_0(m(x,0)) dx \end{split}$$

subject to the constraints

$$\begin{cases} \frac{\partial m}{\partial t} + \nu \Delta m + \operatorname{div}(m \gamma) &= 0, \quad \text{in } (0, T) \times \mathbb{T}, \\ m(T, x) &= m_T(x) \quad \text{in } \mathbb{T}. \end{cases}$$

Optimality conditions

 $\delta\gamma\mapsto\delta m\mapsto\delta J$

$$\begin{cases} \partial_t \delta m + \nu \Delta \delta m + \operatorname{div}(\delta m \gamma) &= -\operatorname{div}(m \, \delta \gamma), & \text{in } (0, T) \times \mathbb{T}, \\ \delta m(T, x) &= 0 & \text{in } \mathbb{T}. \end{cases}$$

Optimality conditions

Optimality conditions

$$\begin{split} \delta\gamma &\mapsto \delta m \mapsto \delta J \\ \left\{ \begin{array}{ll} \partial_t \delta m + \nu \Delta \delta m + \operatorname{div}(\delta m \, \gamma) &= -\operatorname{div}(m \, \delta \gamma), & \text{in } (0, T) \times \mathbb{T}, \\ \delta m(T, x) &= 0 & \text{in } \mathbb{T}. \end{array} \right. \\ \delta J(m, \gamma) &= \int_0^T \int_{\mathbb{T}} \delta m(t, x) \left(L(x, \gamma(t, x)) + F(m(t, x)) \right) \\ &+ \int_0^T \int_{\mathbb{T}} \delta\gamma(t, x) m(t, x) \frac{\partial L}{\partial \gamma}(x, \gamma(t, x)) + \int_{\mathbb{T}} \delta m(0, x) F_0(m(0, x)). \end{split}$$

Adjoint problem

$$\begin{cases} \frac{\partial u}{\partial t} - \nu \Delta u + \gamma \cdot \nabla u = L(x, \gamma) + F(m) & \text{in } (0, T] \times \mathbb{T} \\ u(t=0) = F_0(m|_{t=0}) \end{cases}$$

Variation of J

$$\delta J(m,\gamma) = \int_0^T \int_{\mathbb{T}} -u(t,x) \left(\partial_t \delta m + \nu \Delta \delta m + \operatorname{div}(\delta m \gamma) \right) \\ + \int_0^T \int_{\mathbb{T}} m(t,x) \delta \gamma(t,x) \frac{\partial L}{\partial \gamma}(x,\gamma(t,x)) \\ = \int_0^T \int_{\mathbb{T}} m(t,x) \left(\frac{\partial L}{\partial \gamma}(x,\gamma(t,x)) - \nabla u(t,x) \right) \delta \gamma(t,x).$$

Variation of ${\cal J}$

$$\begin{split} \delta J(m,\gamma) &= \int_0^T \int_{\mathbb{T}} -u(t,x) \left(\partial_t \delta m + \nu \Delta \delta m + \operatorname{div}(\delta m \, \gamma) \right) \\ &+ \int_0^T \int_{\mathbb{T}} m(t,x) \delta \gamma(t,x) \frac{\partial L}{\partial \gamma}(x,\gamma(t,x)) \\ &= \int_0^T \int_{\mathbb{T}} m(t,x) \, \left(\frac{\partial L}{\partial \gamma}(x,\gamma(t,x)) - \nabla u(t,x) \right) \delta \gamma(t,x). \end{split}$$

Optimality conditions

•
$$\nabla u(t,x) = \frac{\partial L}{\partial \gamma}(x,\gamma^*(t,x))$$

• $\gamma^*(t,x)$ achieves the max. in $H(x,p) = \sup_{\gamma} (p \cdot \gamma - L(x,\gamma))$
and

$$\gamma^*(t,x) = H_p(x,\nabla u(t,x))$$

 ${\, \circ \,} \Rightarrow {\rm MFG}$ system of PDEs

A discrete scheme when $L(x, \gamma) = f(x) + \ell(\gamma)$

- Assume that ℓ is strictly convex and $\ell(0) = \ell'(0) = 0$
- Uniform grid: $x_i = ih, t_n = n\Delta t$

The transport equation for m

• γ is discretized on a staggered grid: $\gamma_{i+1/2}^n \approx \gamma(t_n, x_i + h/2)$ • upwind scheme (explicit w.r.t γ)

$$0 = \frac{m_i^{n+1} - m_i^n}{\Delta t} + \nu (\Delta_h m^n)_i + \gamma_{i+1/2}^{n+1,+} m_{i+1}^n - \gamma_{i+1/2}^{n+1,-} m_i^n - \gamma_{i-1/2}^{n+1,+} m_i^n + \gamma_{i-1/2}^{n+1,-} m_{i-1}^n.$$

The scheme is conservative and preserves positivity: it is L^1 stable.

Discrete version of J: many possible choices

• Lachapelle, Salomon, Turinici: trapezoidal rule

Discrete version of J: many possible choices

- Lachapelle, Salomon, Turinici: trapezoidal rule
- To preserve the structure of the PDE system, we rather choose:

$$J_{h} = h\Delta t \sum_{n} \sum_{i} m_{i}^{n} \left(f(x_{i}) + \ell(\gamma_{i-1/2}^{n+1,+}) + \ell(-\gamma_{i+1/2}^{n+1,-}) \right) + h\Delta t \sum_{n} \sum_{i} W(m_{i}^{n}) + h \sum_{i} W_{0}(m_{i}^{n})$$

Discrete version of J: many possible choices

- Lachapelle, Salomon, Turinici: trapezoidal rule
- To preserve the structure of the PDE system, we rather choose:

$$J_{h} = h\Delta t \sum_{n} \sum_{i} m_{i}^{n} \left(f(x_{i}) + \ell(\gamma_{i-1/2}^{n+1,+}) + \ell(-\gamma_{i+1/2}^{n+1,-}) \right) + h\Delta t \sum_{n} \sum_{i} W(m_{i}^{n}) + h \sum_{i} W_{0}(m_{i}^{n})$$

Adjoint equation

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} - \nu (\Delta_h u^{n+1})_i + \gamma_{i-1/2}^{n+1,+} \frac{u_i^{n+1} - u_{i-1}^{n+1}}{h} - \gamma_{i+1/2}^{n+1,-} \frac{u_{i+1}^{n+1} - u_i^{n+1}}{h} = f(x_i) + \ell(\gamma_{i-1/2}^{n+1,+}) + \ell(-\gamma_{i+1/2}^{n+1,-}) + F(m_i^n)$$

Optimality conditions for the discrete problem

$$\frac{\partial \ell}{\partial \gamma}(\gamma_{i+1/2}^{n+1,*}) = (u_{i+1}^{n+1} - u_i^{n+1})/h.$$

Kushner-Dupuis numerical Hamiltonian:

$$g(x, p_1, p_2) = -f(x) + \max_{\gamma \in \mathbb{R}} \left(-p_1^- \gamma + p_2^+ \gamma - \ell(\gamma) \right)$$

Then

$$\begin{split} \gamma_{i+1/2}^{n+1,*,-} &= -\frac{\partial g}{\partial p_1} \left(x_i, (u_{i+1}^{n+1} - u_i^{n+1})/h, (u_i^{n+1} - u_{i-1}^{n+1})/h \right), \\ \gamma_{i-1/2}^{n+1,*,+} &= \frac{\partial g}{\partial p_2} \left(x_i, (u_{i+1}^{n+1} - u_i^{n+1})/h, (u_i^{n+1} - u_{i-1}^{n+1})/h \right). \end{split}$$

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} - \nu (\Delta_h u^{n+1})_i + g\left(x_i, \frac{u_{i+1}^{n+1} - u_i^{n+1}}{h}, \frac{u_i^{n+1} - u_{i-1}^{n+1}}{h}\right) = F(m_i^n)$$

Take d = 2.

- Let T_h be a uniform grid on the torus with mesh step h, and x_{ij} be a generic point in T_h
- Uniform time grid: $\Delta t = T/N_T, t_n = n\Delta t$
- The values of u and m at $(x_{i,j}, t_n)$ are approximated by $u_{i,j}^n$ and $m_{i,j}^n$

Notation

• The discrete Laplace operator:

$$(\Delta_h w)_{i,j} = \frac{1}{h^2} (w_{i+1,j} + w_{i-1,j} + w_{i,j+1} + w_{i,j-1} - 4w_{i,j})$$

• Right-sided finite difference formulas for $\frac{\partial w}{\partial x_1}(x_{i,j})$ and $\frac{\partial w}{\partial x_2}(x_{i,j})$

$$(D_1w)_{i,j} = \frac{w_{i+1,j} - w_{i,j}}{h}, \text{ and } (D_2w)_{i,j} = \frac{w_{i,j+1} - w_{i,j}}{h}$$

• The collection of the 4 first order finite difference formulas at $x_{i,j}$

$$[D_h w]_{i,j} = \left\{ (D_1 w)_{i,j}, (D_1 w)_{i-1,j}, (D_2 w)_{i,j}, (D_2 w)_{i,j-1} \right\}$$

For the Bellman equation, a semi-implicit monotone scheme

$$\frac{\partial u}{\partial t} - \nu \Delta u + H(x, \nabla u) = \Phi[m]$$

$$\downarrow$$

$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} - \nu (\Delta_h u^{n+1})_{i,j} + g(x_{i,j}, [D_h u^{n+1}]_{i,j}) = (\Phi_h[m^n])_{i,j}$$

where $[D_h u]_{i,j} \in \mathbb{R}^4$ is the collection of the two first order finite difference formulas at $x_{i,j}$ for $\partial_x u$ and for $\partial_y u$.

$$g(x_{i,j}, [D_h u^{n+1}]_{i,j}) = g\left(x_{i,j}, (D_1 u^{n+1})_{i,j}, (D_1 u^{n+1})_{i-1,j}, (D_2 u^{n+1})_{i,j}, (D_2 u^{n+1})_{i,j-1}\right)$$

 $(q_1, q_2, q_3, q_4) \to g(x, q_1, q_2, q_3, q_4).$

Monotonicity:

- g is nonincreasing with respect to q_1 and q_3
- g is nondecreasing with respect to to q_2 and q_4

 $(q_1, q_2, q_3, q_4) \to g(x, q_1, q_2, q_3, q_4).$

Monotonicity:

• g is nonincreasing with respect to q_1 and q_3

• g is nondecreasing with respect to to q_2 and q_4

• Consistency:

 $g(x,q_1,q_1,q_3,q_3) = H(x,q), \quad \forall x \in \mathbb{T}, \forall q = (q_1,q_3) \in \mathbb{R}^2$

 $(q_1, q_2, q_3, q_4) \to g(x, q_1, q_2, q_3, q_4).$

Monotonicity:

• g is nonincreasing with respect to q_1 and q_3

• g is nondecreasing with respect to to q_2 and q_4

• Consistency:

 $g(x, q_1, q_1, q_3, q_3) = H(x, q), \quad \forall x \in \mathbb{T}, \forall q = (q_1, q_3) \in \mathbb{R}^2$

• **Differentiability:** g is of class C^1

 $(q_1, q_2, q_3, q_4) \to g(x, q_1, q_2, q_3, q_4).$

Monotonicity:

 ${\ \circ \ } g$ is nonincreasing with respect to q_1 and q_3

• g is nondecreasing with respect to to q_2 and q_4

• Consistency:

 $g(x, q_1, q_1, q_3, q_3) = H(x, q), \quad \forall x \in \mathbb{T}, \forall q = (q_1, q_3) \in \mathbb{R}^2$

- **Differentiability:** g is of class C^1
- Convexity (for uniqueness and stability): $(q_1, q_2, q_3, q_4) \rightarrow q(x, q_1, q_2, q_3, q_4)$ is convex

• Local operator: if $\Phi[m](x) = F(m(x))$, take $(\Phi_h[m])_{i,j} = F(m_{i,j})$

• Local operator: if $\Phi[m](x) = F(m(x))$, take $(\Phi_h[m])_{i,j} = F(m_{i,j})$

• If Φ is a nonlocal operator, choose a consistent discrete approximation. For example, if it is possible,

$$(\Phi_h[m])_{i,j} = \Phi[m_h](x_{i,j}),$$

calling m_h the piecewise constant function on \mathbb{T} taking the value $m_{i,j}$ in the square $|x - x_{i,j}|_{\infty} \leq h/2$

• Local operator: if $\Phi[m](x)=F(m(x)),$ take $(\Phi_h[m])_{i,j}=F(m_{i,j})$

• If Φ is a nonlocal operator, choose a consistent discrete approximation. For example, if it is possible,

$$(\Phi_h[m])_{i,j} = \Phi[m_h](x_{i,j}),$$

calling m_h the piecewise constant function on $\mathbb T$ taking the value $m_{i,j}$ in the square $|x - x_{i,j}|_{\infty} \le h/2$

• For uniqueness and stability, the following assumption will be useful:

$$(\Phi_h[m] - \Phi_h[\tilde{m}], m - \tilde{m})_2 \le 0 \quad \Rightarrow \quad \Phi_h[m] = \Phi_h[\tilde{m}]$$

• Local operator: if $\Phi[m](x)=F(m(x)),$ take $(\Phi_h[m])_{i,j}=F(m_{i,j})$

• If Φ is a nonlocal operator, choose a consistent discrete approximation. For example, if it is possible,

$$(\Phi_h[m])_{i,j} = \Phi[m_h](x_{i,j}),$$

calling m_h the piecewise constant function on $\mathbb T$ taking the value $m_{i,j}$ in the square $|x-x_{i,j}|_\infty \leq h/2$

• For uniqueness and stability, the following assumption will be useful:

$$(\Phi_h[m] - \Phi_h[\tilde{m}], m - \tilde{m})_2 \le 0 \quad \Rightarrow \quad \Phi_h[m] = \Phi_h[\tilde{m}]$$

• Same thing for $\Phi_{0,h}$

The approximation of the Fokker-Planck equation

$$\frac{\partial m}{\partial t} + \nu \Delta m + \operatorname{div}\left(m\frac{\partial H}{\partial p}(x, \nabla v)\right) = 0. \tag{\dagger}$$

- It is chosen so that
 - each time step leads to a linear system for m with a matrix
 - whose diagonal coefficients are negative
 - whose off-diagonal coefficients are nonnegative

in order to hopefully get a discrete maximum principle

The approximation of the Fokker-Planck equation

$$\frac{\partial m}{\partial t} + \nu \Delta m + \operatorname{div}\left(m\frac{\partial H}{\partial p}(x, \nabla v)\right) = 0. \tag{\dagger}$$

- It is chosen so that
 - each time step leads to a linear system for m with a matrix
 - whose diagonal coefficients are negative
 - whose off-diagonal coefficients are nonnegative

in order to hopefully get a discrete maximum principle

• The argument for uniqueness should hold in the discrete case, so the discrete Hamiltonian g should be used for (†) as well

Discretize

$$-\int_{\mathbb{T}}\operatorname{div}\left(mrac{\partial H}{\partial p}(x,
abla u)
ight)w$$

Discretize

$$-\int_{\mathbb{T}} \operatorname{div} \left(m \frac{\partial H}{\partial p}(x, \nabla u) \right) w = \int_{\mathbb{T}} m \frac{\partial H}{\partial p}(x, \nabla u) \cdot \nabla w$$

Discretize
$$-\int_{\mathbb{T}} \operatorname{div} \left(m \frac{\partial H}{\partial p}(x, \nabla u) \right) w = \int_{\mathbb{T}} m \frac{\partial H}{\partial p}(x, \nabla u) \cdot \nabla w$$

by
$$h^2 \sum_{i,j} m_{i,j} \nabla_q g(x_{i,j}, [D_h u]_{i,j}) \cdot [D_h w]_{i,j}$$

Discretize
$$-\int_{\mathbb{T}} \operatorname{div}\left(m\frac{\partial H}{\partial p}(x,\nabla u)\right)w = \int_{\mathbb{T}}m\frac{\partial H}{\partial p}(x,\nabla u)\cdot\nabla w$$

by $-h^2 \sum_{i,j} \mathcal{T}_{i,j}(u,m) w_{i,j} \equiv h^2 \sum_{i,j} m_{i,j} \nabla_q g(x_{i,j}, [D_h u]_{i,j}) \cdot [D_h w]_{i,j}$

Discrete version of $\operatorname{div}(mH_p(x, \nabla u))$:

$$\begin{split} \mathcal{T}_{i,j}(u,m) \\ = & \frac{1}{h} \left(\begin{array}{c} \left(\begin{array}{c} m_{i,j} \frac{\partial g}{\partial q_1}(x_{i,j}, [D_h u]_{i,j}) - m_{i-1,j} \frac{\partial g}{\partial q_1}(x_{i-1,j}, [D_h u]_{i-1,j}) \\ + m_{i+1,j} \frac{\partial g}{\partial q_2}(x_{i+1,j}, [D_h u]_{i+1,j}) - m_{i,j} \frac{\partial g}{\partial q_2}(x_{i,j}, [D_h u]_{i,j}) \end{array} \right) \\ + \left(\begin{array}{c} m_{i,j} \frac{\partial g}{\partial q_3}(x_{i,j}, [D_h u]_{i,j}) - m_{i,j-1} \frac{\partial g}{\partial q_3}(x_{i,j-1}, [D_h u]_{i,j-1}) \\ + m_{i,j+1} \frac{\partial g}{\partial q_4}(x_{i,j+1}, [D_h u]_{i,j+1}) - m_{i,j} \frac{\partial g}{\partial q_4}(x_{i,j}, [D_h u]_{i,j}) \end{array} \right) \end{split} \right) \end{split}$$

Semi-implicit scheme

$$\left(\begin{array}{c} \frac{u_{i,j}^{n+1} - u_{i,j}^{n}}{\Delta t} - \nu(\Delta_{h}u^{n+1})_{i,j} + g(x_{i,j}, [D_{h}u^{n+1}]_{i,j}) = (\Phi_{h}[m^{n}])_{i,j} \\ \frac{m_{i,j}^{n+1} - m_{i,j}^{n}}{\Delta t} + \nu(\Delta_{h}m^{n})_{i,j} + \mathcal{T}_{i,j}(u^{n+1}, m^{n}) = 0\end{array}\right)$$

The operator $m \mapsto \nu(\Delta_h m)_{i,j} + \mathcal{T}_{i,j}(u,m)$ is the adjoint of the linearized version of $u \mapsto \nu(\Delta_h u)_{i,j} - g(x_{i,j}, [D_h u]_{i,j}).$

The discrete MFG system has the same structure as the continuous one.

Semi-implicit scheme

$$\begin{cases} \frac{u_{i,j}^{n+1} - u_{i,j}^{n}}{\Delta t} - \nu(\Delta_h u^{n+1})_{i,j} + g(x_{i,j}, [D_h u^{n+1}]_{i,j}) = (\Phi_h[m^n])_{i,j} \\ \frac{m_{i,j}^{n+1} - m_{i,j}^{n}}{\Delta t} + \nu(\Delta_h m^n)_{i,j} + \mathcal{T}_{i,j}(u^{n+1}, m^n) = 0 \end{cases}$$

Well known discrete Hamiltonians g can be chosen.

For example, if the Hamiltonian is of the form $H(x, \nabla u) = \psi(x, |\nabla u|)$, a possible choice is the **upwind scheme**:

$$g(x, q_1, q_2, q_3, q_4) = \psi\left(x, \sqrt{(q_1^-)^2 + (q_2^+)^2 + (q_3^-)^2 + (q_4^+)^2}\right).$$

Existence and bounds

Define the set of discrete probability densities

$$\mathcal{K} = \left\{ (m_{i,j})_{0 \le i,j < N} : h^2 \sum_{i,j} m_{i,j} = 1, m_{i,j} \ge 0 \right\}.$$

If

- g is of class C^1 , and monotone w.r.t. q
- Φ_h and $\Phi_{0,h}$ are continuous operators on \mathcal{K}

then the discrete problem has a solution such that $m^n \in \mathcal{K}, \ \forall n.$

Existence and bounds

Define the set of discrete probability densities

$$\mathcal{K} = \left\{ (m_{i,j})_{0 \le i,j < N} : h^2 \sum_{i,j} m_{i,j} = 1, m_{i,j} \ge 0 \right\}.$$

If

• g is of class C^1 , and monotone w.r.t. q

• Φ_h and $\Phi_{0,h}$ are continuous operators on \mathcal{K}

then the discrete problem has a solution such that $m^n \in \mathcal{K}, \forall n.$

Discrete Lipschitz estimates on u can be obtained if Φ_h is a suitable approximation of a nonlocal smoothing operator and if g satisfies additional properties, for example

$$\left|\frac{\partial g}{\partial x}\left(x,(q_1,q_2,q_3,q_4)\right)\right| \le C(1+|q_1|+|q_2|+|q_3|+|q_4|).$$

- Brouwer fixed point theorem in \mathcal{K}^{N_T} taking advantage of the structure of the system
- estimates on u uniform w.r.t m, but possibly depending on h and Δt (using the monotonicity of g)
- if Φ is a nonlocal smoothing operator, discrete Lipchitz bounds on $\Phi_h[m]$ yield estimates on the discrete Lipschitz norm of u, uniform in m, h and Δt

A key identity for uniqueness and stability

A perturbed system

$$\frac{\tilde{u}_{i,j}^{n+1} - \tilde{u}_{i,j}^{n}}{\Delta t} - \nu(\Delta_h \tilde{u}^{n+1})_{i,j} + g(x_{i,j}, [D_h \tilde{u}^{n+1}]_{i,j}) = (\Phi_h [\tilde{m}^n])_{i,j} + a_{i,j}^n$$

$$\frac{\tilde{m}_{i,j}^{n+1} - \tilde{m}_{i,j}^n}{\Delta t} + \nu(\Delta_h \tilde{m}^n)_{i,j} + \mathcal{T}_{i,j}(\tilde{u}^{n+1}, \tilde{m}^n) = b_{i,j}^n$$

- Multiply the 2 discrete HJB equations by $m_{i,j}^n \tilde{m}_{i,j}^n$, sum on n, i, j, and subtract the results
- Multiply the 2 discrete FP equations by $u_{i,j}^{n+1} \tilde{u}_{i,j}^{n+1}$, sum on n, i, j, and subtract the results
- Add the 2 resulting identities

One gets

$$-\frac{1}{\Delta t} \left(m^{N_T} - \tilde{m}^{N_T}, u^{N_T} - \tilde{u}^{N_T} \right)_2 + \frac{1}{\Delta t} \left(m^0 - \tilde{m}^0, u^0 - \tilde{u}^0 \right)_2 \\ + \mathcal{E}(m, u, \tilde{u}) + \mathcal{E}(\tilde{m}, \tilde{u}, u) + \sum_{n=0}^{N_T - 1} \left(\Phi_h[m^n] - \Phi_h[\tilde{m}^n], m^n - \tilde{m}^n \right)_2 \\ - \sum_{n=0}^{N_T - 1} \left(a^n m^n - \tilde{m}^n \right)_n + \sum_{n=0}^{N_T} \left(b^{n-1} m^n - \tilde{u}^n \right)_n$$

$$= \sum_{n=0} (a^n, m^n - \tilde{m}^n)_2 + \sum_{n=1} (b^{n-1}, u^n - \tilde{u}^n)_2$$

where

$$\mathcal{E}(m, u, \tilde{u}) = \sum_{i,j,n} m_{i,j}^{n-1} \left(\begin{array}{c} g(x_{i,j}, [D\tilde{u}^n]_{i,j}) - g(x_{i,j}, [Du^n]_{i,j}) - \\ -g_q(x_{i,j}, [Du^n]_{i,j}) \cdot ([D\tilde{u}^n]_{i,j} - [Du^n]_{i,j}) \end{array} \right)$$

One gets

$$-\frac{1}{\Delta t} \left(m^{N_T} - \tilde{m}^{N_T}, u^{N_T} - \tilde{u}^{N_T} \right)_2 + \frac{1}{\Delta t} \left(m^0 - \tilde{m}^0, u^0 - \tilde{u}^0 \right)_2 \\ + \mathcal{E}(m, u, \tilde{u}) + \mathcal{E}(\tilde{m}, \tilde{u}, u) + \sum_{n=0}^{N_T - 1} \left(\Phi_h[m^n] - \Phi_h[\tilde{m}^n], m^n - \tilde{m}^n \right)_2 \\ = \sum_{n=0}^{N_T - 1} \left(a^n, m^n - \tilde{m}^n \right)_2 + \sum_{n=0}^{N_T} \left(b^{n-1}, u^n - \tilde{u}^n \right)_2$$

$$= \sum_{n=0}^{\infty} (a^n, m^n - \tilde{m}^n)_2 + \sum_{n=1}^{\infty} (b^{n-1}, u^n - \tilde{u}^n)_2$$

where

$$\mathcal{E}(m, u, \tilde{u}) = \sum_{i,j,n} m_{i,j}^{n-1} \left(\begin{array}{c} g(x_{i,j}, [D\tilde{u}^n]_{i,j}) - g(x_{i,j}, [Du^n]_{i,j}) - \\ -g_q(x_{i,j}, [Du^n]_{i,j}) \cdot ([D\tilde{u}^n]_{i,j} - [Du^n]_{i,j}) \end{array} \right)$$

- Convexity of $g \Rightarrow \mathcal{E}(m, u, \tilde{u}) \ge 0$ if $m \ge 0$
- If Φ_h is monotone, $(\Phi_h[m^n] \Phi_h[\tilde{m}^n], m^n \tilde{m}^n)_2 \ge 0$

First consequence: uniqueness

If

- g is convex
- Φ_h is monotone

$$(\Phi_h[m] - \Phi_h[\tilde{m}], m - \tilde{m})_2 \le 0 \quad \Rightarrow \quad \Phi_h[m] = \Phi_h[\tilde{m}]$$

• If $u^0 = \Phi_{0,h}[m^0]$ and

$$\left(\Phi_{0,h}[m]-\Phi_{0,h}[\tilde{m}],m-\tilde{m}\right)_2 \leq 0 \quad \Rightarrow \quad \Phi_{0,h}[m]=\Phi_{0,h}[\tilde{m}]$$

then

the discrete version of the MFG system has a unique solution.

A convergence result with local coupling

Assumptions (1/3)

- ${\scriptstyle \bullet \ }\nu > 0$
- d = 2 (only for example)
- periodicity (but everything would work with Neumann boundary conditions, or suitable Dirichlet conditions)
- $u|_{t=0} = u_0$ and the data u_0 and m_T are smooth
- ٢

 $0 < \underline{\mathbf{m}}_T \le m_T(x) \le \overline{m}_T$

Assumptions (2/3)

• The Hamiltonian is of the form

 $H(x,\nabla u) = \mathcal{H}(x) + |\nabla u|^{\beta}$

where $\beta > 1$ and \mathcal{H} is a smooth function

• The discrete Hamiltonian is of the form $g(x_{i,j}, [D_h u]_{i,j})$. The function $g: \mathbb{T} \times \mathbb{R}^4 \to \mathbb{R}$ is defined by

 $g(x,q) = \mathcal{H}(x) + \left((q_1^-)^2 + (q_2^+)^2 + (q_3^-)^2 + (q_4^+)^2 \right)^{\frac{\nu}{2}}$

where $r^+ = \max(r, 0)$ and $r^- = \max(-r, 0)$

Assumptions (3/3)

• Local coupling: the cost term is

 $\Phi[m](x) = F(m(x))$

where F is \mathcal{C}^1 on \mathbb{R}_+

Assumptions (3/3)

• Local coupling: the cost term is

$$\Phi[m](x) = F(m(x))$$

where F is \mathcal{C}^1 on \mathbb{R}_+

• There exist three constants $c_1 > 0$ and $\gamma > 1$ and $c_2 \ge 0$ s.t.

 $mF(m) \ge c_1 |F(m)|^{\gamma} - c_2 \qquad \forall m$

Assumptions (3/3)

• Local coupling: the cost term is

 $\Phi[m](x) = F(m(x))$

where F is \mathcal{C}^1 on \mathbb{R}_+

• There exist three constants $c_1 > 0$ and $\gamma > 1$ and $c_2 \ge 0$ s.t.

 $mF(m) \ge c_1 |F(m)|^{\gamma} - c_2 \qquad \forall m$

• There exist three positive constants c_3 , η_1 and $\eta_2 < 1$ s.t.

 $F'(m) \ge c_3 \min(m^{\eta_1}, m^{-\eta_2}) \qquad \forall m$

Assume that the MFG system of pdes has a unique smooth solution (u, m) s.t.

 $m \ge \underline{m} > 0.$

Let u_h (resp. m_h) be the piecewise trilinear function in $\mathcal{C}([0,T] \times \mathbb{T})$ obtained by interpolating the values $u_{i,j}^n$ (resp $m_{i,j}^n$) at the nodes of the space-time grid.

$$\lim_{h,\Delta t\to 0} \left(\|u - u_h\|_{L^{\beta}(0,T;W^{1,\beta}(\mathbb{T}))} + \|m - m_h\|_{L^{2-\eta_2}((0,T)\times\mathbb{T})} \right) = 0$$

Main steps of the proof

(1) Obtain a priori bounds on the solution of the discrete problem, in particular on $||F(m_h)||_{L^{\gamma}((0,T)\times\mathbb{T})}$

Main steps of the proof

- (1) Obtain a priori bounds on the solution of the discrete problem, in particular on $||F(m_h)||_{L^{\gamma}((0,T)\times\mathbb{T})}$
- Plug the solution of the system of pdes into the numerical scheme, take advantage of the stability of the scheme and prove that

 $\|\nabla u-\nabla u_h\|_{L^\beta((0,T)\times\mathbb{T})}$ and $\|m-m_h\|_{L^{2-\eta_2}((0,T)\times\mathbb{T})}$ converge to 0

Main steps of the proof

- (1) Obtain a priori bounds on the solution of the discrete problem, in particular on $||F(m_h)||_{L^{\gamma}((0,T)\times\mathbb{T})}$
- Plug the solution of the system of pdes into the numerical scheme, take advantage of the stability of the scheme and prove that

 $\|\nabla u-\nabla u_h\|_{L^\beta((0,T)\times\mathbb{T})}$ and $\|m-m_h\|_{L^{2-\eta_2}((0,T)\times\mathbb{T})}$ converge to 0

③ To get the full convergence for u, one has to pass to the limit in the Bellman equation. To pass to the limit in the term F(m_h), use the equiintegrability of F(m_h) and Vitali's theorem

A convergence result with nonlocal coupling

Assumptions

- $\bullet\,$ Same assumptions on H and g
- Φ is non local, smoothing and monotone:

$$(\Phi(m_1) - \Phi(m_2), m_1 - m_2) \le 0 \quad \Rightarrow \quad m_1 = m_2$$

- The discrete cost operator Φ_h continuously maps \mathcal{K} to a set of grid functions bounded in the discrete Lipschitz norm
- The discrete cost operator Φ_h is monotone
- Consistency: for all probability density m and discrete probability density m',

$$\left\| \Phi[m] - \Phi_h[m'] \right\|_{L^{\infty}(\mathbb{T}_h)} \le \omega \left(\|m - m'_h\|_{L^1(\mathbb{T})} \right)$$

where m'_h is a bilinear interpolation of m'

Convergence

When h and Δt tend to 0,

• (u_h) converges to u

uniformly and in $L^{\max(\beta,2)}(0,T;W^{1,\max(\beta,2)}(\mathbb{T}))$

If β ≥ 2, (m_h) converges to m in C⁰([0,T]; L²(T)) ∩ L²(0,T; H¹(T))
If 1 < β < 2, (m_h) converges to m in L²((0,T) × T) Solvers for the discrete systems

Due to the forward-backward structure, marching in time is not possible. One has to solve the system for u and m as a whole. This leads to large systems of nonlinear equations with $\sim 2N^{d+1}$ unknowns.

Due to the forward-backward structure, marching in time is not possible. One has to solve the system for u and m as a whole. This leads to large systems of nonlinear equations with $\sim 2N^{d+1}$ unknowns.

Our choice: Newton methods

- linearized discrete MFG systems : well-posed if m > 0, which is not sure. Hence, breakdowns of the Newton method may occur
- Careful initial guess avoids breakdown
- Initial guesses: continuation method, by decreasing ν progressively
- ${\circ}\,$ In practice, can be applied even if Φ is not monotone

Solvers for linearized discrete MFG systems

- Due to the forward-backward structure, marching in time is not possible
- ${\circ}\,$ Preconditioned iterative method for the whole system in (u,m)
- A good understanding of the PDE system and multigrid lead to solvers with optimal linear complexity
- We have developed several optimal solvers based on multigrid methods

 Eliminate u by solving a linearized HJB equation (marching in time)

- Eliminate u by solving a linearized HJB equation (marching in time)
- **2** This yields a nonlocal eq. for m

- Eliminate u by solving a linearized HJB equation (marching in time)
- **2** This yields a nonlocal eq. for m
- ③ Solve the resulting system by a preconditioned iterative method: applying the preconditioner consists of solving a backward Fokker-Planck equation (marching in time)

- Eliminate u by solving a linearized HJB equation (marching in time)
- **2** This yields a nonlocal eq. for m
- ③ Solve the resulting system by a preconditioned iterative method: applying the preconditioner consists of solving a backward Fokker-Planck equation (marching in time)
- ④ Plug m back in the HJB equation and solve marching in time

PDE interpretation of the preconditioned operator

The preconditioned operator is of the form $\boldsymbol{I}-\boldsymbol{K}$ where

 $K(n) = (\text{linear-FP}_m)^{-1} \circ \text{div} (mH_{pp}(Du)D \cdot) \circ (\text{linear-HJB}_u)^{-1} (\Phi'(m)n)$

If $\nu > 0$ and if m and u are smooth, K is a **compact operator** in L^2 .

PDE interpretation of the preconditioned operator

The preconditioned operator is of the form $\boldsymbol{I}-\boldsymbol{K}$ where

 $K(n) = (\text{linear-FP}_m)^{-1} \circ \text{div} (mH_{pp}(Du)D \cdot) \circ (\text{linear-HJB}_u)^{-1} (\Phi'(m)n)$

If $\nu > 0$ and if m and u are smooth, K is a **compact operator** in L^2 .

Thus, the convergence of a (bi)conjugate gradient like method should not depend on h and Δt .

Table: solving the linearized MFG system: average (on the Newton loop) number of iterations of BiCGstab to decrease the residual by a factor $10^{-3}\,$

grid	$32 \times 32 \times 32$	$64 \times 64 \times 64$	$128\times128\times128$
$\nu = 0.6$	1	1	1
$\nu = 0.36$	1.75	1.75	1.8
$\nu = 0.2$	2	2	2
$\nu = 0.12$	3	3	3
$\nu = 0.046$	4.9	5.1	5.1

Multigrid methods can be used for solving the linearized HJ and FP eqs \Rightarrow optimal complexity.

Second strategy for solving the linear systems when Φ is strictly monotone

The idea is to apply directly a multigrid method to the full system of pdes.

Second strategy for solving the linear systems when Φ is strictly monotone

The idea is to apply directly a multigrid method to the full system of pdes.

The multigrid method must be special:

indeed, eliminating m from the linearized HJB equation, (this is possible since Φ is strictly monotone), we get a degenerate elliptic pde, with the operator

 $\operatorname{div}\left(m\frac{\partial^2 H(Du)}{\partial p^2}D\cdot\right) - (\operatorname{linear- FP}) \circ ((\Phi'(m))^{-1} \cdot) \circ (\operatorname{linear- HJB}).$

Second strategy for solving the linear systems when Φ is strictly monotone

The idea is to apply directly a multigrid method to the full system of pdes.

The multigrid method must be special:

indeed, eliminating m from the linearized HJB equation, (this is possible since Φ is strictly monotone), we get a degenerate elliptic pde, with the operator

div
$$\left(m\frac{\partial^2 H(Du)}{\partial p^2}D\cdot\right) - (\text{linear- FP}) \circ ((\Phi'(m))^{-1}\cdot) \circ (\text{linear- HJB}).$$

Operator: order 4 w.r.t. x and 2 w.r.t. t.

Principal part:
$$(\Phi'(m))^{-1} \left(-\frac{\partial^2}{\partial t^2} + \nu^2 \Delta^2\right).$$

Hence, when ν is large enough, we use a **multigrid method** with a hierarchy of grids obtained by **coarsening the grids** only in the x variable.

Table: average (on the Newton loop) number of iterations of the BiCGstab method to decrease the residual by a factor 10^{-3}

$\nu \setminus \text{grid}$	$32 \times 32 \times 32$	$64\times 64\times 64$	$128\times128\times128$
0.6	1.75	1.5	1.25
0.36	2.2	2	2
0.2	4.9	3.5	2.9
0.12	14.4	11.4	6.8

Some numerical results

A. Exit from a hall with obstacles

$$\frac{\partial u}{\partial t} + \nu \Delta u - H(x, m, \nabla u) = -F(m), \quad \text{in } (0, T) \times \Omega$$
$$\frac{\partial m}{\partial t} - \nu \Delta m - \operatorname{div} \left(m \frac{\partial H}{\partial p}(\cdot, m, \nabla u) \right) = 0, \quad \text{in } (0, T) \times \Omega$$
$$\frac{\partial u}{\partial n} = \frac{\partial m}{\partial n} = 0 \quad \text{on walls}$$
$$u = k, \quad m = 0 \quad \text{at exits}$$

A. Exit from a hall with obstacles

$$\frac{\partial u}{\partial t} + \nu \Delta u - H(x, m, \nabla u) = -F(m), \quad \text{in } (0, T) \times \Omega$$
$$\frac{\partial m}{\partial t} - \nu \Delta m - \text{div} \left(m \frac{\partial H}{\partial p}(\cdot, m, \nabla u) \right) = 0, \quad \text{in } (0, T) \times \Omega$$
$$\frac{\partial u}{\partial n} = \frac{\partial m}{\partial n} = 0 \quad \text{on walls}$$
$$u = k, \quad m = 0 \quad \text{at exits}$$

Congestion

$$H(x,m,p) = \mathcal{H}(x) + \frac{|p|^{\beta}}{(c_0 + c_1 m)^{\gamma}}$$

with $c_0 > 0$, $c_1 \ge 0$, $\beta > 1$ and $0 \le \gamma < 4(\beta - 1)/\beta$. Existence and uniqueness was proven by P-L. Lions, and hold in the discrete case.

A. Exit from a hall with obstacles

- ${\small \circ } T=6$
- ${\scriptstyle \bullet} \ \nu = 0.015$

•
$$u(t=T)=0$$

•
$$F(m) = m$$

• Hamiltonian

$$H(x,m,p) = -0.1 + \frac{|p|^2}{(1+4m)^{1.5}}$$

t=0

t=0.15

t=0.30

t=0.6

t=3

t=4.5

Velocity

÷.

t=0.6

Same thing without congestion : $H(x, p) = -0.1 + |p|^2$

B. Two populations

$$\frac{\partial u_1}{\partial t} + \nu \Delta u_1 - H_1(t, x, m_1 + m_2, \nabla u_1) = -F_1(m_1, m_2)$$

$$\frac{\partial m_1}{\partial t} - \nu \Delta m_1 - \operatorname{div} \left(m_1 \frac{\partial H_1}{\partial p}(t, x, m_1 + m_2, \nabla u_1) \right) = 0$$

$$\frac{\partial u_2}{\partial t} + \nu \Delta u_2 - H_2(t, x, m_1 + m_2, \nabla u_2) = -F_2(m_1, m_2)$$

$$\frac{\partial m_2}{\partial t} - \nu \Delta m_2 - \operatorname{div} \left(m_2 \frac{\partial H_2}{\partial p}(t, x, m_1 + m_2, \nabla u_2) \right) = 0$$

$$\frac{\partial u_1}{\partial n} = \frac{\partial u_2}{\partial n} = 0$$

$$\frac{\partial m_1}{\partial n} = \frac{\partial m_2}{\partial n} = 0$$

A model for segregation proposed by M. Bardi

• The Hamiltonians are uniform in space and the same for the two populations

$$H_i(x, m_i, m_j, p) = 0.1|p|^2$$

A model for segregation proposed by M. Bardi

• The Hamiltonians are uniform in space and the same for the two populations

$$H_i(x, m_i, m_j, p) = 0.1|p|^2$$

Xenophobia

The cost operators $F_1(m_1, m_2)$ and $F_2(m_1, m_2)$ are given by

$$F_i(m_i, m_j) = 5m_i \left(\frac{m_i}{m_i + m_j} - 0.45\right)_{-} + (m_i + m_j - 4)_{+}$$

A stiffer coupling term

$$F_i(m_i, m_j) = 5\left(\frac{m_i}{m_i + m_j} - 0.45\right)_- + (m_i + m_j - 4)_+$$

Who will reach the goal?

 $F_1(m_1, m_2) = m_1 + m_2, \quad F_2(m_1, m_2) = 20 m_1 + m_2$

• $\Omega = (0,1)^2 \setminus ([0.4,0.6] \times [0,0.55])$

•
$$T = 4, \nu = 0.125$$

•
$$u_1(t=T) = u_2(t=T) = 0$$

• Same Hamiltonian for the two populations:

$$H_1(x,m,p) = H_2(x,m,p) = \mathcal{H}(x) + 0.1 \frac{|p|^2}{(1+4m)^{1.3}}$$
$$\mathcal{H}(x) = -10 \times \mathbb{1}_{x \notin ([0.6,1] \times [0.0.2])}$$

Evolution of the densities (bottom: the xenophobic pop.; top: the other pop.)

Evolution of the densities (bottom: the xenophobic pop.; top: the other pop.)

Evolution of the velocities (bottom: the xenophobic pop.; top: the other pop.)

Y. Achdou

Dauphine

Two populations cross each other

 $F_1(m_1, m_2) = m_1 + m_2, \quad F_2(m_1, m_2) = 20 m_1 + m_2.$

• $\Omega = (0, 1)^2$ • $T = 4, \nu = 0.015$ • $u_1(t = T) = u_2(t = T) = 0$

• Hamiltonians:

$$H_i(x, m, p) = \mathcal{H}_i(x) + 0.1 \frac{|p|^2}{(1+4m)^{1.3}}$$
$$\mathcal{H}_1(x) = -10 \times 1_{x \notin ([0.7,1] \times [0.0.2])}$$
$$\mathcal{H}_2(x) = -10 \times 1_{x \notin ([0.7,1] \times [0.8,1])}$$

The two populations pay the same cost for moving and have the same sensitivity to congestion effects, but they aim at different corners • Finally, at time t = 0, the densities of the two populations are given by

$$m_1(x, t = 0) = 4 \times 1_{[0,0.2] \times [0.4,0.9]}(x)$$

$$m_2(x, t = 0) = 4 \times 1_{[0,0.2] \times [0.1,0.6]}(x)$$

Evolution of the densities (bottom: the xenophobic pop.; top: the other pop.)

Evolution of the velocities (bottom: the xenophobic pop.; top: the other pop.)

Y. Achdou

Dauphine

C. Long time behavior (a single population)

$$\nu = 1, \quad T = 1, \quad m(T) = 1$$

$$H(x, p) = \sin(2\pi x_2) + \sin(2\pi x_1) + \cos(4\pi x_1) + |p|^2,$$

$$F(x, m) = m^2, \qquad F_0(x, m) = m^2 + \cos(\pi x_1)\cos(\pi x_2).$$

The potential $H(x, 0) = \sin(2\pi x_2) + \sin(2\pi x_1) + \cos(4\pi x_1)$.

Evolution of m(top) and u(bottom)

Snapshots at t = (0, 4, 8, 100, 180, 190, 196, 200)/200

Y. Achdou

Dauphine

Comparison with the solution of the infinite horizon MFG system

The solution around t = T/2 is very close to the solution of the infinite horizon MFG system

Find $(u, m, \lambda \in \mathbb{R})$ such that

$$\begin{cases} -\nu\Delta u + H(x,\nabla u) + \lambda = F(m), \\ -\nu\Delta m - \operatorname{div}\left(m\frac{\partial H}{\partial p}(x,\nabla u)\right) = 0, \\ \int_{\mathbb{T}} u dx = 0, \quad \int_{\mathbb{T}} m dx = 1, \text{ and } m > 0 \text{ in } \mathbb{T}. \end{cases}$$

The Hamiltonian is of the form $H(x,p) = |p|^2 + g(x)$. The infinite horizon MFG system is equivalent to a generalized Hartree equation:

$$-\nu^2 \Delta \phi - g\phi + \phi F(\phi^2) = \lambda \phi$$
, in \mathbb{T} , and $\int_{\mathbb{T}} \phi^2 = 1$

where $\phi(x) = \phi_0 \exp(-u(x)/\nu)$ and $m = \phi^2$. The constant ϕ_0 is fixed by the equation $\int_{\mathbb{T}} \log(\phi/\phi_0) = 0$.

As a consequence, m can be written as a function of u. This gives a way to test the accuracy of the scheme.

Order of the scheme

Y. Achdou Dauphine

Same test except

$$\nu = 0.01, \quad \Delta t = 1/200.$$

Evolution of m(top) and u(bottom)

Snapshots at t = (0, 4, 8, 100, 180, 190, 196, 200)/200

Y. Achdou

Dauphine

The solution of the infinite horizon problem

 $u = 0.01, \quad \text{left: } u, \quad \text{right } m.$ Note that the supports of ∇u and of m tend to be disjoint as $\nu \to 0.$

D. Deterministic infinite horizon MFG with nonlocal coupling

$$\nu = 0.001,$$

$$H(x, p) = \sin(2\pi x_2) + \sin(2\pi x_1) + \cos(4\pi x_1) + |p|^2,$$

$$V[m] = (1 - \Delta)^{-1}(1 - \Delta)^{-1}m$$

left: u, right m.

E. Optimal planning with MFG

$$\begin{cases} \frac{\partial u}{\partial t} - \nu \Delta u + H(x, \nabla u) = F(m(x)) & \text{in } (0, T) \times \mathbb{T}, \\ \frac{\partial m}{\partial t} + \nu \Delta m + \operatorname{div} \left(m \frac{\partial H}{\partial p}(x, \nabla u) \right) = 0 & \text{in } (0, T) \times \mathbb{T}, \end{cases}$$

with the initial and terminal conditions

$$m(0,x) = m_0(x), \quad m(T,x) = m_T(x), \quad \text{in } \mathbb{T},$$

and

$$m \ge 0, \qquad \quad \int_{\mathbb{T}} m(t,x) dx = 1.$$

• Ok if $\nu = 0$, if H coercive, if F is a strictly increasing function and if m_0 and m_T are smooth positive functions. Principle of the (difficult) proof: eliminate m from the Bellman equation and get a boundary value problem for uwith a strictly elliptic quasilinear second order PDE, and nonlinear boundary conditions

- Ok if $\nu = 0$, if H coercive, if F is a strictly increasing function and if m_0 and m_T are smooth positive functions. Principle of the (difficult) proof: eliminate m from the Bellman equation and get a boundary value problem for uwith a strictly elliptic quasilinear second order PDE, and nonlinear boundary conditions
- OK if $\nu = 0$, if F = 0 (optimal transport) and if m_0 and m_T are smooth positive functions

- Ok if $\nu = 0$, if H coercive, if F is a strictly increasing function and if m_0 and m_T are smooth positive functions. Principle of the (difficult) proof: eliminate m from the Bellman equation and get a boundary value problem for uwith a strictly elliptic quasilinear second order PDE, and nonlinear boundary conditions
- OK if $\nu = 0$, if F = 0 (optimal transport) and if m_0 and m_T are smooth positive functions
- Ok if $\nu > 0$ and if $H(p) = c|p|^2$, if F is a smooth and bounded function and if m_0 and m_T are smooth positive functions. Principle of the proof: use a clever change of unknowns: $\phi = \exp(-u)$ and $\chi = m/\phi$

- Ok if $\nu = 0$, if H coercive, if F is a strictly increasing function and if m_0 and m_T are smooth positive functions. Principle of the (difficult) proof: eliminate m from the Bellman equation and get a boundary value problem for uwith a strictly elliptic quasilinear second order PDE, and nonlinear boundary conditions
- OK if $\nu = 0$, if F = 0 (optimal transport) and if m_0 and m_T are smooth positive functions
- Ok if $\nu > 0$ and if $H(p) = c|p|^2$, if F is a smooth and bounded function and if m_0 and m_T are smooth positive functions. Principle of the proof: use a clever change of unknowns: $\phi = \exp(-u)$ and $\chi = m/\phi$
- Still Ok if $\nu > 0$ and if $||D^2H(p) cI_d|| \le C \frac{1}{\sqrt{1+|p|^2}}$

- Ok if $\nu = 0$, if H coercive, if F is a strictly increasing function and if m_0 and m_T are smooth positive functions. Principle of the (difficult) proof: eliminate m from the Bellman equation and get a boundary value problem for uwith a strictly elliptic quasilinear second order PDE, and nonlinear boundary conditions
- OK if $\nu = 0$, if F = 0 (optimal transport) and if m_0 and m_T are smooth positive functions
- Ok if $\nu > 0$ and if $H(p) = c|p|^2$, if F is a smooth and bounded function and if m_0 and m_T are smooth positive functions. Principle of the proof: use a clever change of unknowns: $\phi = \exp(-u)$ and $\chi = m/\phi$
- Still Ok if $\nu > 0$ and if $||D^2H(p) cI_d|| \le C \frac{1}{\sqrt{1+|p|^2}}$
- If $\nu > 0$ and more general Hamiltonians ?

- Ok if $\nu = 0$, if H coercive, if F is a strictly increasing function and if m_0 and m_T are smooth positive functions. Principle of the (difficult) proof: eliminate m from the Bellman equation and get a boundary value problem for uwith a strictly elliptic quasilinear second order PDE, and nonlinear boundary conditions
- OK if $\nu = 0$, if F = 0 (optimal transport) and if m_0 and m_T are smooth positive functions
- Ok if $\nu > 0$ and if $H(p) = c|p|^2$, if F is a smooth and bounded function and if m_0 and m_T are smooth positive functions. Principle of the proof: use a clever change of unknowns: $\phi = \exp(-u)$ and $\chi = m/\phi$
- Still Ok if $\nu > 0$ and if $||D^2H(p) cI_d|| \le C \frac{1}{\sqrt{1+|p|^2}}$
- If $\nu > 0$ and more general Hamiltonians ?
- Non-existence if H is sublinear, $m_0 \neq m_T$ and T small enough

Optimal control (on PDEs) approach

Assumption:

- ${\ \bullet \ } F = W'$ where $W: \mathbb{R} \to \mathbb{R}$ is a strictly convex function
- $H(x,p) = \sup_{\gamma \in \mathbb{R}^d} (p \cdot \gamma L(x,\gamma))$
- L is strictly convex, $\lim_{|\gamma| \to \infty} \inf_{x} L(x, \gamma)/|\gamma| = +\infty$

Optimal control (on PDEs) approach

Assumption:

- F = W' where $W : \mathbb{R} \to \mathbb{R}$ is a strictly convex function
- $H(x,p) = \sup_{\gamma \in \mathbb{R}^d} (p \cdot \gamma L(x,\gamma))$
- L is strictly convex, $\lim_{|\gamma|\to\infty} \inf_x L(x,\gamma)/|\gamma| = +\infty$

A weak form of the MFG system can be found by considering the problem of optimal control on PDE:

minimize
$$(m,\gamma) \to \int_0^T \int_{\mathbb{T}} m(t,x) L(x,\gamma(t,x)) + W(m(t,x))$$

subject to the constraints

$$\begin{cases} \partial_t m + \nu \Delta m + \operatorname{div}(m \gamma) &= 0, & \text{in } (0, T) \times \mathbb{T}, \\ m(T, x) &= m_T(x) & \text{in } \mathbb{T}, \\ m(0, x) &= m_0(x) & \text{in } \mathbb{T}. \end{cases}$$

Y. Achdou

Dauphine

Convex programming and Fenchel-Rockafeller duality theorem

It is possible to make the constraints linear by the change of variables $z=m\gamma$

 \rightarrow optimization problem with a convex cost and linear constraints.

There exists a saddle point of the primal-dual problem, and writing the optimality conditions:

- In the continuous setting, not easy to recover the system of pdes
- Discrete problem: same program, but it is possible to prove that $m > 0 \Rightarrow$ existence and uniqueness for the discrete pb.

A penalized scheme

$$\begin{pmatrix}
\frac{u_{i,j}^{\epsilon,n+1} - u_{i,j}^{\epsilon,n}}{\Delta t} - \nu(\Delta_h u^{\epsilon,n+1})_{i,j} + g(x_{i,j}, [D_h u^{\epsilon,n+1}]_{i,j}) = F(m_{i,j}^{\epsilon,n}) \\
\frac{m_{i,j}^{\epsilon,n+1} - m_{i,j}^{\epsilon,n}}{\Delta t} + \nu(\Delta_h m^{\epsilon,n})_{i,j} + \mathcal{T}_{i,j}(u^{\epsilon,n+1}, m^{\epsilon,n}) = 0 \\
m^{\epsilon,n} \in \mathcal{K}
\end{cases}$$

with the final time and initial time conditions

$$u_{i,j}^{\epsilon,0} = \frac{1}{\epsilon} (m_{i,j}^{\epsilon,0} - (m_0)_{i,j}), \qquad m_{i,j}^{\epsilon,N_T} = (m_T)_{i,j}, \quad \forall i,j$$

Convergence As $\epsilon \to 0$, $m^{\epsilon} \to m$ solution of the discrete MFG system.

 $T = 1, \nu = 1, F(m) = m^2, H(p) = \sin(2\pi x_2) + \sin(2\pi x_1) + \cos(4\pi x_1) + |p|^2$

Snapshots at t = (0, 4, 8, 100, 180, 190, 196, 200)/200

Y. Achdou Dau

Dauphine

 $T = 0.01, \nu = 0.1, H(p) = \sin(2\pi x_2) + \sin(2\pi x_1) + \cos(4\pi x_1) + |p|^3$

Snapshots at t = (0, 4, 8, 100, 180, 190, 196, 200)/200

Y. Achdou Dau

Dauphine